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ABSTRACT

This report investigates the transient rocking response of anchored electrical equipment and other
anchored structures that can be approximated as rigid blocks. Practical issues that control over-
turning, such as the effect of the vertical component of ground accelerations and the effect of the
coefficient of restitution during impact, are also addressed.

The anchorages of equipment are assumed to have a pre-yielding linear behavior, a finite
post-yielding strength, and some ductility. The nonlinear behavior of the restrainers in conjunc-
tion with the nonlinear dynamics of a rocking block yield a set of highly nonlinear equations
which are solved numerically using a state-space formulation. The study uncovers that while for
most of the frequency range, anchored blocks survive higher accelerations than free-standing
blocks, there is a short frequency range where the opposite happens. This counterintuitive behav-
ior is the result of the many ways that a block might overturn. It is shown that under a one-sine
(Type-A) pulse or one-cosine (Type-B) pulse with frequency ®, , a free-standing block with fre-
quency parameter p has two modes of overturning; one with impact (mode 1), and one without
impact (mode 2). The transition from mode 1 to mode 2 is sudden, and once (Dp/ p 1is sufficiently
large, then a substantial increase in the acceleration amplitude of the one-sine pulse is needed to
achieve overturning. When a block is anchored the transition from mode 1 to mode 2 happens at
slightly larger values of ©,/p, and this results in a finite frequency range where a free-standing
block survives acceleration levels that are capable of overturning the same block when it is
anchored. The presence of restrainers is effective in preventing toppling of small, slender blocks.
Prior to the transition from mode 1 to mode 2, the presence of restrainers has a destructive effect.
When blocks overturn without impact (mode 2) the presence of restrainers has a marginal effect.

Furthermore, the investigation concludes that the effect of the vertical component of
recorded ground motions is marginal and virtually does not affect the level of the horizontal accel-
eration needed to overturn an electrical equipment. An increasingly inelastic impact (smaller
coefficient of restitution) results in smaller angles of rotation; however, the values of the impact

velocities might be occasionally larger.



PROLOGUE

This report summarizes the work conducted during Phase II of the PEER-PG&E Program. The
work is the continuation of a Phase I study during which the PI and a former graduate student
examined the rocking response and overturning of free-standing equipment under pulse-type

motions!. In that study it was indicated that the minimum overturning acceleration amplitude,

2

g of a half-sine pulse as was computed by Housner” was incorrect. This result was corrected by

showing that under the weaker half-sine pulse that accomplishes overturning, the block topples
during its free-vibration regime — after a theoretically infinite long time — not at the instant that
the pulse expires, as was assumed by Housner. Within the limits of the linear approximation the

correct expression was derived, which yields the minimum overturning acceleration, a,, (equa-

tion 3.8 of Reference 1):

(O]
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The solution of this transcendental equation gives the value of Wy for which the acceleration,

a,) = og/siny, is the minimum acceleration amplitude of the half-sine pulse with duration
T, = 2n/ ©, able to overturn a block with slenderness o and frequency parameter p .

Equation (1) can be further simplified by using the definition of the hyperbolic function,
coshx = (¢"+¢ ")/2 and sinhx = (¢' —e ")/2, and then factoring the terms cosy and siny.
This gives

~L (n-vy)
%sinw—cosw —e ! (2)

Equation (2) was derived independently by Shi et al.®> who stated correctly that under a half-sine
pulse with the minimum acceleration that is needed to overturn a block, the kinetic energy of the
block at the verge of overturning should be zero.

We take this opportunity to thank Professor James N. Brune (University of Nevada-Reno)
for his interest to our work and for communicating to us reference 3. We are pleased to report that
the energy approach followed by Shi et al.? and the kinematic approach followed by Makris and

1

Roussos” are in agreement.

1. Makris, N., and Y. Roussos. 1998. Rocking Response and Overturning of Equipment Under Horizontal
Pulse-Type Motions. PEER-98/05. Pacific Earthquake Engineering Research Center, University of California,
Berkeley.

2. Housner, G. W. 1963. The behaviour of inverted pendulum structures during Earthquakes. Bull. Seismo-
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3. Shi, B., A. Anooshehpoor, Y. Zeng, and J. N. Brune. 1996. Rocking and overturning of precariously bal-
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CHAPTER 1
INTRODUCTION

The study of the rocking response and overturning of electrical equipment to near-source ground
motions was motivated by the proximity of electric power substations in major urban areas to
active faults. In the Bay Area the San Andreas fault runs 10 km west of San Francisco; the Hay-
ward fault runs less than 10 km from most of Oakland; additionally, other smaller nearby faults
such as the Rodgers Creek, Gregorio, Calaveras, Concord, and Green Valley faults have the poten-
tial to subject urban areas to strong ground motions. Similarly, a large part of metropolitan Los
Angeles lies over buried thrust faults capable of generating strong motions like those recorded
during the January 17, 1994, Northridge earthquake. The city of Kobe, Japan, was devastated by
the January 17, 1995, Hyogoken-Nanbu earthquake, which generated unusually strong motions.
Figure 1 shows electrical equipment at the Sylmar Converter Station that overturned during the
1971 San Fernando, California, earthquake.

In a recent study the transient response of a free-standing equipment subjected to horizon-
tal pulse-type and near-source ground motions was investigated in depth (Makris and Roussos
1998). What makes these motions particularly destructive to a variety of structures is not only
their occasionally high peak-ground acceleration, but also the area under the relatively long-dura-
tion acceleration pulse. This area represents the “incremental” ground velocity (Anderson and
Bertero 1986), which is the net increment of the ground velocity along a monotonic segment of its
time history. Such velocity increments are of the order of 0.5 m/sec or even higher. Although they
do not happen very fast to generate an excessive ground acceleration, they happen at just the right
pace to generate devastating shears at the base of flexible structures (Bertero et al. 1978; Anderson
and Bertero 1986; Hall et al. 1995). The Makris and Roussos study showed that near-source
ground motions do not bear any exceptional overturning potential for electrical equipment. This
finding is because typical electrical equipments have dynamic properties that are too stiff to be
resonated by the two- or three-second long coherent pulse of the near-source ground motion. In
that study it was found that the toppling of smaller blocks is more sensitive to the peak ground
acceleration; whereas, the toppling of larger blocks depends mostly on the incremental ground
velocity. Accordingly, a smaller block will overturn due to the high-frequency fluctuations that
override the long-duration pulse; whereas a larger block will overturn due to the long-duration

pulse. In this light the overturning response of free-standing equipment was shown to be quite



Figure 1. Overturned electrical equipment at Sylmar Converter Station damaged after the 1971
San Fernando earthquake. Top: Front view. Bottom: Sidewie8teinbrugge collection, PEER,

University of California, Berkeley



ordered and predictable despite the presence of the high-frequency content that overrides the
coherent component of near-source ground motions.

After having established that peak ground acceleration controls the overturning of electri-
cal equipment, in this study the rocking stability of electrical equipment is further investigated by
looking into several practical issues such as (1) the effect of the vertical component of the ground
motion; (2) the effect of an increasingly inelastic coefficient of restitution; and (3) the efficiency
of typical anchorages used to prevent toppling.

In Chapter 2, the rocking response of a free-standing block subjected to a one-sine (Type-
A) pulse and one-cosine (Type-B) pulses is revisited. The study reveals that blocks can overturn
with two distinct modes: (a) by exhibiting one impact (mode 1) and (b) without impact (mode 2).
The second mode (no impact) is responsible for the existence of a safe region that is located over
the minimum overturning acceleration spectrum. The shape of this safe region depends on the
coefficient of restitution and is sensitive to the nonlinear nature of the problem. The transition
from mode 1 to mode 2 is sudden and results in a finite jump in the minimum overturning acceler-
ation spectrum. In a recent study, Anooshehpoor et al. (1999) attempted to construct the minimum
overturning acceleration spectra due to one-sine pulse. Their study failed to identify the second
mode of overturning (without impact) and to indicate the presence of the aforementioned safe
region. These conceptual oversights in the paper by Anooshehpoor et al. have been addressed in
detail in the discussion by Zhang and Makris (1999). Chapter 3 concentrates on the effect of the
vertical component of the ground motion, which is found to be negligible.

In Chapter 4 the rocking response and overturning of anchored blocks is investigated in
depth. Restrainers with elastic-brittle and elastic-plastic behavior are considered. The elastic-plas-
tic behavior is approximated with the Bouc-Wen hysteretic model. It is found that the restrainers
are more efficient in preventing overturning of small slender blocks. Larger blocks overturn only
without experiencing any impact, and in this case the effect of restrainers is marginal even when
their strength equals the weight of the equipment. Easy-to-use graphs are offered to evaluate the
effect of anchorages with various strength and ductility. Chapter 5 concentrates on the rocking
response of anchored equipment subjected to selected recorded ground motions. Similar trends to
those identified under a cycloidal pulse excitation are observed. Chapter 6 is devoted to a sum-

mary of the findings and conclusions.



CHAPTER 2
REVIEW OF THE ROCKING RESPONSE OF A FREE-STANDING BLOCK

2.1 Condition for Initiation of Rocking Motion

We consider the rigid block shown on Figure 2 (top) which can oscillate about the centers of rota-
tion O andO’ when it is set to rocking. Depending on the level and form of the ground accelera-
tion, the block may translate with the ground, slide, rock or slide-rock. Prior to 1996, the mode of
rigid-body motion that prevailed has been determined by comparing the available static friction to
the width-to-height ratio of the block, irrespective of the magnitude of the horizontal ground
acceleration. Shenton (1996) indicated that in addition to pure sliding and pure rocking, there is a
slide-rock mode and its manifestation depends not only on the width-to-height ratio and the static
friction coefficient, but also on the magnitude of the base acceleration.

