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ABSTRACT

This report investigates the transient rocking response of anchored electrical equipment and other

anchored structures that can be approximated as rigid blocks. Practical issues that control over-

turning, such as the effect of the vertical component of ground accelerations and the effect of the

coefficient of restitution during impact, are also addressed.

The anchorages of equipment are assumed to have a pre-yielding linear behavior, a finite

post-yielding strength, and some ductility. The nonlinear behavior of the restrainers in conjunc-

tion with the nonlinear dynamics of a rocking block yield a set of highly nonlinear equations

which are solved numerically using a state-space formulation. The study uncovers that while for

most of the frequency range, anchored blocks survive higher accelerations than free-standing

blocks, there is a short frequency range where the opposite happens. This counterintuitive behav-

ior is the result of the many ways that a block might overturn. It is shown that under a one-sine

(Type-A) pulse or one-cosine (Type-B) pulse with frequency , a free-standing block with fre-

quency parameter  has two modes of overturning; one with impact (mode 1), and one without

impact (mode 2). The transition from mode 1 to mode 2 is sudden, and once  is sufficiently

large, then a substantial increase in the acceleration amplitude of the one-sine pulse is needed to

achieve overturning. When a block is anchored the transition from mode 1 to mode 2 happens at

slightly larger values of , and this results in a finite frequency range where a free-standing

block survives acceleration levels that are capable of overturning the same block when it is

anchored. The presence of restrainers is effective in preventing toppling of small, slender blocks.

Prior to the transition from mode 1 to mode 2, the presence of restrainers has a destructive effect.

When blocks overturn without impact (mode 2) the presence of restrainers has a marginal effect. 

Furthermore, the investigation concludes that the effect of the vertical component of

recorded ground motions is marginal and virtually does not affect the level of the horizontal accel-

eration needed to overturn an electrical equipment. An increasingly inelastic impact (smaller

coefficient of restitution) results in smaller angles of rotation; however, the values of the impact

velocities might be occasionally larger.
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PROLOGUE

This report summarizes the work conducted during Phase II of the PEER-PG&E Program. The

work is the continuation of a Phase I study during which the PI and a former graduate student

examined the rocking response and overturning of free-standing equipment under pulse-type

motions1. In that study it was indicated that the minimum overturning acceleration amplitude,

, of a half-sine pulse as was computed by Housner2 was incorrect. This result was corrected by

showing that under the weaker half-sine pulse that accomplishes overturning, the block topples

during its free-vibration regime     after a theoretically infinite long time     not at the instant that

the pulse expires, as was assumed by Housner. Within the limits of the linear approximation the

correct expression was derived, which yields the minimum overturning acceleration,  (equa-

tion 3.8 of Reference 1):

(1)

The solution of this transcendental equation gives the value of  for which the acceleration,

, is the minimum acceleration amplitude of the half-sine pulse with duration

 able to overturn a block with slenderness  and frequency parameter .

Equation (1) can be further simplified by using the definition of the hyperbolic function,

 and , and then factoring the terms  and .

This gives

 (2)

Equation (2) was derived independently by Shi et al.3 who stated correctly that under a half-sine

pulse with the minimum acceleration that is needed to overturn a block, the kinetic energy of the

block at the verge of overturning should be zero. 

We take this opportunity to thank Professor James N. Brune (University of Nevada-Reno)

for his interest to our work and for communicating to us reference 3. We are pleased to report that

the energy approach followed by Shi et al.3 and the kinematic approach followed by Makris and

Roussos1 are in agreement. 

1.  Makris, N., and Y. Roussos. 1998. Rocking Response and Overturning of Equipment Under Horizontal
Pulse-Type Motions. PEER-98/05. Pacific Earthquake Engineering Research Center, University of California,
Berkeley.
2.  Housner, G. W. 1963. The behaviour of inverted pendulum structures during Earthquakes. Bull. Seismo-
logical Soc.of America, 53: 404-17.
3.  Shi, B., A. Anooshehpoor, Y. Zeng, and J. N. Brune. 1996. Rocking and overturning of precariously bal-

anced rocks by earthquake. Bull. Seismological Soc. of America 86(5): 1364-71.

ap0

ap0

ψcos p
ωp
------ π ψ–( )cosh

ωp

p
------ ψsin p

ωp
------ π ψ–( )sinh– 1

ψcos p
ωp
------ π ψ–( )sinh

ωp

p
------ ψsin p

ωp
------ π ψ–( )cosh–

+

+ 0=

ψ
ap0 αg ψsin⁄=

Tp 2π ωp⁄= α p

xcosh e
x

e
x–+( ) 2⁄= xsinh e

x
e

x––( ) 2⁄= ψcos ψsin

ωp

p
------ ψ ψcos–sin e

p
ωp

------ π ψ–( )–

=



vii

CONTENTS

ABSTRACT...................................................................................................................................iii

PROLOGUE....................................................................................................................................v

TABLE OF CONTENTS..............................................................................................................vii

LIST OF FIGURES........................................................................................................................ ix

LIST OF TABLES ........................................................................................................................xv

ACKNOWLEDGMENTS...........................................................................................................xvii

CHAPTER 1: INTRODUCTION ................................................................................................1

CHAPTER 2: REVIEW OF THE  ROCKING RESPONSE OF A FREE-STANDING
BLOCK.................................................................................................................5

2.1 Condition for Initiation of Rocking Motion .........................................................5

2.2 Governing Equations under Rocking Motion.....................................................10

2.3 Rocking Response to a One-Sine (Type-A) Pulse..............................................12

2.3.1 Linear Formulation .................................................................................12

2.3.2 Nonlinear Formulation............................................................................21

2.4 Rocking Response to a One-Cosine (Type-B) Pulse ..........................................24

CHAPTER 3: ROCKING RESPONSE OF A FREE-STANDING BLOCK UNDER
HORIZONTAL AND VERTICAL EXCITATION ...........................................31

3.1 Numerical Formulation and Solution .................................................................31

3.2 Response Spectra and Effect of the Coefficient of Restitution ..........................41

CHAPTER 4 ROCKING RESPONSE OF ANCHORED EQUIPMENT TO
 ONE-SINE (TYPE-A) PULSE...........................................................................45

4.1 Elastic-Brittle Behavior ......................................................................................45

4.1.1 Nonlinear Formulation............................................................................45

4.1.2 Linear Formulation .................................................................................54

4.2 Ductile Behavior .................................................................................................57

4.2.1 Elasto-Plastic Behavior...........................................................................60

CHAPTER 5: ROCKING RESPONSE OF ANCHORED EQUIPMENT TO
EARTHQUAKE EXCITATIONS......................................................................69

CHAPTER 6: CONCLUSIONS ................................................................................................79

REFERENCES ............................................................................................................................81



ix

LIST OF FIGURES

Figure 1: Overturned electrical equipment at Sylmar Converter Station damaged after the 1971 
San Fernando earthquake. Top: Front view. Bottom: Side view.     Steinbrugge 
Collection, PEER, University of California, Berkeley ..................................................2 

Figure 2: Schematic of a free-standing block in rocking motion (top); and its moment 
rotation diagram (bottom) ..............................................................................................6

Figure 3: Acceleration, velocity, and displacement histories of a one-sine pulse (left) and a 
one-cosine pulse (right) .................................................................................................7

Figure 4: Free-body diagram of a rigid block at the instant that it enters rocking ........................9

Figure 5: Overturning acceleration spectrum of a free-standing block with  subjected 
to a one-sine acceleration pulse with frequency . The analytical and numerical 
solutions shown are computed with the linear formulation. When  is 
sufficiently large, a free-standing block overturns only without impact (mode 2) ......17

Figure 6: Rotation  and  angular velocity time histories  of a  rigid  block ( , 
 and ) subjected to a one-sine pulse with . Left: 

, no overturning. Center: , overturning with one impact 
(mode 1). Right: , overturning with one impact (mode 1).....................18