Physically realizable cycloidal pulses have displacement histories which are continuous
and differentiable signals that build up gradually from zero. Their corresponding acceleration his-
tories might be zero at the time origin or exhibiting a finite value that can be as large as their max-
imum amplitude. Figure 3 plots the acceleration, velocity and displacement histories of a one-sine
pulse (left) and one-cosine pulse (right). In the case of the one-sine pulse the ground acceleration
is zero at the initiation of motion and builds up gradually. In contrast, in the case of a one-cosine
pulse, the ground acceleration assumes its maximum value at the initiation of motion. Under other
cycloidal pulses such as Typgfulses (Makris and Chang 1998) the ground acceleration is finite
at the initiation of motion but assumes a value that is smaller than its maximum amagtude
With reference to Figure 2 and assuming that the coefficient of friq,tierlﬁ = tana , Static
equilibrium yields that the minimum horizontal acceleration that is needed to initiate rocking is

a = gtana . Consequently, pulses with amplitud§> gtana will induce rocking to a rect-

p, min
angular block with slenderness

Consider a cycloidal pulse with acceleration amplitage gtana andd%t, , to be the
value of the ground acceleration when a block with slenderaess is about to enter rocking

motion. Depending on the type of pulde, assumes different values; however it is bounded by

gtand _» <1 (2-1)

a,
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Figure 2. Schematic of a free-standing block in rocking motion (top); and its moment rotation

diagram (bottom)
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Figure 4 shows the free-body diagram of a free-standing block that is about to enter rock-
ing motion due to a positive ground acceleration. With the system of axis shown, a positive accel-
eration will induce an initial negative rotatio® €0 ). Adopting the notation introduced by
Shenton (1996), let, antl

Dynamic equilibrium at this instant gives

,  be the horizontal and vertical reactions at @e tip  of the block.

f, = m(\a,+h6) (2-2)
f,=m(g-t0) (2-3)
I =—f,h+fp (2-4)

wherel cg is the moment of inertia of the block about its center of gravity (for rectangular blocks
leg = mR2/3). Substitution of (2-2) and (2-3) into (2-4) gives the value of the angular accelera-
tion, B, at the instant when rocking initiates

tana
in which p = ./39/(4R) is the frequency parameter of the block and is a quantity in rad/sec,

.. )\a
8 = _ngtam es 10 (2-5)

whereaskR = b2 + h2 is the half diameter of the blecka measure of its size. In order to avoid

sliding at this instant

—h

Z<u (2-6)
fZ
and substitution of the value computed by (2-5) into (2-2) and (2-3) gives the condition for a block

to rock without sliding

P 1%

gtana <u (2_7)
+3 ; 2 ap 1D
g ngm G%\M— 0

Equation (2-7), initially presented by Shenton (1996), indicates that under some excitation pulses

)\ap—zfgcosusina%\

with amplitudeap , the condition for a block to enter rocking motion without sliding depends on
the value ofap . However, this is true only for pulses that have a finite acceleration at the initiation
of motion. For pulses that their acceleration history build up gradually (such as a one-sine pulse),
the value of)\ap at the initiation of rocking is equalgtana and equation (2-7) reduces to

tana = E M (2-8)
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Figure 4. Free-body diagram of a rigid block at the instant that enters rocking



which is the traditional condition imposed in order for rocking to prevail. Consequently, the slide-
rock mode introduced by Shenton (1996) will develop only under excitations with non-zero accel-

eration at the initiation of the motion.

2.2 Governing Equations Under Rocking Motion

Under a positive horizontal ground acceleration and assuming that the coefficient of friction is
large enough so that there is no sliding, the block will initially rotate with a negative rotation,
0 <0, and if it does not overturn, it will eventually assume a positive rotation, and so forth. The
equations that govern the rocking motion under the simultaneous presence of hoﬂg(m)tal, ,

and vertical,\'ig(t) ground acceleration are

1,6(t) +mg%[+i%%?sin(—a—e) = —m,(t)Rcos~a—B) , B<0 (2-9)

and
|oé(t)+mg%+wgasin(a—e) = —mij,(t)Rcog(a—6) , 6>0 (2-10)
g
Equation (2-9) and (2-10) are well known in the literature (Yim et al. 1980) and are valid for arbi-
trary values of the angle = atan(b/h) . For rectangular blodks= ngz , equation (2-9)

and (2-10) can be expressed in the compact form

80 = —ngsin[asgr{e(t)] ~6(0)] %+%§E+5;coqasgrie(t)] —e(t)]é (2-11)

where p = A/%% is the frequency parameter of the block. The larger the block (Rgtre
smallerp. The oscillation frequency of a rigid block under free vibration is not constant since it
strongly depends on the vibration amplitude (Housner 1963). Nevertheless, the quantty
measure of the dynamic characteristics of the block. For an electrical transformer,
p=2rad/seg and for a household brick,= 8 rad/ sec

Figure 2 (bottom) shows the moment-rotation relation during the rocking motion of a free-
standing block. The system has infinite stiffness until the magnitude of the applied moment
reacheangRsina , and once the block is rocking its stiffness decreases monotonically, reaching
zero wher® = a . During the oscillatory rocking motion, the moment-rotation curve follows this
curve without enclosing any area. Energy is lost only during impact when the angle of rotation

reverses.

10



When the angle of rotation reverses, it is assumed that the rotation continues smoothly
from pointO to O' . Conservation of momentum about pd®it  just before the impact and right

after the impact gives

1 ,81—mB12bRsin(a) = 1,82 , (2-12)
where8; is the angular velocity just prior to the impact, and Is the angular velocity right after
the impact. The ratio of kinetic energy after and before the impact is

2
r=— (2-13)

which means that the angular velocity after the impact is ghly times the velocity before the
impact. Substitution of (2-13) into (2-12) gives

2
r= [1—gsin2u} . (2-14)

The value of the coefficient of restitution given by (2-14) is the maximum valuarafer which

a block with slendernessy , will undergo rocking motion. Consequently, in order to observe
rocking motion the impact has to be inelastic. The less slender a block farger ) the more plastic
the impact, and for the value af = sin_lm = 54,73 |, the impactis perfectly plastic. During
the rocking motion of slender blocks, if additional energy is lost due to interface mechanisms, the
value of the true coefficient of restitutianwill be less than the one computed from (2-14). The
effect of the coefficient of restitution on the rocking response of free-standing blocks is shown
later in this study.

In this chapter the rocking response of a free-standing block subjected to simple trigono-
metric pulses is revisited since new findings further elucidate the complex dynamic nature of the
rocking problem.

The response of a free-standing block subjected to various horizontal cycloidal pulses,
with frequencyoop , such as one-sine pulse (Type-A pulse), a one-cosine pulse (Type-B pulse) and
pulses with n-cycles in their displacement histories (Typeulses) was investigated in a recent
study by Makris and Roussos (1998). That study was motivated by an increasing number of
ground motions, recorded near the source of strong earthquakes, that contain one or more rela-
tively long-duration coherent pulses. In view of the relatively long duration of the coherent pulses,
the range of interest of the frequency ratjlb/p , for electrical equipmentpwith rad/ sec

is0< W,/ ps3. Within this range of excitation frequenci@s(oop/ps 3 ), the minimum over-

11



turning acceleration spectrum of cycloidal pulses is nearly linear; Makris and Roussos (1998) pro-
posed the approximate expression

a W
PO _ p
0= 14+p-2L 2-15
o =1+B (2-15)

Whereap0 is the minimum overturning acceleration of the pulsecand is the angle of the block
slenderness. The coefficieft= 1/6  for Type-A or,flses, and3 = 1/4 for a Type-B
pulse.

For values opr/p23 the minimum overturning acceleration spectra become increas-
ingly nonlinear. Although the range ojp/pz 3 is not of central interest in evaluating the over-
turning potential of near-source ground motions, it is of prime interest when the overturning of a

block is the result of a high-frequency spike of short duration.

2.3 Rocking Response to a One-sine (Type-A) Pulse

The analysis presented in this section concentrates on the overturning potential of a one-sine pulse

with ground acceleration

[apsin(oopt +) —qJ/wps t< (2T[—L|J)/oop

lglt) = [ (2-16)
N

otherwise

where ¢ = sin_l(cxg/ap) is the phase angle when rocking initiates. At this instant
Ug(O) =oag = )\ap and according to equation (2-8) the condition for the block to enter pure
rocking is tana = E<p .
2.3.1 Linear Formulation

For tall, slender blocks, the angie = atan(b/ h) is relatively small, and equations (2-9) and (2-
10) can be linearized. Within the limits of the linear approximation and for a horizontal ground

acceleration given by (2-16), equations (2-9) and (2-10) become

. 2 _ 9 2. 2

0(t)—p 0(t) = —Ep sin(lwt+yY)+pa, 6<0 (2-17)
and

B(t)—p28(t) = —%’ p’sin(wt +W)—pa, 8>0 (2-18)

wherep = ./39/(4R) is the frequency parameter of a rectangular block with a half diag@nal =
The integration of (2-17) and (2-18) gives

12



a
6(t) = A;sinh(pt) + A,cosh(pt)—a + 1wzgpsin(wpt+ P), 6<0 (2-19)
1+-2L
p2
and
a
B(t) = Agsinh(pt) + A,cosh(pt) +a + 1w2—psin(copt+lp), 6>0 (2-20)
14209
p2
where
6 WyP & B WYP coqy)
A=A, ==- =2 —\ 2 2-21
tEp 1+wg/p29  costw) P O(1+<A>F23/p28m(llJ) (21)
A, =0,+ad— 3) sin(W)= 8, + 0 ——2— (2-22)
2770 T %/ g T 1+wp?’
P S SO o )
A, =06,—0 ———————1+w%/ngsm(w)— B,—0 —l+w§/p2' (2-23)

The time histories for the angular velocities are directly obtained from the time derivatives of (2-
19) and (2-20)

W,
B(t) = pA,cosh(pt) + pA,sinh(pt) + —— e, gpcos(oo t+y), 6<0 (2-24)
1+-2
Y
and
W, a
B(t) = pAgcosh(pt) + pA,sinh(pt) + —= 7 gpcos(oo t+y), 6>0 (2-25)
1+-L
pz
The solutions given by equations (2-19) and (2-20) can be pieced together to construct the
time history of the rocking response under a given acceleration ampkiyde, . Furthermore, this

solution can provide the minimum overturning acceleration amplitude, provided that a condition
of overturning is available.