Figure 7: Rotation  and  angular  velocity  time  histories  of the same rigid block as in 
Figure 4 ( ,  and ) subjected to a 
one-sine pulse with . Left: No overturning with , that is 
slightly larger than the acceleration level, , that created overturning. 
Center: The block does not overturn even for the acceleration amplitude 

. Right: The block eventually overturns with , without 
impact (mode 2) ...........................................................................................................19

Figure 8: Comparison of overturning acceleration spectra of a slender block 
( , , ) under a one-sine pulse, 
computed with the linear and nonlinear formulations. When the frequency of the one-
sine pulse is relatively low, both formulations yield comparable results. As the 
excitation frequency increases, the linear formulation yields minimum overturning 
acceleration amplitudes drastically larger than those obtained with the nonlinear 
formulation. This is because under the nonlinear formulation the overturning “bay” 
generated by mode 1 penetrates further into the safe area under the overturning 
spectrum due to mode 2. As the excitation frequency further increases the linear and 
nonlinear formulations again yield comparable results since under both formulations 
and a high-frequency pulse the block overturns with mode 2....................................... 22

Figure 9: Comparison  of overturning acceleration spectra of  a  free-standing  equipment with 
,  and , under a one-sine 

pulse, computed with the linear and the nonlinear formulation ..................................23

Figure 10: Normalized minimum coefficient of friction over the slenderness of a block that is 
needed to sustain pure rocking motion ........................................................................25

η 0.9=
ωp

ωp p⁄

p 2.14 rad sec⁄=
α 0.25 rad= η 0.9= ωp p⁄ 5=
ap 3.00αg= ap 3.01αg=

ap 6.32αg=

p 2.14 rad sec⁄= α 0.25 rad= η 0.9=
ωp p⁄ 5= ap 6.33αg=

ap 6.32αg=

ap 7.17αg= ap 7.18αg=

p 2.14 rad sec⁄= α 0.25 rad 14.32°= = η 0.9=

α 0.349 rad 20°= = p 2 rad sec⁄= η rmax 0.825= =



x

Figure 11: Comparison of overturning acceleration spectra of a slender block 
( , , ) under a one-cosine pulse, 
computed with the linear and the nonlinear formulation. In this case the difference 
between the results of the two formulations are less drastic than those observed 
under a one-sine pulse ................................................................................................... 26

Figure 12: Rotation  and  angular velocity  time  histories  of  a rigid block ( , 
 and ) subjected to a one-cosine pulse with . Left: 

, no overturning. Center: , overturning with one impact 
(mode 1). Right: , overturning with one impact (mode 1).....................28

Figure 13: Rotation  and  angular  velocity  time histories  of  the same rigid block as in 
Figure 9 ( ,  and ) subjected to a
one-cosine pulse with . Left: No overturning with , that is 
slightly larger than the acceleration level, , that created overturning. 
Center: The block does not overturn even for the acceleration amplitude 

. Right: The block eventually overturns with , 
without impact (mode 2)..............................................................................................29

Figure 14: Comparison of overturning acceleration spectra of a slender block 
( , , ) under a one-cosine pulse, 
computed with the linear and the nonlinear formulation. In this case the difference 
between the results of the two formulations are less drastic than those observed 
under a one-sine pulse..................................................................................................30

Figure 15: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-normal and vertical Rinaldi station records. Left: overturning 
under horizontal component alone (78% acceleration level). Center: overturning
under horizontal and vertical components (74% acceleration level). Right: 
overturning under horizontal and vertical components with reversed polarity 
(83% acceleration level) ................................................................................................ 32

Figure 16: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-normal and vertical Sylmar station records. Left: overturning 
under horizontal component alone (118% acceleration level). Center: overturning 
under horizontal and vertical components (116% acceleration level). Right: 
overturning under horizontal and vertical components with reversed polarity 
(120% acceleration level).............................................................................................33

Figure 17: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the N-S and vertical Newhall station records. Left: overturning under 
horizontal component alone (183% acceleration level). Center: overturning under 
horizontal and vertical components (186% acceleration level). Right: overturning 
under horizontal and vertical components with reversed polarity 
(180% acceleration level).............................................................................................35

p 2.14 rad sec⁄= α 0.25 rad 14.32°= = η 0.9=

p 2.14 rad sec⁄=
α 0.25 rad= η 0.9= ωp p⁄ 3=
ap 1.91αg= ap 1.92αg=

ap 6.54αg=

p 2.14 rad sec⁄= α 0.25 rad= η 0.9=
ωp p⁄ 3= ap 6.55αg=

ap 6.54αg=

ap 11.18αg= ap 11.19αg=

α 0.349 rad 20°= = p 2.0 rad sec⁄= η 0.825=



xi

Figure 18: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-normal and vertical El Centro Array #5 records. Left: 
overturning under horizontal component alone (129% acceleration level). Center: 
overturning under horizontal and vertical components (126% acceleration level). 
Right: overturning under horizontal and vertical components with reversed 
polarity (130% acceleration level) ...............................................................................36

Figure 19: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-normal and vertical El Centro Array #6 records. Left: 
overturning under horizontal component alone (149% acceleration level). Center: 
overturning under horizontal and vertical components (149% acceleration level). 
Right: overturning under horizontal and vertical components with reversed 
polarity (161% acceleration level) ...............................................................................37

Figure 20: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-normal and vertical El Centro Array #7 records. Left: 
overturning under horizontal component alone (152% acceleration level). Center: 
overturning under horizontal and vertical components (152% acceleration level). 
Right: overturning under horizontal and vertical components with reversed 
polarity (152% acceleration level) ...............................................................................38

Figure 21: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-parallel and vertical Los Gatos station records. Left: overturning 
under horizontal component alone (146% acceleration level). Center: overturning 
under horizontal and vertical components (145% acceleration level). Right: 
overturning under horizontal and vertical components with reversed polarity 
(151% acceleration level).............................................................................................39

Figure 22: Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) 
subjected to the fault-parallel and vertical Lucerne Valley records. Left: overturning 
under horizontal component alone (275% acceleration level). Center: overturning 
under horizontal and vertical components (285% acceleration level). Right: 
overturning under horizontal and vertical components with reversed polarity 
(295% acceleration level).............................................................................................40

Figure 23: Rotation and angular velocity spectra due to the fault-normal motion recorded at 
the Rinaldi station for different values of the coefficient of restitution and various 
values of block slenderness..........................................................................................42

Figure 24: Rotation and angular velocity spectra due to the fault-normal motion recorded at 
the Sylmar station for different values of the coefficient of restitution and various 
values of block slenderness..........................................................................................43

Figure 25: Schematic of an anchored block in rocking motion ....................................................46

Figure 26: Moment-rotation curves of: (Top) Free-standing block; (Center) Elastic-brittle 
anchorage; (Bottom) Anchored block with elastic-brittle restrainers..........................47



xii

Figure 27: Comparison of overturning acceleration spectra due to a one-sine pulse of an 
anchored equipment ( , , , 

 and ) computed with the nonlinear formulation for
, 0.4 and 1.0 ...............................................................................................51

Figure 28: Normalized minimum overturning acceleration levels needed to overturn an 
anchored block (elastic-brittle behavior, ) to the acceleration levels needed
to overturn the same block when it is free standing.....................................................52

Figure 29: Comparison of overturning acceleration spectra due to a one-sine pulse of an 
anchored equipment ( , , , 

 and ) computed with the linear formulation for  
and 0.6. Lines: analytical solution. Points: numerical solution ...................................56

Figure 30: Comparison of the overturning acceleration spectra due to a one-sine pulse of an 
anchored equipment ( , , , 

 and ) computed with the linear and nonlinear formulations 
for  (top) and  (bottom).....................................................58

Figure 31: Force-displacement curve of an element with bilinear behavior .................................59

Figure 32: Moment-rotation curves of: (Top) Free-standing block; (Center) Elastic-plastic 
anchorage; (Bottom) Anchored block with elastic-plastic restrainers.........................61

Figure 33: Overturning acceleration spectra due to a one-sine pulse of an anchored block 
( , , ,  and

) with restrainer strength , 0.4 and 1.0. The solution is 
computed with the nonlinear formulation....................................................................64

Figure 34: Normalized minimum overturning acceleration levels needed to overturn an 
anchored block (elastic-plastic behavior, ) to the acceleration level needed 
to overturn the same block when it is free standing. When  blocks 
should not be anchored since the effect of the restrainers is destructive or 
virtually insignificant ...................................................................................................66

Figure 35: Comparison of overturning acceleration spectra computed with the nonlinear 
formulation for an anchored block ( , , 

 and ) with two levels of ductility:  and . 
Top: ; Bottom: ..................................................................67

Figure 36: Fault-normal components of the acceleration, velocity and displacement time 
histories recorded at the Rinaldi station during the January 17, 1994, Northridge, 
California earthquake (left), a cycloidal type-A pulse (center), and a cycloidal 
type-B pulse (right) ......................................................................................................70

Figure 37: Rotation and angular velocity time histories of an anchored block 
(b = 0.5 m, h = 1.5 m, ) subjected to the fault-normal Rinaldi station 
motion. An 88% acceleration level is capable of overturning the block with 
restrainers exhibiting ductility .........................................................................72 

α 0.349 rad 20°= = p 2 rad sec⁄= η 0.825=
q 5.2

4–×10= µ 1=
Fu W⁄ 0=

µ 1=

α 0.349 rad 20°= = p 2 rad sec⁄= η 0.825=
q 5.2

4–×10= µ 1= Fu W⁄ 0=

α 0.349 rad 20°= = p 2 rad sec⁄= η 0.825=
q 5.2

4–×10= µ 1=
Fu W⁄ 0.4= Fu W⁄ 0.6=

α 0.349 rad 20°= = p 2 rad sec⁄= η 0.825= q 5.2
4–×10=

µ 5= Fu W⁄ 0=

µ 5=
ωp p 4>⁄

α 0.349 rad 20°= = p 2 rad sec⁄=
η 0.825= q 5.2

4–×10= µ 1= µ 5=
Fu W⁄ 0.4= Fu W⁄ 1.0=

Fu W⁄ 0.4=

µ 1=



xiii

Figure 38: Rotation and angular velocity time histories of an anchored block 
(b = 0.5 m, h = 1.5 m, ) subjected to the fault-normal Rinaldi station 
motion. A 93% acceleration level is capable of overturning the block with 
restrainers exhibiting ductility ; whereas when  the block survives ....73

Figure 39: Rotation and angular velocity time histories of an anchored block 
(b = 0.5 m, h = 1.5 m, , ) subjected to the fault-normal 
Rinaldi station motion.  Left: no overturning (98% acceleration level). Right: 
overturning (99% acceleration level) ...........................................................................74

Figure 40: Rotation and angular velocity time histories of the free-standing block 
(b = 1.0  m,    h = 3.0 m) subjected to the fault-normal Rinaldi station motion. 
Left: no overturning (126% acceleration level). Right: overturning 
(127% acceleration level).............................................................................................76 

Figure 41: Rotation and angular velocity time histories of a larger anchored block (b = 1.0 m,    
h = 3.0 m,  and ) subjected to the fault-normal Rinaldi station 
motion. Left: no overturning (118% acceleration level). Right: overturning (119% 
acceleration level). The free-standing block can survive a stronger acceleration 
level than the anchored block (see Figure 40) .............................................................77

Fu W⁄ 0.4=

µ 5= µ 10=

Fu W⁄ 0.4= µ 10=

Fu W⁄ 0.4= µ 5=



xv

LIST OF TABLES

Table 1: Minimum  level  of  acceleration  records  needed  to  overturn a  free-
standing block ( , ) ......................................................34

Table 2: Geometrical, physical and structural parameters of electrical equipment. ......................50

0.5 m 1.5 m×
α 18.43°= p 2.157 rad sec⁄=





1

CHAPTER 1
INTRODUCTION

The study of the rocking response and overturning of electrical equipment to near-source ground

motions was motivated by the proximity of electric power substations in major urban areas to

active faults. In the Bay Area the San Andreas fault runs 10 km west of San Francisco; the Hay-

ward fault runs less than 10 km from most of Oakland; additionally, other smaller nearby faults

such as the Rodgers Creek, Gregorio, Calaveras, Concord, and Green Valley faults have the poten-

tial to subject urban areas to strong ground motions. Similarly, a large part of metropolitan Los

Angeles lies over buried thrust faults capable of generating strong motions like those recorded

during the January 17, 1994, Northridge earthquake. The city of Kobe, Japan, was devastated by

the January 17, 1995, Hyogoken-Nanbu earthquake, which generated unusually strong motions.

Figure 1 shows electrical equipment at the Sylmar Converter Station that overturned during the

1971 San Fernando, California, earthquake.

In a recent study the transient response of a free-standing equipment subjected to horizon-

tal pulse-type and near-source ground motions was investigated in depth (Makris and Roussos

1998). What makes these motions particularly destructive to a variety of structures is not only

their occasionally high peak-ground acceleration, but also the area under the relatively long-dura-

tion acceleration pulse. This area represents the “incremental” ground velocity (Anderson and

Bertero 1986), which is the net increment of the ground velocity along a monotonic segment of its

time history. Such velocity increments are of the order of 0.5 m/sec or even higher. Although they

do not happen very fast to generate an excessive ground acceleration, they happen at just the right

pace to generate devastating shears at the base of flexible structures (Bertero et al. 1978; Anderson

and Bertero 1986; Hall et al. 1995). The Makris and Roussos study showed that near-source

ground motions do not bear any exceptional overturning potential for electrical equipment. This

finding is because typical electrical equipments have dynamic properties that are too stiff to be

resonated by the two- or three-second long coherent pulse of the near-source ground motion. In

that study it was found that the toppling of smaller blocks is more sensitive to the peak ground

acceleration; whereas, the toppling of larger blocks depends mostly on the incremental ground

velocity. Accordingly, a smaller block will overturn due to the high-frequency fluctuations that

override the long-duration pulse; whereas a larger block will overturn due to the long-duration

pulse. In this light the overturning response of free-standing equipment was shown to be quite
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Figure 1. Overturned electrical equipment at Sylmar Converter Station damaged after the 1971

San Fernando earthquake. Top: Front view. Bottom: Side view--- Steinbrugge collection, PEER,

University of California, Berkeley
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ordered and predictable despite the presence of the high-frequency content that overrides the

coherent component of near-source ground motions.

After having established that peak ground acceleration controls the overturning of electri-

cal equipment, in this study the rocking stability of electrical equipment is further investigated by

looking into several practical issues such as (1) the effect of the vertical component of the ground

motion; (2) the effect of an increasingly inelastic coefficient of restitution; and (3) the efficiency

of typical anchorages used to prevent toppling.

In Chapter 2, the rocking response of a free-standing block subjected to a one-sine (Type-

A) pulse and one-cosine (Type-B) pulses is revisited. The study reveals that blocks can overturn

with two distinct modes: (a) by exhibiting one impact (mode 1) and (b) without impact (mode 2).

The second mode (no impact) is responsible for the existence of a safe region that is located over

the minimum overturning acceleration spectrum. The shape of this safe region depends on the

coefficient of restitution and is sensitive to the nonlinear nature of the problem. The transition

from mode 1 to mode 2 is sudden and results in a finite jump in the minimum overturning acceler-

ation spectrum. In a recent study, Anooshehpoor et al. (1999) attempted to construct the minimum

overturning acceleration spectra due to one-sine pulse. Their study failed to identify the second

mode of overturning (without impact) and to indicate the presence of the aforementioned safe

region. These conceptual oversights in the paper by Anooshehpoor et al. have been addressed in

detail in the discussion by Zhang and Makris (1999). Chapter 3 concentrates on the effect of the

vertical component of the ground motion, which is found to be negligible.