Under the minimum acceleration amplitude blocks overturn during their free-vibration
regime at a theoretically infinite large time when the velocity tends to reach a local minimum

(Makris and Roussos 1998). Accordingly the condition for overturning is that

(t,) =0 (2-26)
wheret_, is a sufficiently large time whet@nh(pt,) = 1

13



Under a one-sine pulse, a free-standing block has two modes of overturning: (a) overturn-
ing with one impact (mode 1) and (b) overturning with no impact (mode 2). This result is true as
long asw,/p is sufficiently small. A®,/p  increases the first mode of impact vanishes, and the
block overturns only without impact (mode 2). Accordingly, in order to back-figure the minimum
overturning acceleration amplitude by imposing the condition of overturning given by (2-26) it is
necessary to distinguish between mode 1 and mode 2.

Mode 1

Denoting byt;, , the time when the block enters its free vibration regime, the condition for

overturning after the block has experienced one impact (mode 1) is

B(ty) +p[6(ty)—a] = 0 (2-27)
In the case where the impact happens before the excitation expjred ( ), then
tey = Tex = (2n—tp)/oop (CASE 1). In the case where the impact happens after the excitation
expires (;>T,, ), ther;, = t, (CASE 2).
CASE1(<T

In this case the condition of overturning given by (2-26) yields:

ex )-

6(Te)+PIB(Te—0a] =0 (2-28)

where

B(T ey = AgSIN[p(Te,—tj)] + A cosH p(Te,—t)] +o + L'/g-sin(oopTeﬁ g) (2-29)

%]
1+ Op O
. B . wy(a,/9)
8(Tey) = PAscos[ p(Te,—t)] + PA,sinh[ p( Tg,—tj)] + ——— cofw, T, + ) (2-30)
1+PU
Op O
where
before
0 t w a
A, ) /P —Leogw,ti + W), (2-31)
p 1+ ﬁﬁ)ﬁ g
Up O
1 ap .
A, =-a ——-—sm(oopti +0), (2-32)
1+ o7 0
Op O

andn is the coefficient of restitution. The time of impct  is related to the acceleration ampli-

tude,ap = ag/siny , with the expression
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sin(oopti) —Fsmh( pt;)

tany = (2-33)
1+ é;pﬁ ﬁJL)pﬁcosr(pt) cog(w,t;)
The condition of overturning given by (2-28) takes the form
_t. W a
(A3+A4)ep(Tex , 9P 3 _ 0 (2-34)

1+ &DZ g
Dp 0
where A; andA, are given by (2-31) and (2-32) &nd is the solution of (2-33). The value of
ap/(ag) that satisfies (2-34) is the minimum overturning acceleration. Equation (2-34) is valid
whent; < T, . Within the limits of the linear approximation (slender block) and assuming a value

of n = 0.9, this happens whe@< wp/ p<4.8
CASE2(>T

In this case the condition of overturning yields:

ex )

after

(t;)—pa (2-35)
whe reeafter(t) _ before(ti) “and
before G(A.)p 1 COSI’( pTex) p
(t) = [Smw an psmh(pTex)}cosr[p(t ~T.)]
1+ 5
P o7 (2-36)
aw, r sinh(pT,
+ wz[ D + ppcosI"(pTex)}smh[p(t ~ToYl
1+
p

In the above equations the impact titne  is the solution of the transcendental equation

a(wy'p) % 1 cosk(pTeX)
SinL|J

psmh(pTeX)}Slnh[p(t T+

1+(w tany p
ol = TP o (2-37)
sinh(pT, Wy, O
[ fany +—= 0 cosr(pTex)}cosr{ p(t;— X)]—C(D— 0
The solution of equations (2-35) and (2-37) gives the minimum overturning acceleration for the
caset;>T,,
Mode 2

Under this mode, the block does not experience any impact. The condition of overturning

becomes
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0(Tey

— +[8(T+0a] =0 (2-38)
where
a(wp/p) sinh(pT,,) W,
8(T,,) = - L T.) |- 2-39
(Ted 1+(wy/ p)z[ any p COsP e”)} ? (2-39)
. aw cosh(pTy) @, . 1
a(T,) = E_|_ X+ Lsinh(pT, ) +— 2-40
Tev 1+(wp/p)2[ gy poP ex>+smtu} (2-40)
The substitution of (2-39) and (2-40) into (2-38) leads to
W L(2n-y)
?psian—coap =" (2-41)

The solution of (2-41) gives the minimum acceleration amplitude that is capable of overturning
the block without any impact. Equation (2-41) is similar to equation (2) of the prologue; however,
the duration of the forced vibration due to a one-sine pul3e js- (2T[—L|J)/00p , rather than

Teyx = (n—qJ)/oop, which is the duration of the forced vibration under a half-sine pulse; and the

sign in front of the exponential term in the right-hand side is negative rather than positive.

Figure 5 plots the solutions of the condition of overturning (for 0.9 ) after distin-
guishing carefully between mode 1 and mode 2 of overturning. Although the roots are computed
numerically, this solution is referred to asaralytical solutionsince it is based on the analytical
expressions of the response given by (2-19) and (2-20).

The distinction between mode 1 and mode 2 of overturning is of particular interest since
the transition from overturning with one impact to overturning without impact is not immediate;
and there is a finite margin of acceleration amplitudes with magnitudes larger than the minimum
overturning acceleration (that corresponds to mode 1) that are unable to overturn the block. This
interesting behavior is illustrated in Figures 6 and 7, where response time histories of a free-stand-
ing block withp = 2.14,a = 0.25,n = 0.9 andw/p = 5 are shown for various levels of the
amplitude,ap , of the acceleration pulse.

The left and center plots in Figure 6 show normalized rotations and angular velocity histo-
ries at the verge of overturning due to the first (minimum) level of the acceleration amplitude.
With a, = 3ag the block does not overturn; whereas Wha%n: 3.0lag the block overturns
after experiencing one impact (mode 1). In this case the impact happens after the expiration of the

pulse. A similar pattern of overturning prevails until the acceleration amplitude reaches,

16



n=0.9

16
Analytical Solution
144 © ©  Numerical Solution AN -
Q)
12- N\ I
Overturning Area &

é\Q
Rs i
Safe Area i

No Impact
8 10
Figure 5. Overturning acceleration spectrum of a free-standing blockwtt0.9 subjected to a

one-sine acceleration pulse with frequenqy . The analytical and numerical solutions shown are
computed with the linear formulation. Wheay,/ p is sufficiently large, a free-standing block

overturns only without impact (mode 2).
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Figure 6. Rotation and angular velocity time histories of a rigid blpck 2.14rad/sec a =,0.25rad
one-sine pulse withop/p =5 . LeﬂaIO = 3.000g , no overturning. Ceny:= 3.0l0g
Right: a, = 6.320g, overturning with one impact (mode 1).

nand.9 ) subjected to a
, overturning with one impact (mode 1).
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Figure 7. Rotation and angular velocity time histories of the same rigid block as in Fiqure 2.{4rad/sec a = 0,25rad and
n = 0.9) subjected to a one-sine pulse wid)g/p =5 . Left: No overturning Wgt# 6.330g , that is slightly larger than the accel-

eration Ievel,aIO = 6.3209g , that created overturning. Center: The block does not overturn even for the acceleration amplitude
a, = 7.170g. Right: The block eventually overturns W'ﬂila = 7.180g , without impact (mode 2).



a, = 6.3209. A notable difference, shown in the right plots, is that although the first maximum
positive rotation® , exceeds , the deaccelerating motion of the ground is capable of recentering
the block, which will experience an impact at a considerable later time and eventually overturn.

Figure 7 (left) shows the response of the same free-standing block when the acceleration
amplitude of the one-sine pulse has been slightly incre&sr;ad, 6.330g . Interestingly, the
block does not overturn. This is because the acceleration pulse is intense enough to induce such a
large rotation that the block escapes most of the overturning effect of the deaccelerating portion of
the excitation pulse. This beneficial arrangement of inertia and gravity forces holds until
a, = 7.1709, as shown in the center of Figure 7. Eventually, if the acceleration amphIFyde, , 1S
further increased the block will overturn without experiencing any impact (mode 2), as shown in
Figure 7 (right). It should be noted that Yim et al. (1980) have reported the situation where a free-
standing block topples under a certain level of a given ground motion, yet does not topple when
the acceleration of the same ground motion is further increased. Figures 6 and 7 in association
with the foregoing discussion elucidate this counterintuitive result.

Accordingly, in the frequency-acceleration plane there is a safe area that extends above the
minimum overturning acceleration boundary due to mode 1 of overturning. When
0<w,/p<6.59, (n = 0.9), the minimum overturning acceleration is the result of mode 1 (one
impact). With reference to Figure 5, Wherb/p> 6.59 , blocks overturn only with mode 2 (no
impact) and a substantial increase in the acceleration amplitude is needed to create overturning.

To further validate these results the various overturning boundaries were computed numer-
ically via a state-space formulation that was developed to account for the nonlinear nature of the

problem. With reference to equations (2-17) and (2-18), the state vector of the system is merely

tyy =% 5 (2-42)
0e(t) O
and the time-derivative vectdr(t) is
f(H) = (¥} = O 5 (43
E O

~psinlasgriom] 6] + Feodasgrsm] -0 |

For slender blocks, the linear approximation becomes dependable, and equation (2-43)

reduces to
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(1)

F(t) = { (D)} = '
P -asgrie()] + e(t)—%t—)}

(2-44)

[ -
I -

The numerical integration of (2-43) or (2-44) is performed with standard ODE solvers available in
MATLAB (1992). The results of the numerical solution of equation (2-44), shown on Figure 5

with circles, are in excellent agreement with the analytical solution.

2.3.2 Nonlinear Formulation

Figure 8 plots with crosses the overturning acceleration spectra of a rigid block wit@.25

rad, p = 2.14 rad/sec,and n = 0.9, where the various overturning boundaries are computed
numerically with the nonlinear formulation expressed with equation (2-43). The circles shown on
Figure 8 are the results computed with the linear formulation expressed by equation (2-44). It is
interesting to note that while for valuesco[)/p up to 6, the linear approximation gives equally
good results as the nonlinear formulation,fﬁ&rwp/pg 7.58 , the two formulations give drasti-
cally different results. As an example under a one-sine pulsewgith 15.7 rad/se@ 6

Hz), the linear formulation yields that the block with= 0.25 rap= 2.14 rad/sec, and

n = 0.9 will overturn under a minimum acceleration amplitualg0 = 3.24 g; whereas the non-

linear formulation yieldapo = 2.22 g. This drastic difference is because under the nonlinear for-
mulation, the overturning “bay” penetrates further into the safe area. These drastic differences
disappear for pulse frequencies beyond 2.58 Hz since, according to both formulations, the free-
standing block overturns with mode 2 (no impact).