In Chapter 4 the rocking response and overturning of anchored blocks is investigated in

depth. Restrainers with elastic-brittle and elastic-plastic behavior are considered. The elastic-plas-

tic behavior is approximated with the Bouc-Wen hysteretic model. It is found that the restrainers

are more efficient in preventing overturning of small slender blocks. Larger blocks overturn only

without experiencing any impact, and in this case the effect of restrainers is marginal even when

their strength equals the weight of the equipment. Easy-to-use graphs are offered to evaluate the

effect of anchorages with various strength and ductility. Chapter 5 concentrates on the rocking

response of anchored equipment subjected to selected recorded ground motions. Similar trends to

those identified under a cycloidal pulse excitation are observed. Chapter 6 is devoted to a sum-

mary of the findings and conclusions.
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CHAPTER 2
REVIEW OF THE ROCKING RESPONSE OF A FREE-STANDING BLOCK

2.1  Condition for Initiation of Rocking Motion

We consider the rigid block shown on Figure 2 (top) which can oscillate about the centers of rota-

tion O and  when it is set to rocking. Depending on the level and form of the ground accelera-

tion, the block may translate with the ground, slide, rock or slide-rock. Prior to 1996, the mode of

rigid-body motion that prevailed has been determined by comparing the available static friction to

the width-to-height ratio of the block, irrespective of the magnitude of the horizontal ground

acceleration. Shenton (1996) indicated that in addition to pure sliding and pure rocking, there is a

slide-rock mode and its manifestation depends not only on the width-to-height ratio and the static

friction coefficient, but also on the magnitude of the base acceleration.

Physically realizable cycloidal pulses have displacement histories which are continuous

and differentiable signals that build up gradually from zero. Their corresponding acceleration his-

tories might be zero at the time origin or exhibiting a finite value that can be as large as their max-

imum amplitude. Figure 3 plots the acceleration, velocity and displacement histories of a one-sine

pulse (left) and one-cosine pulse (right). In the case of the one-sine pulse the ground acceleration

is zero at the initiation of motion and builds up gradually. In contrast, in the case of a one-cosine

pulse, the ground acceleration assumes its maximum value at the initiation of motion. Under other

cycloidal pulses such as Type-Cn pulses (Makris and Chang 1998) the ground acceleration is finite

at the initiation of motion but assumes a value that is smaller than its maximum amplitude .

With reference to Figure 2 and assuming that the coefficient of friction , static

equilibrium yields that the minimum horizontal acceleration that is needed to initiate rocking is

. Consequently, pulses with amplitude  will induce rocking to a rect-

angular block with slenderness .

Consider a cycloidal pulse with acceleration amplitude  and let, , to be the

value of the ground acceleration when a block with slenderness  is about to enter rocking

motion. Depending on the type of pulse,  assumes different values; however it is bounded by

(2-1)

O′

ap

µ b
h
---> αtan=

ap min, g αtan= ap g αtan>

α

ap g αtan> λap

α

λ

g αtan
ap

-------------- λ 1≤<
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Figure 2. Schematic of a free-standing block in rocking motion (top); and its moment rotation

diagram (bottom)
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Figure 3. Acceleration, velocity, and displacement histories of a one-sine pulse (left) and a one-

cosine pulse (right)
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Figure 4 shows the free-body diagram of a free-standing block that is about to enter rock-

ing motion due to a positive ground acceleration. With the system of axis shown, a positive accel-

eration will induce an initial negative rotation ( ). Adopting the notation introduced by

Shenton (1996), let  and  be the horizontal and vertical reactions at the tip  of the block.

Dynamic equilibrium at this instant gives

(2-2)

(2-3)

(2-4)

where  is the moment of inertia of the block about its center of gravity (for rectangular blocks

). Substitution of (2-2) and (2-3) into (2-4) gives the value of the angular accelera-

tion, , at the instant when rocking initiates

(2-5)

in which  is the frequency parameter of the block and is a quantity in rad/sec,

whereas  is the half diameter of the block a measure of its size. In order to avoid

sliding at this instant

(2-6)

and substitution of the value computed by (2-5) into (2-2) and (2-3) gives the condition for a block

to rock without sliding

(2-7)

Equation (2-7), initially presented by Shenton (1996),  indicates that under some excitation pulses

with amplitude , the condition for a block to enter rocking motion without sliding depends on

the value of . However, this is true only for pulses that have a finite acceleration at the initiation

of motion. For pulses that their acceleration history build up gradually (such as a one-sine pulse),

the value of  at the initiation of rocking is equal to  and equation (2-7) reduces to

(2-8)
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Figure 4. Free-body diagram of a rigid block at the instant that enters rocking
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which is the traditional condition imposed in order for rocking to prevail. Consequently, the slide-

rock mode introduced by Shenton (1996) will develop only under excitations with non-zero accel-

eration at the initiation of the motion.

2.2  Governing Equations Under Rocking Motion

Under a positive horizontal ground acceleration and assuming that the coefficient of friction is

large enough so that there is no sliding, the block will initially rotate with a negative rotation,

, and if it does not overturn, it will eventually assume a positive rotation, and so forth. The

equations that govern the rocking  motion under the simultaneous presence of horizontal, ,

and vertical,  ground acceleration are

, (2-9)

and

, (2-10)

Equation (2-9) and (2-10) are well known in the literature (Yim et al. 1980) and are valid for arbi-

trary values of the angle . For rectangular blocks, , equation (2-9)

and (2-10) can be expressed in the compact form

(2-11)

where  is the frequency parameter of the block. The larger the block (largerR), the

smallerp. The oscillation frequency of a rigid block under free vibration is not constant since it

strongly depends on the vibration amplitude (Housner 1963). Nevertheless, the quantityp is a

measure of the dynamic characteristics of the block. For an electrical transformer,

, and for a household brick, .

Figure 2 (bottom) shows the moment-rotation relation during the rocking motion of a free-

standing block. The system has infinite stiffness until the magnitude of the applied moment

reaches , and once the block is rocking its stiffness decreases monotonically, reaching

zero when . During the oscillatory rocking motion, the moment-rotation curve follows this

curve without enclosing any area. Energy is lost only during impact when the angle of rotation

reverses.
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When the angle of rotation reverses, it is assumed that the rotation continues smoothly

from pointO to . Conservation of momentum about point  just before the impact and right

after the impact gives

, (2-12)

where  is the angular velocity just prior to the impact, and  is the angular velocity right after

the impact. The ratio of kinetic energy after and before the impact is

, (2-13)

which means that the angular velocity after the impact is only  times the velocity before the

impact. Substitution of (2-13) into (2-12) gives

. (2-14)

The value of the coefficient of restitution given by (2-14) is the maximum value ofr under which

a block with slenderness, , will undergo rocking motion. Consequently, in order to observe

rocking motion the impact has to be inelastic. The less slender a block (larger ) the more plastic

the impact, and for the value of , the impact is perfectly plastic. During

the rocking motion of slender blocks, if additional energy is lost due to interface mechanisms, the

value of the true coefficient of restitution,r, will be less than the one computed from (2-14). The

effect of the coefficient of restitution on the rocking response of free-standing blocks is shown

later in this study.

In this chapter the rocking response of a free-standing block subjected to simple trigono-

metric pulses is revisited since new findings further elucidate the complex dynamic nature of the

rocking problem.

The response of a free-standing block subjected to various horizontal cycloidal pulses,

with frequency , such as one-sine pulse (Type-A pulse), a one-cosine pulse (Type-B pulse) and

pulses with n-cycles in their displacement histories (Type-Cn pulses) was investigated in a recent

study by Makris and Roussos (1998). That study was motivated by an increasing number of

ground motions, recorded near the source of strong earthquakes, that contain one or more rela-

tively long-duration coherent pulses. In view of the relatively long duration of the coherent pulses,

the range of interest of the frequency ratio, , for electrical equipment with

is . Within this range of excitation frequencies ( ), the minimum over-

O′ O′

I 0θ̇1 mθ̇12bR α( )sin– I 0θ̇2=
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turning acceleration spectrum of cycloidal pulses is nearly linear; Makris and Roussos (1998) pro-

posed the approximate expression

(2-15)

where  is the minimum overturning acceleration of the pulse and  is the angle of the block

slenderness. The coefficient  for Type-A or -Cn pulses, and  for a Type-B

pulse.