A recent study by Anooshehpoor et al. (1999) attempted to produce the minimum over-
turning acceleration spectra under one-sine pulses within the frequency()ramqp/ps 10
Unfortunately, the study by Anooshehpoor et al. failed to identify the existence of the second
mode of overturning, the existence of the safe “cape” that embraces the overturning “bay”, and
the sensitivity of the response to the nonlinear nature of the problem even for blocks as slender as
a train locomotive witto = 0.25rad = 14.32

Figure 9 plots overturning acceleration spectra of a rigid equipment with
a = 0.349rad = 20°, p = 2.0rad/secandn = ,/r,.x=0.825. The crosses are the result of
the nonlinear formulation, whereas the circles are the results computed with a linear formulation.

Again within the low range otbp/ p ,the linear formulation gives equally good results as the non-
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p=2.14 rad/sec, a=0.25 rad, n=0.9
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Figure 8. Comparison of overturning acceleration spectra of a slender block
(a = 0.25rad = 14.32, p = 2.14rad/sec, n = 0.9) under a one-sine pulse, computed with
linear and nonlinear formulations respectively. When the frequency of the one-sine pulse is
relatively low, both formulations yield comparable results. As the excitation frequency increases,
the linear formulation yields minimum overturning acceleration amplitudes drastically larger than
those obtained with the nonlinear formulation. This is because under the nonlinear formulation
the overturning “bay” generated by mode 1 penetrates further into the safe area under the
overturning spectrum due to mode 2. As the excitation frequency further increases the linear and
nonlinear formulations again yield comparable results since under both formulations and a high-

frequency pulse the block overturns with mode 2.
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p=2 rad/sec, 0=0.349 rad, n=0.825
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Figure 9. Comparison of overturning acceleration spectra of a free-standing equipment with
a = 0.349rad = 20°, p = 2rad/sec and n = Jr ., = 0.825, under a one-sine pulse,

computed with the linear and the nonlinear formulation

23



linear formulation. However, within the range8<w,/p<735 the two formulations gives

drastically different results.

2.4 Rocking Response to a One-cosine (Type-B) Pulse

Whereas a one-sine acceleration pulse results to a forward ground displacement, a one-cosine
acceleration pulse results to a forward-and-back ground displacement. With reference to Figure 3,
under a one-cosine acceleration pulse the maximum ground acceleration is induced at the instant

when rocking initiatesX = 1 ) and the condition for pure rocking given by (2-7) becomes

a, 3
——=CO
e 98|n0(3 4 Qgt <“ (2-45)
tana an 0
—_— - _1
e tanasma%t

which for slender blocksqgina =tana =a andosa =1 ) simplifies to

3,1%

ai—2 ;Zg <u (2-46)
2[Fp 40

1+40( g 1D

Equation (2-45) or its slender block approximation given by (2-46) indicates that the stronger the
acceleration pulse is, the larger needs to be the static coefficient of friction to sustain pure rocking.
Figure 10 plots the magnification factor of the slendernass o, or in equation (2-45) and
(2-46) respectively as a function a[)/(ag) for different values of the slendemess . As an
example, Figure 10 indicates that when a free-standing blockawi#h0.25 IS subjected to a
Type-B pulse Witmp/(ag) =6 , the minimum coefficient of friction needed to sustain pure rock-
ing is approximately two times the value of the block slenderness.

Figure 11 plots the overturning acceleration spectra due to a one-cosine acceleration pulse

with time history

cos(w t) O<t<2mw,
lig(t) = | (2-47)
0 otherwise

In this case the phase angle, , when rocking initiates is zero since a one-cosine pulse yields its
maximum acceleration at the instant when the pulse initiates. The same rigid doleck.25

rad, p = 2.14 rad/se¢ andn = 0.9) is considered. The circles, shown on Figure 11, are the
results computed with the linear formulation, whereas the crosses are the results obtained with the

nonlinear formulation. In this case, the differences observed between the linear and the nonlinear
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Figure 10. Normalized minimum coefficient of friction over the slenderness of a block that is

needed to sustain pure rocking motion
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Figure 11. Comparison of overturning acceleration spectra of a slender block
(a = 0.25rad = 14.32, p = 2.14rad/sec, n = 0.9) under a one-cosine pulse, computed
with the linear and the nonlinear formulation. In this case the difference between the results of the

two formulations are less drastic than those observed under a one-sine pulse.
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formulation are less drastic. Figure 11 indicates that under a one-cosine pulse with freeqyency ,
blocks that are small enough so tb%t/ p<4 , can experience two distinct modes of overturning.
Again, the existence of these two modes are responsible for the generation of a safe region that
embraces the minimum overturning acceleration spectrum. Consequently, similar to the case of a
one-sine pulse, there is a finite margin of acceleration amplitudes with magnitudes larger than the
minimum overturning acceleration (that corresponds to mode 1) that are unable to overturn the
block. This interesting behavior is illustrated in Figures 12 and 13 where the response time histo-
ries of a free-standing block witlhh = 0.25 rafd,= 2.14 rad/see 0.9 arlgdp =3 are
shown for various levels of the amplitu% . Figure 14 plots overturning acceleration spectra
under a one-cosine pulse of a rigid equipment wite 0.349rad = 20° p 5 2.0 rad’'sec ,
andn = mx = 0.825. The crosses are the result of the nonlinear formulation, whereas the cir-
cles are the results computed with the linear formulation. In comparing Figure 14 with 11 one
concludes that the normalized overturning acceleration spectra have a mild dependence on the

slenderness of the blocé,
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Figure 14. Comparison of overturning acceleration spectra of a slender block
(a = 0.349rad = 20°, p = 2.0rad/sec, n = 0.825) under a one-cosine pulse, computed
with the linear and the nonlinear formulation. In this case the difference between the results of the

two formulations are less drastic than those observed under a one-sine pulse.
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CHAPTER 3
ROCKING RESPONSE OF A FREE-STANDING BLOCK UNDER HORIZONTAL AND
VERTICAL EXCITATION

3.1 Numerical Formulation and Solution

The rocking response of a rigid block subjected to concurrent horizontal and vertical earthquake
excitation is computed numerically via a state-space formulation that can accommodate the non-
linear nature of the problem. Similar integration of the equation of motion has been carried out by
Yim et al. (1980), Spanos and Koh (1984), Hogan (1989), and Shi et al. (1996) among others. The

state vector of the system is merely

tvoy = %0 (3D
ae(t) O
and the time-derivative vectd(t) is
o(t) i

332

f(t) ={yt)} = .. ..
~p?{sinfarsgrie(V] ~6(v] -+ 2 Feodasarte(] -e]]

[ [ .

The numerical integration of (3-2) is performed with standard ODE solvers available in
MATLAB (1992). Figure 15 plots the rotation and angular velocity dd.amx 1.5m free-
standing block subjected to the minimum acceleration level of the Rinaldi station records (January
17, 1994, Northridge earthquake) that are needed to overturn it. In the first column of Figure 15
the vertical component of the acceleration is assumed to be zero and the horizontal component is
78% of the recorded motion. In the second column of Figure 15 the vertical component is consid-
ered and it is found that only 74% of the recorded time histories is needed to overturn the block. In
this case the vertical acceleration contributes constructively to the overturning. However, as
shown in the third column of Figure 15, when the polarity of the vertical motion is reversed, the
vertical component contributes destructively, since 83% of the recorded time histories is now
needed to overturn the block. Figure 15 also indicates that the rocking response of the block when
the vertical acceleration is absent does not differ significantly from the case where the vertical
excitation is included.

Similar trends are observed in Figure 16 that plots the rotation and angular velocity of the
same0.5mx1.5m block subjected to the minimum acceleration level of the Sylmar station

records from the 1994 Northridge earthquake that are needed to overturn it. The second column of
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Figure 15. Rotation and angular velocity time histories of a rigid bloekd.5 m, h = 1.5 msubjected to the fault-normal and vertical
Rinaldi station records. Left: overturning under horizontal component alone (78% acceleration level). Center: overturniagi-under
zontal and vertical components (74% acceleration level). Right: overturning under horizontal and vertical componentssedh rever
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Figure 16 shows that when the vertical component of the motion is considered, 116% of the
recorded time histories is capable of overturning the block. This level of excitation is marginally
lower than the 118% of the horizontal component alone that can overturn the block. Again, when
the polarity of the vertical motion is reversed, the vertical component contributes destructively
since now 120% of the recorded time histories is needed to overturn the block. It should be noted
that the reversal of the polarity does not yield a destructive effect with all the records. Figure 17
plots the rotation and angular velocity of tBeomx 1.5m block subjected to the minimum
acceleration level of another Northridge rece«dthe Newhall record. In this case the right polar-

ity of the vertical component has a destructive effect, whereas the reverse polarity has a construc-
tive effect. Whatever the polarity, Figures 16 and 17 indicate that the simultaneous consideration
of the vertical motion has a marginal effect on the acceleration level of the horizontal motion that
is needed to overturn a given block. This finding is also shown in Figures 18 to 22 where the min-
imum overturning accelerations of other historic ground motions are shown. Table 1 summarizes
the minimum levels of acceleration records, without and with the vertical component, that are
needed to overturn@5mx1.5m free-standing block.

TABLE 1. Minimum Level of Acceleration Records Needed to Overturn @ 5 mx 1.5 m
Free-standing Block @ = 18.43 ,p = 2.157rad/ sec).