For values of  the minimum overturning acceleration spectra become increas-

ingly nonlinear. Although the range of  is not of central interest in evaluating the over-

turning potential of near-source ground motions, it is of prime interest when the overturning of a

block is the result of a high-frequency spike of short duration.

2.3  Rocking Response to a One-sine (Type-A) Pulse

The analysis presented in this section concentrates on the overturning potential of a one-sine pulse

with ground acceleration

(2-16)

where  is the phase angle when rocking initiates. At this instant

 and according to equation (2-8) the condition for the block to enter pure

rocking is .

2.3.1  Linear Formulation

For tall, slender blocks, the angle  is relatively small, and equations (2-9) and (2-

10) can be linearized. Within the limits of the linear approximation and for a horizontal ground

acceleration given by (2-16), equations (2-9) and (2-10) become

, (2-17)

and

, (2-18)

where  is the frequency parameter of a rectangular block with a half diagonal =R.

The integration of (2-17) and (2-18) gives
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, (2-19)

and

, (2-20)

where

, (2-21)

, (2-22)

. (2-23)

The time histories for the angular velocities are directly obtained from the time derivatives of (2-

19) and (2-20)

, (2-24)

and

, (2-25)

The solutions given by equations (2-19) and (2-20) can be pieced together to construct the

time history of the rocking response under a given acceleration amplitude, . Furthermore, this

solution can provide the minimum overturning acceleration amplitude, provided that a condition

of overturning is available.

Under the minimum acceleration amplitude blocks overturn during their free-vibration

regime at a theoretically infinite large time when the velocity tends to reach a local minimum

(Makris and Roussos 1998). Accordingly the condition for overturning is that

(2-26)

where  is a sufficiently large time where .
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Under a one-sine pulse, a free-standing block has two modes of overturning: (a) overturn-

ing with one impact (mode 1) and (b) overturning with no impact (mode 2). This result is true as

long as  is sufficiently small. As  increases the first mode of impact vanishes, and the

block overturns only without impact (mode 2). Accordingly, in order to back-figure the minimum

overturning acceleration amplitude by imposing the condition of overturning given by (2-26) it is

necessary to distinguish between mode 1 and mode 2.

Mode 1

Denoting by , the time when the block enters its free vibration regime, the condition for

overturning after the block has experienced one impact (mode 1) is

(2-27)

In the case where the impact happens before the excitation expires ( ), then

 (CASE 1). In the case where the impact happens after the excitation

expires ( ), then  (CASE 2).

CASE 1 ( ).

In this case the condition of overturning given by (2-26) yields:

(2-28)

where

(2-29)

(2-30)

where

, (2-31)

, (2-32)

and  is the coefficient of restitution. The time of impact  is related to the acceleration ampli-

tude, , with the expression
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(2-33)

The condition of overturning given by (2-28) takes the form

(2-34)

where  and  are given by (2-31) and (2-32) and  is the solution of (2-33). The value of

 that satisfies (2-34) is the minimum overturning acceleration. Equation (2-34) is valid

when . Within the limits of the linear approximation (slender block) and assuming a value

of , this happens when .

CASE 2 ( )

In this case the condition of overturning yields:

(2-35)

where , and

. (2-36)

In the above equations the impact time  is the solution of the transcendental equation

(2-37)

The solution of equations (2-35) and (2-37) gives the minimum overturning acceleration for the

case .

Mode 2

Under this mode, the block does not experience any impact. The condition of overturning

becomes
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(2-38)

where

(2-39)

(2-40)

The substitution of (2-39) and (2-40) into (2-38) leads to

(2-41)

The solution of (2-41) gives the minimum acceleration amplitude that is capable of overturning

the block without any impact. Equation (2-41) is similar to equation (2) of the prologue; however,

the duration of the forced vibration due to a one-sine pulse is , rather than

, which is the duration of the forced vibration under a half-sine pulse; and the

sign in front of the exponential term in the right-hand side is negative rather than positive.

Figure 5 plots the solutions of the condition of overturning (for ) after distin-

guishing carefully between mode 1 and mode 2 of overturning. Although the roots are computed

numerically, this solution is referred to as ananalytical solution since it is based on the analytical

expressions of the response given by (2-19) and (2-20).

The distinction between mode 1 and mode 2 of overturning is of particular interest since

the transition from overturning with one impact to overturning without impact is not immediate;

and there is a finite margin of acceleration amplitudes with magnitudes larger than the minimum

overturning acceleration (that corresponds to mode 1) that are unable to overturn the block. This

interesting behavior is illustrated in Figures 6 and 7, where response time histories of a free-stand-

ing block with , ,  and  are shown for various levels of the

amplitude, , of the acceleration pulse.

The left and center plots in Figure 6 show normalized rotations and angular velocity histo-

ries at the verge of overturning due to the first (minimum) level of the acceleration amplitude.

With  the block does not overturn; whereas when  the block overturns

after experiencing one impact (mode 1). In this case the impact happens after the expiration of the

pulse. A similar pattern of overturning prevails until the acceleration amplitude reaches,
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Figure 5. Overturning acceleration spectrum of a free-standing block with  subjected to a

one-sine acceleration pulse with frequency . The analytical and numerical solutions shown are

computed with the linear formulation. When  is sufficiently large, a free-standing block

overturns only without impact (mode 2).
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Figure 6. Rotation and angular velocity time histories of a rigid block ( ,  and ) subjected to a

one-sine pulse with . Left: , no overturning. Center: , overturning with one impact (mode 1).

Right: , overturning with one impact (mode 1).
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Figure 7. Rotation and angular velocity time histories of the same rigid block as in Figure 4 ( ,  and
) subjected to a one-sine pulse with . Left: No overturning with , that is slightly larger than the accel-

eration level, , that created overturning. Center: The block does not overturn even for the acceleration amplitude
. Right: The block eventually overturns with , without impact (mode 2).
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. A notable difference, shown in the right plots, is that although the first maximum

positive rotation, , exceeds , the deaccelerating motion of the ground is capable of recentering

the block, which will experience an impact at a considerable later time and eventually overturn.

Figure 7 (left) shows the response of the same free-standing block when the acceleration

amplitude of the one-sine pulse has been slightly increased, . Interestingly, the

block does not overturn. This is because the acceleration pulse is intense enough to induce such a

large rotation that the block escapes most of the overturning effect of the deaccelerating portion of

the excitation pulse. This beneficial arrangement of inertia and gravity forces holds until

, as shown in the center of Figure 7. Eventually, if the acceleration amplitude, , is

further increased the block will overturn without experiencing any impact (mode 2), as shown in

Figure 7 (right). It should be noted that Yim et al. (1980) have reported the situation where a free-

standing block topples under a certain level of a given ground motion, yet does not topple when

the acceleration of the same ground motion is further increased. Figures 6 and 7 in association

with the foregoing discussion elucidate this counterintuitive result.

Accordingly, in the frequency-acceleration plane there is a safe area that extends above the

minimum overturning acceleration boundary due to mode 1 of overturning. When

, ( ), the minimum overturning acceleration is the result of mode 1 (one

impact). With reference to Figure 5, when , blocks overturn only with mode 2 (no

impact) and a substantial increase in the acceleration amplitude is needed to create overturning.

To further validate these results the various overturning boundaries were computed numer-

ically via a state-space formulation that was developed to account for the nonlinear nature of the

problem. With reference to equations (2-17) and (2-18), the state vector of the system is merely

(2-42)

and the time-derivative vector  is

(2-43)

For slender blocks, the linear approximation becomes dependable, and equation (2-43)

reduces to
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(2-44)

The numerical integration of (2-43) or (2-44) is performed with standard ODE solvers available in

MATLAB (1992). The results of the numerical solution of equation (2-44), shown on Figure 5

with circles, are in excellent agreement with the analytical solution.

2.3.2  Nonlinear Formulation

Figure 8 plots with crosses the overturning acceleration spectra of a rigid block with

rad, rad/sec, and , where the various overturning boundaries are computed

numerically with the nonlinear formulation expressed with equation (2-43). The circles shown on

Figure 8 are the results computed with the linear formulation expressed by equation (2-44). It is

interesting to note that while for values of  up to 6, the linear approximation gives equally

good results as the nonlinear formulation, for , the two formulations give drasti-

cally different results. As an example under a one-sine pulse with  rad/sec (

Hz), the linear formulation yields that the block with  rad,  rad/sec, and

 will overturn under a minimum acceleration amplitude, g; whereas the non-

linear formulation yields g. This drastic difference is because under the nonlinear for-

mulation, the overturning “bay” penetrates further into the safe area. These drastic differences

disappear for pulse frequencies beyond 2.58 Hz since, according to both formulations, the free-

standing block overturns with mode 2 (no impact).

A recent study by Anooshehpoor et al. (1999) attempted to produce the minimum over-

turning acceleration spectra under one-sine pulses within the frequency range .

Unfortunately, the study by Anooshehpoor et al. failed to identify the existence of the second

mode of overturning, the existence of the safe “cape” that embraces the overturning “bay”, and

the sensitivity of the response to the nonlinear nature of the problem even for blocks as slender as

a train locomotive with .

Figure 9 plots overturning acceleration spectra of a rigid equipment with

,  and . The crosses are the result of

the nonlinear formulation, whereas the circles are the results computed with a linear formulation.

Again within the low range of , the linear formulation gives equally good results as the non-
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Figure 8. Comparison of overturning acceleration spectra of a slender block

( , , ) under a one-sine pulse, computed with

linear and nonlinear formulations respectively. When the frequency of the one-sine pulse is

relatively low, both formulations yield comparable results. As the excitation frequency increases,

the linear formulation yields minimum overturning acceleration amplitudes drastically larger than

those obtained with the nonlinear formulation. This is because under the nonlinear formulation

the overturning “bay” generated by mode 1 penetrates further into the safe area under the

overturning spectrum due to mode 2. As the excitation frequency further increases the linear and

nonlinear formulations again yield comparable results since under both formulations and a high-

frequency pulse the block overturns with mode 2.
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Figure 9. Comparison of overturning acceleration spectra of a free-standing equipment with

,  and , under a one-sine pulse,

computed with the linear and the nonlinear formulation
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linear formulation. However, within the range , the two formulations gives

drastically different results.

2.4  Rocking Response to a One-cosine (Type-B) Pulse

Whereas a one-sine acceleration pulse results to a forward ground displacement, a one-cosine

acceleration pulse results to a forward-and-back ground displacement. With reference to Figure 3,

under a one-cosine acceleration pulse the maximum ground acceleration is induced at the instant

when rocking initiates ( ) and the condition for pure rocking given by (2-7) becomes

(2-45)

which for slender blocks (  and ) simplifies to

(2-46)

Equation (2-45) or its slender block approximation given by (2-46) indicates that the stronger the

acceleration pulse is, the larger needs to be the static coefficient of friction to sustain pure rocking.

Figure 10 plots the magnification factor of the slenderness , or  in equation (2-45) and

(2-46) respectively as a function of  for different values of the slenderness . As an

example, Figure 10 indicates that when a free-standing block with  is subjected to a

Type-B pulse with , the minimum coefficient of friction needed to sustain pure rock-

ing is approximately two times the value of the block slenderness.

Figure 11 plots the overturning acceleration spectra due to a one-cosine acceleration pulse

with time history

(2-47)

In this case the phase angle, , when rocking initiates is zero since a one-cosine pulse yields its

maximum acceleration at the instant when the pulse initiates. The same rigid block (

rad, rad/sec, and ) is considered. The circles, shown on Figure 11, are the

results computed with the linear formulation, whereas the crosses are the results obtained with the

nonlinear formulation. In this case, the differences observed between the linear and the nonlinear
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Figure 10. Normalized minimum coefficient of friction over the slenderness of a block that is

needed to sustain pure rocking motion
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Figure 11. Comparison of overturning acceleration spectra of a slender block

( , , ) under a one-cosine pulse, computed

with the linear and the nonlinear formulation. In this case the difference between the results of the

two formulations are less drastic than those observed under a one-sine pulse.
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formulation are less drastic. Figure 11 indicates that under a one-cosine pulse with frequency ,

blocks that are small enough so that , can experience two distinct modes of overturning.

Again, the existence of these two modes are responsible for the generation of a safe region that

embraces the minimum overturning acceleration spectrum. Consequently, similar to the case of a

one-sine pulse, there is a finite margin of acceleration amplitudes with magnitudes larger than the

minimum overturning acceleration (that corresponds to mode 1) that are unable to overturn the

block. This interesting behavior is illustrated in Figures 12 and 13 where the response time histo-

ries of a free-standing block with  rad,  rad/sec  and  are

shown for various levels of the amplitude, . Figure 14 plots overturning acceleration spectra

under a one-cosine pulse of a rigid equipment with , ,

and . The crosses are the result of the nonlinear formulation, whereas the cir-

cles are the results computed with the linear formulation. In comparing Figure 14 with 11 one

concludes that the normalized overturning acceleration spectra have a mild dependence on the

slenderness of the block, .

ωp
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Figure 12. Rotation and angular velocity time histories of a rigid block ( ,  and ) subjected to

a one-cosine pulse with . Left: , no overturning. Center: , overturning with one impact (mode 1).

Right: , overturning with one impact (mode 1).
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Figure 13. Rotation and angular velocity time histories of the same rigid block as in Figure 9 ( ,  and
) subjected to a one-cosine pulse with . Left: No overturning with , that is slightly larger than the

acceleration level, , that created overturning. Center: The block does not overturn even for the acceleration amplitude
. Right: The block eventually overturns with , without impact (mode 2).
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Figure 14. Comparison of overturning acceleration spectra of a slender block

( , , ) under a one-cosine pulse, computed

with the linear and the nonlinear formulation. In this case the difference between the results of the

two formulations are less drastic than those observed under a one-sine pulse.
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CHAPTER 3
ROCKING RESPONSE OF A FREE-STANDING BLOCK UNDER HORIZONTAL AND

VERTICAL EXCITATION

3.1  Numerical Formulation and Solution

The rocking response of a rigid block subjected to concurrent horizontal and vertical earthquake

excitation is computed numerically via a state-space formulation that can accommodate the non-

linear nature of the problem. Similar integration of the equation of motion has been carried out by

Yim et al. (1980), Spanos and Koh (1984), Hogan (1989), and Shi et al. (1996) among others. The

state vector of the system is merely

(3-1)

and the time-derivative vector  is

(3-2)

The numerical integration of (3-2) is performed with standard ODE solvers available in

MATLAB (1992). Figure 15 plots the rotation and angular velocity of a  free-

standing block subjected to the minimum acceleration level of the Rinaldi station records (January

17, 1994, Northridge earthquake) that are needed to overturn it. In the first column of Figure 15

the vertical component of the acceleration is assumed to be zero and the horizontal component is

78% of the recorded motion. In the second column of Figure 15  the vertical component is consid-

ered and it is found that only 74% of the recorded time histories is needed to overturn the block. In

this case the vertical acceleration contributes constructively to the overturning. However, as

shown in the third column of Figure 15, when the polarity of the vertical motion is reversed, the

vertical component contributes destructively, since 83% of the recorded time histories is now

needed to overturn the block. Figure 15 also indicates that the rocking response of the block when

the vertical acceleration is absent does not differ significantly from the case where the vertical

excitation is included.