Levels of Acceleration Records

Horizontal & Vertical

Records Horizontal | Horizontal & Vertical (reversed polarity)
Rinaldi (FN), 1994 Northridge 0.78 0.74 0.83
Sylmar (FN), 1994 Northridge 1.18 1.16 1.20
Newhall (N-S), 1994 Northridge 1.83 1.86 1.80
El Centro #5 (FN), 1979 Imperial 1.29 1.26 1.30
El Centro #6 (FN), 1979 Imperial 1.49 1.49 1.61
El Centro #7 (FN), 1979 Imperial 1.52 1.52 1.52
Los Gatos (0), 1989 Loma Prietg 1.46 1.45 151
Lucerne Valley (FP), 1992 Landers 2.75 2.85 2.95

The marginal effect that the vertical acceleration has on the level of the horizontal acceler-

ation that is needed to overturn a rigid block was also reported by Shi et al (1996).
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Figure 19. Rotation and angular velocity time histories of a rigid bloekd.5 m, h = 1.5 msubjected to the fault-normal and vertical

El Centro Array #6 records. Left: overturning under horizontal component alone (149% acceleration level). Center: overdeming u
horizontal and vertical components (149% acceleration level). Right: overturning under horizontal and vertical components with
reversegolarity (161% acceleration level).
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Figure 21. Rotation and angular velocity time histories of a rigid bloekQ.5 m, h = 1.5 msubjected to the fault-parallel and vertical

Los Gatos station records. Left: overturning under horizontal component alone (146% acceleration level). Center: ovediirning un
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3.2 Response Spectra and Effect of the Coefficient of Restitution

In the foregoing analysis, Figures 15 to 22 show time histories of the response of a given block to
the minimum acceleration level of a given ground motion that is needed to overturn it. In this sec-
tion response maxima are computed of various blocks subjected to a given ground motion at its
100% level. Three different values of the block slenderress,15° 20°, 2%hd have been
selected while the frequency parameggrranges from 1 rad/sec to 3 rad/sec. These values of
slenderness and frequency parameter represent the geometric and dynamic characteristics of most
electrical equipment of interest. Figure 23 plots response spectra for the maximum angle of rota-
tion, 6,,,,/ 0 , and the maximum angular veloci(%a)/p , under the excitation recorded along
the fault normal component at the Rinaldi station during the 1994 Northridge earthquake. The
spectra shown in the left column of Figure 23 are computed by using the maximum value of the
coefficient of restitutiony =r ., = [1—1.55in20(]2 , that allows for a rocking motion. For

a = 15°, [ . = 0.90; whereas fora = 20° an®5° ,fr..,= 0.825 and732 respec-
tively. Figure 23 (center) shows the rotation and angular velocity specttA fer0.75 . In this
case only the response of blocks wah= 15° and= 20° are shown since for the case
a = 25°, mx = 0.732< 0.75 Figure 23 (right) shows the rotation and angular velocity spec-
trafor./r = 0.5.

The response spectra in Figure 23 show that a reduced coefficient of restitution (more
energy lost during impact) results in smaller angles of rotation; however the values of the impact
velocities might be larger. Similar trends are observed in Figure 24, where rocking response spec-
tra are shown for the fault-normal motion recorded at the Sylmar station during the 1994

Northridge earthquake.
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CHAPTER 4
ROCKING RESPONSE OF ANCHORED EQUIPMENT SUBJECTED TO A
ONE-SINE (TYPE-A) PULSE

In order to prevent violent rocking of electrical equipment, restrainers (hold-downs) are placed at
the base to anchor the equipment to its foundation. These restrainers have finite $tjength, , that
can be as low as 1 kip per anchorage up to 50 kips or even higher. Their stiffness also varies from
a low value ofK = 10 kips/in up tdb00kips/ in . Considering that the weight,= mg , of

the electrical equipment of interest ranges from 40 kips up to 500 kips, the ratio between the
restraining strength on each side of the equipment to the weight of the equipment is within
0.1<F,/W<1.0.

In this study two idealizations for the mechanical behavior of the restrainers are consid-
ered. The first simpler idealization is an elastic-brittle behavior. It assumes linear elastic behavior
until the ultimate strength, , is reached; and once the strength of the restrainer is exceeded it
fractures and the block continues to rock without enjoining any restoring force. It is assumed that
the stiffness of the restrainer maintains a constant vlue, , until the restrainer fractures and sub-
sequently its stiffness and strength are zero. The second more realistic idealization assumes an
elastic-plastic behavior. The restrainer behaves linearly until the ultimate strépgth, , is reached
and subsequently deforms plastically until the fracture displacemgent, , is reached. Beyond that
point the restrainers fractures and the block continues to rock without enjoying any restoring or
dissipative force.

In the entire analysis that follows, the base excitation is assumed to be along the horizontal
direction only, since the findings of chapter 3 indicate that the vertical acceleration has a marginal
constructive or destructive effect. Figure 25 shows a schematic of the problem at hand where the
restoring elements on each side of the block represent the combined stiffnesses of all the restrain-

ers that are present at the edge of the block that uplifts.
4.1 Elastic-Brittle Behavior

4.1.1 Nonlinear Formulation

Figure 26 (center) illustrates the moment-rotation relation that results from the presence of
restrainers with elastic-brittle behavior; while Figure 26 (top) illustrates the moment-rotation rela-

tion of a free-standing block. Under these two restoring mechanisms and assuming horizontal
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excitation only, the equations that govern the rocking motion of an anchored block witmmass

are
I Oé(t) +mgRsin[—a —0(t)] +4K bzsine(t) = -my,(t)Rcod—a —6(t)], 6<0 (4-1)
Ioé(t) +mgRsin[a—-06(t)] +4K bzsine(t) = —ng(t) RcoqJa—-6(t)], 6>0 (4-2)
For a rectangular block, = %’mR2 , equations (4-1) and (4-2) can be expressed in the compact
form:
3K sinal _.

B(t) = -pChin(asar ()] ~6() + 251 sing(t) + Peogasgrem-6(1T  (@-3)
0 mp g O

in which p = J/39/(4R) .

Equation (4-3) is valid as long as the restrainers hold. Once they fail it reduces to

.o o0, Uy O
O(t) =-p %Sln(d sgriB(H)] -6(1) +feosasgrb() —G(t))g (4-4)

which is the equation of motion of the free-standing block under horizontal excitation only.

Figure 26 (bottom) shows the moment-rotation relation during the rocking motion of an
anchored block. For rotation angle8(t)| sey , energy is lost only during impact. (ane is
exceeded, the restrainer from the uplifted side fractures and additional energy is dissipated equal
to the area of the small triangle that is superimposed to the moment-rotation graph of the free-
standing block. This energy is dissipated once, since in subsequent post-fracture oscillations the
moment-rotation relation reduces to that of the free-standing block.

The transition from equation (4-3) to (4-4) is conducted by following a fracture function
f(8) . The finite ultimate strength of the restrairfgf, , in conjunction with the linear pre-fracture

behavior defines the angle of rotatin  that the restrainers yield and also, in this case, fracture

F,= Kuy = 2Kb6y; (4-5)
from which
6, = Fu : (4-6)
2Kb
The fracture functiorf (6) is defined as
f(6) = 1 when[B(t) <8, (4-7)
and
f(6) = 0 when[8(t)| =8, (4-8)
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With the help of the fracture function, after replackigm Wi/ uy)(g/ W) , the pre-fracture
and post-fracture equation of motion of the rigid block can be expressed in a compact form
F gsinza

.. o0 . 3F, _ Ug O
0(t) = —p sin[asgrB—06(t)] +————2—3|n6(t)f(6)+—cos[0(sgrﬁ—e(t)] N (4-9)
O Wu,p g O

With this formulation the rocking response of anchored blocks is described by four
parameters: the slenderness, , the frequency parameter, (that includes the size effect), the
strength parameteq = F /W , and the influence facjor, uypz/g . Table 2 summarizes the
physical and mechanical parameters of selected electrical equipment utilized by PG&E (Fujisaki
1999).

The solution of (4-9) is computed numerically via the same state-space formulation intro-
duced in chapter 3. The state vector of the system is the one given by (3-1). The time-derivative
vector, f(t) , is the one given by (3-2) in which its second component is replaced with the right-
hand side of (4-9).

Figure 27 plots overturning acceleration spectra of a rigid equipment with
a = 0.349rad (20°), p = 2.0rad/secandn = MX = 0.825. The results are computed
with the nonlinear formulation given by (4-9) for the case wHggw = 0 (free-standing),
F/W =04 andF /W = 1.0. For small valuee)p/p (approximate%/p<4 ) anchored
equipment survive higher accelerations; however for value$<abp/p<6 , anchored equip-
ment topple under a lower acceleration than the acceleration needed to overturn the same equip-
ment when it is free standing. This counterintuitive behavior happens in the neighborhood of the
transition from mode 1 to mode 2. Anchored equipment enter this transition at a slightly larger
value ofu)p/p . Furthermore, when a free-standing equipment has just entered mode 2 of over-
turning, the anchored equipment still overturns due to mode 1 (overturning with impact) under a
smaller acceleration amplitude. As,/ p increases, the anchored equipment will also overturn
due to mode 2, and now a higher acceleration is needed to topple it in comparison to the accelera-
tion needed to topple the free-standing block. However, the additional acceleration amplitude that
an anchored block can withstand, even VAffW = 1.0 , Is negligible compared to the acceler-
ation amplitude needed to overturn the free-standing block. Figure 27 indicates that anchorages
are effective at the low range (mfp/ p (low frequency pulses and/or small blocks).