Similar trends are observed in Figure 16 that plots the rotation and angular velocity of the

same  block subjected to the minimum acceleration level of the Sylmar station

records from the 1994 Northridge earthquake that are needed to overturn it. The second column of
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Figure 15. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-normal and vertical

Rinaldi station records. Left: overturning under horizontal component alone (78% acceleration level). Center: overturning under hori-

zontal and vertical components (74% acceleration level). Right: overturning under horizontal and vertical components with reversed

polarity (83% acceleration level).
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Figure 16. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-normal and vertical

Sylmar station records. Left: overturning under horizontal component alone (118% acceleration level). Center: overturning under hori-

zontal and vertical components (116% acceleration level). Right: overturning under horizontal and vertical components with reversed

polarity (120% acceleration level).
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Figure 16 shows that when the vertical component of the motion is considered, 116% of the

recorded time histories is capable of overturning the block. This level of excitation is marginally

lower than the 118% of the horizontal component alone that can overturn the block. Again, when

the polarity of the vertical motion is reversed, the vertical component contributes destructively

since now 120% of the recorded time histories is needed to overturn the block. It should be noted

that the reversal of the polarity does not yield a destructive effect with all the records. Figure 17

plots the rotation and angular velocity of the  block subjected to the minimum

acceleration level of another Northridge record --  the Newhall record. In this case the right polar-

ity of the vertical component has a destructive effect, whereas the reverse polarity has a construc-

tive effect. Whatever the polarity, Figures 16 and 17 indicate that the simultaneous consideration

of the vertical motion has a marginal effect on the acceleration level of the horizontal motion that

is needed to overturn a given block. This finding is also shown in Figures 18 to 22 where the min-

imum overturning accelerations of other historic ground motions are shown. Table 1 summarizes

the minimum levels of acceleration records, without and with the vertical component, that are

needed to overturn a  free-standing block.

The marginal effect that the vertical acceleration has on the level of the horizontal acceler-

ation that is needed to overturn a rigid block was also reported by Shi et al (1996).

TABLE 1.  Minimum Level of Acceleration Records Needed to Overturn a
Free-standing Block ( , ).

Records

Levels of Acceleration Records

Horizontal Horizontal & Vertical
Horizontal & Vertical

(reversed polarity)

Rinaldi (FN), 1994 Northridge 0.78 0.74 0.83

Sylmar (FN), 1994 Northridge 1.18 1.16 1.20

Newhall (N-S), 1994 Northridge 1.83 1.86 1.80

El Centro #5 (FN), 1979 Imperial 1.29 1.26 1.30

El Centro #6 (FN), 1979 Imperial 1.49 1.49 1.61

El Centro #7 (FN), 1979 Imperial 1.52 1.52 1.52

Los Gatos (0), 1989 Loma Prieta 1.46 1.45 1.51

Lucerne Valley (FP), 1992 Landers 2.75 2.85 2.95

0.5 m 1.5 m×

0.5 m 1.5 m×

0.5 m 1.5 m×
α 18.43°= p 2.157 rad sec⁄=
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Figure 17. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the N-S and vertical Newhall

station records. Left: overturning under horizontal component alone (183% acceleration level). Center: overturning under horizontal

and vertical components (186% acceleration level). Right: overturning under horizontal and vertical components with reversed polarity

(180% acceleration level).
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Figure 18. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-normal and vertical

El Centro Array #5 records. Left: overturning under horizontal component alone (129% acceleration level). Center: overturning under

horizontal and vertical components (126% acceleration level). Right: overturning under horizontal and vertical components with

reversed polarity (130% acceleration level).
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Figure 19. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-normal and vertical

El Centro Array #6 records. Left: overturning under horizontal component alone (149% acceleration level). Center: overturning under

horizontal and vertical components (149% acceleration level). Right: overturning under horizontal and vertical components with

reversed polarity (161% acceleration level).
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Figure 20. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-normal and vertical

El Centro Array #7 records. Left: overturning under horizontal component alone (152% acceleration level). Center: overturning under

horizontal and vertical components (152% acceleration level). Right: overturning under horizontal and vertical components with

reversed polarity (152% acceleration level).
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Figure 21. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-parallel and vertical

Los Gatos station records. Left: overturning under horizontal component alone (146% acceleration level). Center: overturning under

horizontal and vertical components (145% acceleration level). Right: overturning under horizontal and vertical components with

reversed polarity (151% acceleration level).
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Figure 22. Rotation and angular velocity time histories of a rigid block (b = 0.5 m, h = 1.5 m) subjected to the fault-parallel and vertical

Lucerne Valley records. Left: overturning under horizontal component alone (275% acceleration level). Center: overturning under hori-

zontal and vertical components (285% acceleration level). Right: overturning under horizontal and vertical components with reversed

polarity (295% acceleration level).
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3.2  Response Spectra and Effect of the Coefficient of Restitution

In the foregoing analysis, Figures 15 to 22 show time histories of the response of a given block to

the minimum acceleration level of a given ground motion that is needed to overturn it. In this sec-

tion response maxima are computed of various blocks subjected to a given ground motion at its

100% level. Three different values of the block slenderness, ,  and  have been

selected while the frequency parameter,p, ranges from 1 rad/sec to 3 rad/sec. These values of

slenderness and frequency parameter represent the geometric and dynamic characteristics of most

electrical equipment of interest. Figure 23 plots response spectra for the maximum angle of rota-

tion, , and the maximum angular velocity, , under the excitation recorded along

the fault normal component at the Rinaldi station during the 1994 Northridge earthquake. The

spectra shown in the left column of Figure 23 are computed by using the maximum value of the

coefficient of restitution, , that allows for a rocking motion. For

, ; whereas for  and ,  and  respec-

tively. Figure 23 (center) shows the rotation and angular velocity spectra for . In this

case only the response of blocks with  and  are shown since for the case

, . Figure 23 (right) shows the rotation and angular velocity spec-

tra for .

The response spectra in Figure 23 show that a reduced coefficient of restitution (more

energy lost during impact) results in smaller angles of rotation; however the values of the impact

velocities might be larger. Similar trends are observed in Figure 24, where rocking response spec-

tra are shown for the fault-normal motion recorded at the Sylmar station during the 1994

Northridge earthquake.
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Figure 23. Rotation and angular velocity spectra due to the fault normal motion recorded at the Rinaldi station for different values of the

coefficient of restitution and various values of block slenderness
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Figure 24. Rotation and angular velocity spectra due to the fault normal motion recorded at the Sylmar station for different values of the

coefficient of restitution and various values of block slenderness
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CHAPTER 4
ROCKING RESPONSE OF ANCHORED EQUIPMENT SUBJECTED TO A

ONE-SINE (TYPE-A) PULSE

In order to prevent violent rocking of electrical equipment, restrainers (hold-downs) are placed at

the base to anchor the equipment to its foundation. These restrainers have finite strength, , that

can be as low as 1 kip per anchorage up to 50 kips or even higher. Their stiffness also varies from

a low value of  up to . Considering that the weight, , of

the electrical equipment of interest ranges from 40 kips up to 500 kips, the ratio between the

restraining strength on each side of the equipment to the weight of the equipment is within

.

In this study two idealizations for the mechanical behavior of the restrainers are consid-

ered. The first simpler idealization is an elastic-brittle behavior. It assumes linear elastic behavior

until the ultimate strength, , is reached; and once the strength of the restrainer is exceeded it

fractures and the block continues to rock without enjoining any restoring force. It is assumed that

the stiffness of the restrainer maintains a constant value, , until the restrainer fractures and sub-

sequently its stiffness and strength are zero. The second more realistic idealization assumes an

elastic-plastic behavior. The restrainer behaves linearly until the ultimate strength, , is reached

and subsequently deforms plastically until the fracture displacement, , is reached. Beyond that

point the restrainers fractures and the block continues to rock without enjoying any restoring or

dissipative force.