Figure 28 plots the ratio of the minimum acceleration needed to overturn an anchored

AN

block, a,;",

to the minimum acceleration needed to overturn a free-standing aiqf’ck, , for vari-
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Table 2: Geometrical, Physical and Structural Parameters of Electrical Equipment

Equi

nggﬁt (itr)‘) (irr]‘) (kip};/in) (kli:u - % dea ree ra%l/sec q= u_yp_z % b/B
(kips) ps) (degree)| ( ) g
40 36 84 175 4 0.100 23.20 1.780B 1 8x107 5 5610 N/A
40 20 59 300 16 0.400 18.43 2.157 6.4x10° 13%10° N/A
550 69 100 1500 79 0.144 34.61 1.5441 3,2x10_4 3.82><1O_4 0.7188
193 38 89 1000 53 0.275 23.12 1.7301 4.1x10° 6.97%10°% 0.6667
150 44 68 1000 53 0.353 32.91 1.8911 4.9x10°% 6.0x10° 0.5641
230 38 90 1500 79 0.343 22.89 1.7219 4.0x10° 6.93<10°% 0.5067
175 38 74 1500 79 0.451 27.18 1.86460 4.7x10° 6.93<10°% 0.5758
60 35 90 500 26 0.433 21.25 1.7320 4.0x10°% 7 43107 0.6140
44 34 68 500 26 0.591 26.57 1.9519 5 7x10°% 7 6510 0.5965
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121 < --< Anchored (FU/W:l.O)

14+

Overturning Area
g Safe Area

Figure 27. Comparison of overturning acceleration spectra due to a one-sine pulse of an anchored
equipment ¢ = 0.349rad = 20° ,p = 2rad/sec ,n = 0.825 g = 5.2x10°" anqu =1 )

computed with the nonlinear formulation flé[/W = 0 0.4and1.0
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Figure 28. Normalized minimum overturning acceleration levels needed to overturn an anchored
block (elastic-brittle behaviont = 1 ) to the acceleration levels needed to overturn the same

block when it is free-standing
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ous values of the strength parameter F /W . The results shown on Figure 28 indicate that for
pulses Withoop/p>4 , blocks should not be anchored since the effect of restrainers is either
destructive or virtually insignificant.

The limit capacity of the restrainers to prevent the toppling of a larger block is illustrated
by comparing the potential energy of the block at the verge of overturning with the strain energy
dissipated by the restrainers.

Assuming an elastic-brittle behavior, Figure 26 (center) indicates that the strain energy

dissipated by the restrainers before they fracture is

SE= %Fuuy (4-10)

At the verge of overturningd(= a ), the kinetic energy of the block is zero since the one-sine

pulse has expired and its potential energy is

PE = mgR1-coxx) ) (4-11)
The substitution otosa  in (4-11) with its series expanslbn% + ... gives
2
PE= mgF% (4-12)
and the ratio of the dissipated strain energy to the total energy of the block at the verge of over-
turning is
F.u F,u
SE_ "u f2 lz_u_y (4-13)
PE mgra? o?WR

Where,uy = F/K , is the yield displacement.

For a block with a = 0.349rad (20°) , p=2.0rad/sec, R=1.839m ,
uy, = 1.25¢10° m and F, = W, the strain energy lost from the failure of each restrainer is
approximately 0.6% of the energy that is needed to topple the free-standing block.

Equation (4-13) reveals some interesting geometrical and scale effects:
() The 1/a? term indicates that restrainers are much more effective in preventing toppling the
slender of two blocks of the same size (s&ne
(i) The 1/R term indicates that restrainers are more effective in preventing toppling the smaller

of two geometrically similar blocks that have the sdmew
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4.1.2 Linear Formulation

Equations (4-1) and (4-2) and their compact form given by (4-9) are valid for arbitrary values of
the block anglept . For slender blocks, the amgle tan_l(b/ h) is relatively small and equa-
tions (4-1) and (4-2) can be linearized. This linearization allows for the derivation of closed-form
solutions when the excitation is expressed in a functional form. Herein, the solution of the linear-
ized equations is derived for a sinusoidal ground motion for both positive and negative rotations in
order to validate the fidelity of the numerical solution presented in the foregoing subsection.

Within the limits of the linear approximation and for a ground acceleration

U'g(t) = apsin(wpt+ ) (4-14)

equations (4-1) and (4-2) become

.. a

(1) +A%p°a(t) = —pzapsin(oopt+ W) +ap?, 8<0 (4-15)
and

. a

(1) +A%p%e(t) = —pzapsin(wpt +P)-ap?, 8>0 (4-16)
where ( = sin_l(a 9/ ap) is the phase  when rocking initiates and

A? = 3(Fu/W)(g/uyp2)sin2a—1 = 3(o/q)sin20(—1. For typical anchorages of electrical
equipment)\2>0 . Once the restrainers faif, =-1 . Accordingly, the solution of (4-15) and
(4-16) is presented for the four segmer&ys 0(t)<0 e(,t)<—9ys0 O§6(t)<€)y and
0< ey <0(t):

a
B(t) = A;sin(Apt) + A,cogApt) + %—%Epsin(mpt +;), -8,<8(t)<0 (4-17)

2_7p
A=
Y
a
B(t) = Assinh(pt) + A,cosh(pt)—a + 2Epsin(oopt+|¢12), B(t)<-6,<0 (4-18)
w
p
1+-2
p
: a 1 8y .
8(t) = Acsin(Apt) +A6cos()\pt)——§————2—gfsm(wpt+Lp3) ,0<6(t) <8, (4-19)
2_Tp
2
p
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8(t) = A;sinh(pt) + Agcosh(pt) +a +

a, .
2E'Osm(wpt +,), 0<6, <6(t) (4-20)

where

: W
A, = 24— Peogy, (4-21)

a 1 ap .
A, =——=+—"——5sinY (4-22)
Y )\z—oof/ng !
6, w/p a
Ay = i—%—pcospz (4-23)
1 a, .
A, =B+ (x————z——E—gEsmlpz (4-24)
1+wy/p
_ 60,1 WP a
A = )‘p+7\)\2—w§/p2 3 cosy, (4-25)
a 1 ap .
A; = —=+——————=siny (4-26)
a2 )\Z—oof/ng :
-+
W a
A, = O 7P —Lcogy, (4-27)
p 1+w§/ng
a
Ag = 8,~0——=—Psiny, (4-28)
1+w[2/p29

In (4-21) and (4-22)p, = P = sin_l(ag/ ap) is the phase when rocking initiates. In (4-23) and
(4-24) @, = wyt, +¢, wheret, is the time thatd, is reached. In (4-25) and (4-26),
W3 = wpt; + P, wheret; is the time thé = 0 and the block experiences its first impact. In
(4-27) and (4-28)\p, = mpty+ +y Wherey+ is the time tk@ is reached. Stepping
through time the values d@ t, am§;1+ are detected by monitoring the value of the rotation
angle® . The solution obtained with the linear formulation is used to validate the fidelity of the
numerical solution of (4-9) that is achieved with a state-space formulation.

Figure 29 plots the minimum overturning acceleration spectra computed with the linear
formulation. A behavior similar to that computed with the nonlinear formulation is observed. For

small valuesmp/p (approximately)p/p <4 ) anchored equipment survive higher accelerations;
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Figure 29. Comparison of overturning acceleration spectra due to a one-sine pulse of an anchored
equipment ¢ = 0.349rad = 20° ,p = 2rad/sec ,n = 0.825 g = 5.2x107 ,anqh =1 )
computed with the linear formulation fér,/W = 0  af@db. Lines: analytical solution. Points:

numerical solution.
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however for values afop/ p>4 , anchored equipment topple under a lower acceleration than that
needed to overturn the same equipment that is free standing. The results are computed with the
analytical solution presented herein and the numerical integration that is achieved with a state-
space formulation. The agreement of the two solutions is excellent.

The elastic-brittle behavior in conjunction with the linear formulation allows for an analyt-
ical solution that was used to validate the fidelity of the numerical integration. It was found that
even at the limit of the linear approximation, there is a neighborhood},6p values where a
free-standing block can survive a stronger acceleration than anchored blocks. Figure 30 compares
the overturning spectra of an anchored block WithW = 0.4 (top)FgprdV = 0.6 (bottom)
computed with the linear and nonlinear formulation. When the frequency of the one-sine pulse is
relatively low, both formulations yield comparable results. As the excitation frequency increases,
the linear formulation yields minimum overturning acceleration amplitudes drastically larger than
those obtained with the nonlinear formulation. This result is because under the nonlinear formula-
tion, the overturning “bay” generated by mode 1 of overturning penetrates further into the safe
area under the overturning spectrum due to mode 2. As the excitation frequency further increases,
the linear and nonlinear formulations again yield comparable results. This finding indicates that
when4 <w,/p<6, the linear formulation should be avoided since it gives erroneous results even

for slender blocks.

4.2 Ductile Behavior

Figure 31 illustrates the force-displacement relation of restrainers with ductile behavior. In gen-
eral the restrainers can exhibit a post-yielding stiffness and maintain their strength until they reach
a fracture displacement; . A measure of their ductile behavior is the ductility coefficient,
M = u¢/uy. A suitable model to approximate such nonlinear hysteretic behavior is given by

P(t) = eKu(t) +(1-€)KuyZ(t) (4-29)
whereu(t) is the extension of the restrairter, is the pre-yielding stiffiaess, is the ratio of the
post- to pre-yielding stiffnessi,  is the yield displacement, A{t)l is a hysteretic dimension-

less quantity that is governed by

u,Z(t) +yluIZ(Izo" +BZ)IZ(v"-u(t) = 0 (4-30)
In the above equatiof y, amd are dimensionless quantities that control the shape of the hys-

teretic loop. The hysteretic model, expressed by (4-29) and (4-30), was originally proposed by
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Figure 30. Comparison of the overturning acceleration spectra due to a one-sine pulse of an
anchored equipmenti(= 0.349rad = 20° p = 2rad/sec n = 0.825 g = 5.2x10°%  and

U = 1) computed with the linear and nonlinear formulation for/W = 0.4 (top) and
F,/W = 0.6 (bottom)

58



P(1) 4 —y

Figure 31. Force-displacement curve of an element with bilinear behavior
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Bouc (1971) for n = 1, subsequently extended by Wen (1975, 1976), and used in random vibration
studies of inelastic systems.

In this study the special case of elasto-plastic behavior is considered by setting the post-
yielding stiffness equal to zerce(= 0 ). However, the developed formulation can easily be

extended to account for situations wiht O

4.2.1 Elasto-Plastic Behavior

Figure 32 (center) illustrates the moment-rotation relation that results from the presence of
restrainers with elasto-plastic behavior; while Figure 32 (top) illustrates again the moment-rota-
tion relation of a free-standing block. Under these two restoring mechanisms, the equations that
govern the rocking motion of an anchored block with mass ~ and moment of ihertia  (about

pivot pointO or O') is
Ioé(t) + mL'bRcos(—u —0) = —-mgRsin(—a —-0) —P(t)2bco%% 0<0 (4-31)
and
I 0é(t) + m'L'Jchos(a —0) = —_mgRsin(a —9)—P(t)2bco%€r 0>0 (4-32)
whereP(t) is the force originating from the restrainers that for the general case is give by (4-29)
and the special elasto-plastic case=(0 ) reduces to
P(t) = KuyZ(t) (4-33)
With reference to Figure 3n, = 2b9y , and equation (4-33) gives
P(t) = 2Kb6,Z(t) (4-34)
Substitution of (4-34) into (4-31) and (4-32)gives

I 0é(t) +mgRsin(—a—-0) +4K bzeyZ(t) co%gz —m'ug(t)Rcos(—O( -0), 6<0 (4-35)
and
I 0é(t) +mgRsin(a—0) + 4Kb26yZ(t) coS= E: —m'L'Jg(t) Rcoqa-8), 6>0 (4-36)

Using that for a rectangular block, = ng2 , equation (4-35) and (4-36) can be expressed in

the compact form:
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Figure 32. Moment-rotation curves of (Top) Free-standing block; (Center) Elastic-plastic

anchorage; (Bottom) Anchored block with elastic-plastic restrainers
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) "
8(t) = —p2Csin[asgrd(t) —6(t)] + ug—(t)cos[a sgro(t)—(t)] + 223N “eyZ(t)co%%
0 g q

(4-37)
wherep = ./39/(4R) ,0 = F /W ,q = uypz/g , andZ(t) is the solution of (4-30) which in

terms of rotations takes the form

8,2(t) +yI6()IZ(BIZ()" " +BB()IZ(1)"-6(t) = 0 (4-38)
Equation (4-37) is valid as long as the restrainers hold. Once their fracture displacement,
u; = 2bsinB;, is reached they do not provide any resistance, and equation (4-37) reduces to the
equation of motion of the free-standing block given by (4-4).

Figure 32 (bottom) shows the moment-rotation relation during the rocking motion of an
anchored block that its restrainers exhibit elasto-plastic behavior. For rotation Iﬁrqgllesey ,
energy is lost only during the reversal of motion due to impact. B)pce is exceeded, the restrain-
ers along the uplifted side yield. In the case that the motion reverses before the rotation reaches
8;, additional energy is dissipated equal to the area of the flag-shape shaded regions. This dissi-
pation mechanism will be repeated as long as the maximum rotation does not reach the fracture
rotation,8; . If0; is exceeded, the restrainers fracture and the moment curvature curve reduces to
that of the free-standing block.

The transition from equation (4-37) to (4-4) is conducted with the fracture funiotn
defined as

f(6) = 1 whenl|B(t)| <6; (4-39)
and

f(6) = 0 when|B(t)| = 6; (4-40)
wheref; = uey anday Is given by (4-6). With the help of the fracture function, the pre-fracture

and post-fracture equation of rocking motion can be expressed as
. o0 lig(t) 30sin‘a (O o O
o(t) =— infasgmB—6(t)] + =——coq asgmB—-06(t)] + ——06,Z(t)cos=—*- (0
(t) = pCsinlisgrB—6(y) + =7~ codasgrd-6(1)] + == ==6,Z(1) %H()E
(4-42)

The integration of (4-41) requires the simultaneous integration of (4-38). In this case the state vec-

tor of the system is
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1l a(t) 0

(Y0} = By O (4-42)
0 O
OZ(t) O

and the time derivative vectdi(t) is

O : 0
O a(t) 0
0 i 0
5 -p2bin[asgré(t) - 6(1)] + Egcos[a sgnB(t) -8(t)] |
O 0

f(t) = O 0 (4-43)
Sosm a 0(t)
a 222770 Z(t)cosD =) a
0 1 0
. ] 1

0 glem-vemIzmizoI" -pemiz(m" g
O y 0

Figure 33 plots the normalized minimum acceleration amplitagg,ag , of a one-sine

pulse needed to overturn an anchored block. The results are computed with the nonlinear formula-
tion for an influence factog = 5.2x10™ , ductility = 5 , and various values of the restrainer
strengthF /W .

At the zero-limit ofcop/p a block with finite size is subjected to a very long duration
pulse. When this pulse is near its peak, the block is subjected to a nearly constant acceleration
an0- When the restrainers yield elastic-plastic behavior (see Figure 32) the balance of moment

when the restrainers reach their ultimate strength is

mayRcos(a—6,) = mgsin(a—6,)+ Fuzbco%%yg (4-44)
in which 8, is given by (4-6). After dividing both sides of (4-44) witiRcos(a —-86,) one
obtains

_sin(a —ey) Fu cos(e/Z)
po = gcos(a —6,) * ZWgtancx cog(a—6,)

Equation (4-45) is the equivalent West's formula (Milne 1885) for an anchored block with elasto-

(4-45)

plastic restrainers that exhibit ultimate strength . The paramE{er& , bhand , related to
electrical equipment, yield a value 6{, much smaller than V\AtIﬂSé%: 1 . Under these
conditions equation (4-45) simplifies to
= gtana +2F gtanO(i (4-46)
cosu
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Figure 33. Overturning acceleration spectra due to a one-sine pulse of an anchored block
(a = 0.349rad = 20°, p=2rad/sec n =0.825 q= 5.2x10°%  and MH=>5) with
restrainer strengti= /W = 0 0.4, and 1.0. The solution is computed with the nonlinear

formulation.
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and for slender blocksana=a+a7~/3 gosa=1-a~/2 ; therefore, equation (4-46) further

simplifies to

a F F
%0 149 Upq2d, 2 u ]
= [1+2W+0( B+ 3 (4-47)

when terms are retained upach

At the zero-frequency limit the numerical solution ta)Fgo approaches the static limit
computed with (4-46) or with its slender-block approximation given by (4-47). As theugtip
increases, the acceleration needed to overturn an anchored block with dwctily maintains a
nearly constant value and then increases drastically. The larger the strength rafig,/W , the
larger is the frequency range that the minimum overturning acceleration is constant. This finding
leads to the counterintuitive situation where within the rafigeo,/p<7.5 , the stronger the
restrainers, the smaller the acceleration needed to overturn the block; whereas, free-standing
blocks are the most stable. Wheg/ p is sufficiently large so that an anchored block overturns
with mode 2, then an anchored block can sustain a slightly larger acceleration than free-standing
blocks.

Figure 34 plots the ratio between the minimum overturning acceleration of an anchored
AN
po

guency range4 < oop/ p<7.5 ,the rat'a)'g(')\'/a';g is less than one; therefore, the effect of anchor-

block, a,, , to the minimum overturning acceleratitaxﬁg , of a free-standing block. In the fre-
age is destructive. For an electrical equipment with frequency parapet2rad/sec , this
range corresponds to frequencie®7 Hz< fIO <2.28Hz ; or in terms of predominant pulse peri-
ods 0.4 sec< T,<0.8sec. For this period range that is of central interest to earthquake engi-
neering, a free-standing block can withstand a larger acceleration amplitude than an anchored
block.

Figure 35 compares the overturning acceleration spectra of anchored blocks that have
restrainers with the same strength but different ductility. Again there is a frequency range where
the block equipped with the less ductile restrainers will survive stronger accelerations than the
block with more ductile restrainers.

The limited capacity of the restrainers with finite ductility to prevent the toppling of large
blocks can be illustrated again by comparing the potential energy of the block at the verge of over-
turning with the strain energy dissipated by the ductile restrainers. Assuming an elasto-plastic
behavior € = 0 ), Figure 32 (center) indicates that the strain energy dissipated by the restrainers

before they fracture is
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Figure 34. Normalized minimum overturning acceleration levels needed to overturn an anchored
block (elastic-plastic behavign, = 5 ) to the acceleration level needed to overturn the same block

when it is free standing. Whemp/p>4 , blocks should not be anchored since the effect of the

restrainers is destructive or virtually insignificant.
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Figure 35. Comparison of overturning acceleration spectra computed with the nonlinear
formulation for an anchored blocla (= 0.349rad = 20° p = 2rad/sec n, = 0.825 and

q-= 5.2><10_4) with two levels of ductility:yu =1 andu =5 . TopF, /W = 0.4 ; Bottom:
F/W = 1.0.
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SE= F u; (4-48)
At the verge of overturningd(= a ) the kinetic energy of the block is zero since the one-sine
pulse has expired and its potential energy is given by (4-12). Therefore, the ratio of the dissipated
strain energy to the total energy of the block at the verge of overturning is

SE_2Fr _ 2Fy Y

—_— l"l_
PE mgr? oW R

(4-49)

Where,uy = F/K , is the yield displacement.

For avalue of /W = 0.1 and ductility =5 ,therat®e/ PE forthebmx1.5m
block (a = 0.3217, u, = 1.30x10° m andR = 1.581m ) is equal to 0.83%, which is a very
small fraction. Even if the restrainers had strerfgth- W , the strain energy lost due to ductile
behavior is 8.3% of the energy needed to topple the free-standing block.

Equation (4-49) reveals the same geometrical and scale effects:
() The 1/a? term indicates that restrainers are much more effective in preventing toppling the
slender of two blocks of the same size (s&he
(i) The 1/R term indicates that restrainers are more effective in preventing toppling the smaller

of two geometrically similar blocks that have the sdgWw

Equation (4-49) can be expressed alternatively in terms of the léngth, , of the bolts used
to anchored the equipment. Using that the yield strain of theep@tt u/Lg , equation (4-49)
gives
SE~ 2 Fu LB
PE 2WHHR (4-50)

in which 10 < gy < 5x10° depending on the bolt steel.

Equation (4-49) or (4-50) is the result of an ultimate strength approach that is independent
of the dynamic effect. Consequently the raf@PE+ SB/PE , Which is the ratio of the total
energy that the anchored block has adopted at the verge of overturning, to the corresponding
energy that the free-standing block has adopted does not relate directly to the ratio between the
minimum overturning acceleration of the anchored blc;{rﬁf')\,l , and the minimum overturning

accelerationagg’ , of the free-standing block.
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CHAPTER 5
ROCKING RESPONSE OF ANCHORED EQUIPMENT TO EARTHQUAKE
EXCITATIONS

In chapter 4 an in-depth analysis of the rocking response of anchored equipment subjected to a
Type-A trigonometric pulse was presented. The analysis revealed that under a one-sine (Type-A)
pulse there are two modes of overturning. The presence of restrainers is more effective for low-
frequency pulses or small blocks. As the size of the block or the frequency of the pulse increases,
the presence of restrainers is destructive, since anchored blocks overturn under acceleration
amplitudes smaller than those needed to overturn free-standing blocks. For large valyes of :
blocks overturn only along mode 2 (no impact) and the effect of the restrainers is marginal.

In this chapter the seismic response of anchored blocks subjected to selected strong
ground motions is presented. Figure 36 (left) portrays the fault-normal component of the acceler-
ation, velocity, and displacement histories of the January 17, 1994, Northridge California, earth-
guake recorded at the Rinaldi station. This motion resulted in a forward ground displacement that
recovered partially. The velocity history has a large positive pulse and a smaller negative pulse
that is responsible for the partial recovery of the ground displacement. Had the negative velocity
pulse generated the same area as the positive velocity pulse, the ground displacement would have
fully recovered. Accordingly, the fault-normal component of the Rinaldi station record is in
between a forward and a forward-and-back pulse. Figure 36 (center) plots the acceleration, veloc-
ity and displacement histories of a Type-A cycloidal pulse given by (Jacobsen and Ayre 1958;
Makris 1997)

%
ug(T) = wpism(wpr) , OsrsTp , (5-1)
ry = p_Vp
ug(T) = E_ECOS((%T) , 01T, (5-2)

Vo Vo
ug(T) = Et_ﬂsm(pr) , 0<T<T,. (5-3)

p
by assuming a pulse duratid'rb = 0.8sec and a velocity amplimrg:let 1.75nV sec which

are approximations of the duration and velocity amplitude of the first main pulse shown in the
record. This comparison indicates that the simple one-sine pulse that was used in this study to

uncover the many complexities of the rocking response of a rigid block can approximate the kine-
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Rinaldi Station Record — Fault Normal Pulse Type—-A Pulse Type—-B
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Figure 36. Fault normal components of the acceleration, velocity, and displacement time histories recorded at the Bmédldhiiistati
the January 17, 1994, Northridge, California, earthquake (left); a cycloidal type-A pulse (center); and a cycloidal typé&iBhtuls



matic characteristics of some recorded ground motions. Figure 36 (right) plots the acceleration,

velocity and displacement histories of a Type-B cycloidal pulse given by (Makris 1997)

Ug(r) = wpvpcos(oopt) , 0sT<T,,, (5-4)

ug(r) = vpsin(oopT) , 01T, (5-5)
Vo Vp

ug(r) = w—p—apcos(wpr) , OSTSTp . (5-6)

by considering a pulse duratid'rb = 1.3sec and a velocity ampliw@e 1.3m/ sec

We commence our analysis by computing rocking time histories @b5anx 1.5m
(19.7in x59.0in) block with frequency parametep, = 2.157 , and slenderness, 18.43
Consider that this block is the idealization of an electrical equipment with weight,
W = mg = 40 kips that is anchored with restrainers that exhibit an ultimate strength from each
side of F, = 0.4W = 16 kips and a yield displacemanu = 0.05in . Consider further that the
stiffness of these restrainers ks = 300kips/in . These parameters yield an influence factor
q= uypz/g = 6.0x10™ ando = F,/W = 0.4 . Under a horizontal excitation only, Figure 15
indicates that a level of 78% of the Rinaldi station record is capable of overturning the block.

Figure 37 plots the response of the block with restrainer ductility, 1 , at the verge of
overturning. A 88% level of the Rinaldi station record is capable of overturning the block. Assum-
ing that the Rinaldi station record can be approximated with a one-sine pul%pvv'rtm.S sec ,
the corresponding frequency ratiodli,/p = 3.64 . For this value of the frequency ratio, Figure
27 (that has been generated by considering a slightly different block) indicates an approximate
acceleration amplitudeapo = 1.870g = 0.65g , which is close to the acceleration level
0.88x (PGA=0.89)=0.7g.

Figure 35 indicates that when the ductility of the restrainers is increasedifror to
H =5, a slight increase is expected in the acceleration needed to overturn the same
0.5mx1.5m block. Indeed Figure 38 shows that when the restrainers have duptifityp , a
93% level of the Rinaldi station record is capable of overturning the block. For this level restrain-
ers with ductility,n = 10 , are capable of preventing overturning. Figure 39 shows that a 99%
level of the Rinaldi station record is capable of overturning the block that is anchored with
restrainers that have, = 16 kips K = 300kips/in apd= 10 . Comparing this level with
the 78% one that was needed to overturn the free-standing block, one concludes that restrainers

have a limited effect in preventing toppling.
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Rinaldi FN, 1994 Northridge Block b=0.5m, h=1.5m, a=18.43, p=2.157, 0=0.4, g=6.4e—-04
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Figure 37. Rotation and angular velocity time histories of an anchored blec®% m, h = 1.5 mF /W = 0.4) subjected to the fault-

normal Rinaldi station motion. An 88% acceleration level is capable of overturning the block with restrainers exhibiiiggdectil.
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Rinaldi FN, 1994 Northridge

Block b=0.5m, h=1.5m, a=18.43, p=2.157, 0=0.4, q=6.4e-04
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Figure 38. Rotation and angular velocity time histories of an anchored hleckK.6 m, h = 1.5 mF /W = 0.4) subjected to the
fault-normal Rinaldi station motion. A 93% acceleration level is capable of overturning the block with restrainers exhiditityg d
M = 5; whereas whep = 10 the block survives.
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Rinaldi FN, 1994 Northridge
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Figure 39. Rotation and angular velocity time histories of an anchored blecR.6 m, h=1.5 mF /W = 0.4, u = 10) subjected
to the fault-normal Rinaldi station motion. Left: no overturning (98% acceleration level). Right: overturning (99% accéesfion
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To proceed with the analysis the rocking response is computed for a larger block
(1.0 mx 3.0 m) that has a frequency parameters 1.525rad/sec , and the same slenderness,
o = 18.43. Under the same assumption that the Rinaldi station record can be approximated
with a one-sine pulse Witfl’p = 0.8sec , the corresponding frequency ratdopj’sp =5.15
For this value of the frequency ratio, Figure 33 (that has been generated for a smaller, less slender
block,a = 20°,p = 2rad/sec andn = 0.825) indicates that a free-standing block might sur-
vive a stronger acceleration level than an anchored block. Indeed Figure 40 indicates that the
1.0 mx 3.0 m free-standing block overturns at a 127% level of the Rinaldi record, whereas the
same block anchored with restrainers having strergfh= 0.4W = 16 Kips and ductility
U = 5 overturns under only a 119% level of the Rinaldi acceleration record, as shown in Figure
41. This study was partly motivated by this puzzling result, and sought to address the problem in a

systematic and lucid manner.
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Rinaldi FN, 1994 Northridge
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Figure 40. Rotation and angular velocity time histories of the free-standing bleck.Q m, h = 3.0 msubjected to the fault-normal
Rinaldi station motion. Left: no overturning (126% acceleration level). Right: overturning (127% acceleration level).
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Rinaldi FN, 1994 Northridge Block b=1m, h=3m, a=18.43, p=1.525, 0=0.4, q=3.2e—-04
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Figure 41. Rotation and angular velocity time histories of a larger anchoredibledk@ m, h = 3.0 mF /W = 0.4 andp = 5 ) sub-
jected to the fault-normal Rinaldi station motion. Left: no overturning (118% acceleration level). Right: overturning (Xl6fatect
level). The free-standing block can survive a stronger acceleration level than the anchored block (see Figure 40).



CHAPTER 6
CONCLUSIONS

This report investigates the transient rocking response of anchored electrical equipment and other
tall structures that can be approximated as rigid blocks. In addition, various practical issues that

control overturning, such as the effect of the vertical component of ground acceleration and the

effect of the coefficient of restitution during impact, are also addressed.

An in-depth study of the rocking response of a free-standing equipment subjected to a
one-sine (Type-A) pulse is first presented. It is shown that under a one-sine pulse (forward dis-
placement) rigid blocks can overturn with two distinct modes: (a) with one impact; (b) without
impact. The second mode (no impact) is responsible for the existence of a safe region that is
located over the minimum overturning acceleration spectrum. It is found that the shape of this
region depends on the coefficient of restitution and is very sensitive to the nonlinear nature of the
problem. The study uncovers a frequency range where the linear formulation can give erroneous
results even for slender blocks. Under a one-cosine (Type-B) pulse, a similar safe region located
over the minimum overturning acceleration spectrum exists. In this case the differences in the
response obtained with the linear and nonlinear formulations are less drastic to those observed
under a one-sine pulse.

Restrainers with elastic-brittle and elastic-plastic behavior are considered. It is found that
restrainers are more efficient in preventing overturning of small slender blocks subjected to a low-
frequency ground excitation. Again, under one-sine pulse anchored blocks can overturn with the
two aforementioned modes of overturning. Before the transition from mode 1 to mode 2, the pres-
ence of restrainers has a destructive effect. The stronger the restrainer, the smaller is the accelera-
tion amplitude needed to overturn a rigid block; whereas a free-standing block can withstand the
higher acceleration amplitude. This counterintuitive response extends when the restrainers exhibit
finite ductility, since the study shows that there is a frequency range where blocks with the most
ductile restrainers will withstand the smaller acceleration level. Larger blocks can overturn only
without experiencing any impact, and in this case the effect of restrainers is marginal even when
their strength equals the weight of the equipment. The limited effect of restrainers in preventing
toppling is also found under earthquake excitations. The study shows that under the Rinaldi sta-
tion record restrainers with strengf)/W = 0.4  and ductifity= 5 have a mild constructive

effect in preventing toppling of &.5mx 1.5m  block; they have a destructive effect in prevent-
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ing toppling of a1.0 mx3.0 m block. Thel.0 mx3.0 m free-standing block survives the
motion that overturns it when it is anchored.

Furthermore, the report concludes that the effect of the vertical component of recorded
ground motions is marginal and virtually does not affect the level of the horizontal acceleration
needed to overturn an electrical equipment. An increasingly inelastic impact (smaller coefficient
of restitution) results in smaller angles of rotation; however the values of the impact velocities

might occasionally be larger.
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