In the entire analysis that follows, the base excitation is assumed to be along the horizontal

direction only, since the findings of chapter 3 indicate that the vertical acceleration has a marginal

constructive or destructive effect. Figure 25 shows a schematic of the problem at hand where the

restoring elements on each side of the block represent the combined stiffnesses of all the restrain-

ers that are present at the edge of the block that uplifts.

4.1  Elastic-Brittle Behavior

4.1.1  Nonlinear Formulation

Figure 26 (center) illustrates the moment-rotation relation that results from the presence of

restrainers with elastic-brittle behavior; while Figure 26 (top) illustrates the moment-rotation rela-

tion of a free-standing block. Under these two restoring mechanisms and assuming horizontal

Fu

K 10 kips in⁄= 500 kips in⁄ W mg=
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Figure 25. Schematic of an anchored block in rocking motion
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Figure 26. Moment-rotation curves of: (Top) Free-standing block; (Center) Elastic-brittle

anchorage; (Bottom) Anchored block with elastic-brittle restrainers
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excitation only, the equations that govern the rocking motion of an anchored block with mass

are

, (4-1)

, (4-2)

For a rectangular block, , equations (4-1) and (4-2) can be expressed in the compact

form:

(4-3)

in which .

Equation (4-3) is valid as long as the restrainers hold. Once they fail it reduces to

(4-4)

which is the equation of motion of the free-standing block under horizontal excitation only.

Figure 26 (bottom) shows the moment-rotation relation during the rocking motion of an

anchored block. For rotation angles, , energy is lost only during impact. Once  is

exceeded, the restrainer from the uplifted side fractures and additional energy is dissipated equal

to the area of the small triangle that is superimposed to the moment-rotation graph of the free-

standing block. This energy is dissipated once, since in subsequent post-fracture oscillations the

moment-rotation relation reduces to that of the free-standing block.

The transition from equation (4-3) to (4-4) is conducted by following a fracture function

. The finite ultimate strength of the restrainer, , in conjunction with the linear pre-fracture

behavior defines the angle of rotation  that the restrainers yield and also, in this case, fracture

; (4-5)

from which

. (4-6)

The fracture function  is defined as

 when (4-7)

and

 when (4-8)
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With the help of the fracture function, after replacing  with , the pre-fracture

and post-fracture equation of motion of the rigid block can be expressed in a compact form

. (4-9)

 With this formulation the rocking response of anchored blocks is described by four

parameters: the slenderness, , the frequency parameter,  (that includes the size effect), the

strength parameter, , and the influence factor, . Table 2 summarizes the

physical and mechanical parameters of selected electrical equipment utilized by PG&E (Fujisaki

1999).

The solution of (4-9) is computed numerically via the same state-space formulation intro-

duced in chapter 3. The state vector of the system is the one given by (3-1). The time-derivative

vector, , is the one given by (3-2) in which its second component is replaced with the right-

hand side of (4-9).

Figure 27 plots overturning acceleration spectra of a rigid equipment with

,  and . The results are computed

with the nonlinear formulation given by (4-9) for the case where  (free-standing),

 and . For small values  (approximately ) anchored

equipment survive higher accelerations; however for values of , anchored equip-

ment topple under a lower acceleration than the acceleration needed to overturn the same equip-

ment when it is free standing. This counterintuitive behavior happens in the neighborhood of the

transition from mode 1 to mode 2. Anchored equipment enter this transition at a slightly larger

value of . Furthermore, when a free-standing equipment has just entered mode 2 of over-

turning, the anchored equipment still overturns due to mode 1 (overturning with impact) under a

smaller acceleration amplitude. As  increases, the anchored equipment will also overturn

due to mode 2, and now a higher acceleration is needed to topple it in comparison to the accelera-

tion needed to topple the free-standing block. However, the additional acceleration amplitude that

an anchored block can withstand, even with , is negligible compared to the acceler-

ation amplitude needed to overturn the free-standing block. Figure 27 indicates that anchorages

are effective at the low range of  (low frequency pulses and/or small blocks).

Figure 28 plots the ratio of the minimum acceleration needed to overturn an anchored

block, , to the minimum acceleration needed to overturn a free-standing block, , for vari-
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Table 2: Geometrical, Physical and Structural Parameters of Electrical Equipment

Equip
Weight
(kips)

b
(in)

h
(in) (kips/in) (kips) (degree) (rad/sec)

b/B

40 36 84 175 4 0.100 23.20 1.7803 N/A

40 20 59 300 16 0.400 18.43 2.157 N/A

550 69 100 1500 79 0.144 34.61 1.5441 0.7188

193 38 89 1000 53 0.275 23.12 1.7301 0.6667

150 44 68 1000 53 0.353 32.91 1.8911 0.5641

230 38 90 1500 79 0.343 22.89 1.7219 0.5067

175 38 74 1500 79 0.451 27.18 1.8660 0.5758

60 35 90 500 26 0.433 21.25 1.7320 0.6140

44 34 68 500 26 0.591 26.57 1.9519 0.5965

K Fu σ
Fu

W
------=

α p
q

uyp
2

g
-----------=

θy

1.8
4–×10 5.56

4–×10

6.4
4–×10 1.33

3–×10

3.2
4–×10 3.82

4–×10

4.1
4–×10 6.97

4–×10

4.9
4–×10 6.02

4–×10

4.0
4–×10 6.93

4–×10

4.7
4–×10 6.93

4–×10

4.0
4–×10 7.43

4–×10

5.7
4–×10 7.65

4–×10



51

Figure 27. Comparison of overturning acceleration spectra due to a one-sine pulse of an anchored

equipment ( , , ,  and )

computed with the nonlinear formulation for ,0.4 and1.0
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Figure 28. Normalized minimum overturning acceleration levels needed to overturn an anchored

block (elastic-brittle behavior, ) to the acceleration levels needed to overturn the same

block when it is free-standing
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ous values of the strength parameter . The results shown on Figure 28 indicate that for

pulses with , blocks should not be anchored since the effect of restrainers is either

destructive or virtually insignificant.

The limit capacity of the restrainers to prevent the toppling of a larger block is illustrated

by comparing the potential energy of the block at the verge of overturning with the strain energy

dissipated by the restrainers.

Assuming an elastic-brittle behavior, Figure 26 (center) indicates that the strain energy

dissipated by the restrainers before they fracture is

(4-10)

At the verge of overturning ( ), the kinetic energy of the block is zero since the one-sine

pulse has expired and its potential energy is

(4-11)

The substitution of  in (4-11) with its series expansion  gives

(4-12)

and the ratio of the dissipated strain energy to the total energy of the block at the verge of over-

turning is

(4-13)

where, , is the yield displacement.

For a block with , , ,

 and , the strain energy lost from the failure of each restrainer is

approximately 0.6% of the energy that is needed to topple the free-standing block.

Equation (4-13) reveals some interesting geometrical and scale effects:

(i) The  term indicates that restrainers are much more effective in preventing toppling the

slender of two blocks of the same size (sameR).

(ii) The  term indicates that restrainers are more effective in preventing toppling the smaller

of two geometrically similar blocks that have the same .
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4.1.2  Linear Formulation

Equations (4-1) and (4-2) and their compact form given by (4-9) are valid for arbitrary values of

the block angle, . For slender blocks, the angle  is relatively small and equa-

tions (4-1) and (4-2) can be linearized. This linearization allows for the derivation of closed-form

solutions when the excitation is expressed in a functional form. Herein, the solution of the linear-

ized equations is derived for a sinusoidal ground motion for both positive and negative rotations in

order to validate the fidelity of the numerical solution presented in the foregoing subsection.

Within the limits of the linear approximation and for a ground acceleration

(4-14)

equations (4-1) and (4-2) become

, (4-15)

and

, (4-16)

where  is the phase when rocking initiates and

. For typical anchorages of electrical

equipment . Once the restrainers fail, .   Accordingly, the solution of (4-15) and

(4-16) is presented for the four segment , ,  and

:

, (4-17)

, (4-18)

, (4-19)
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, (4-20)

where

(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)

(4-27)

(4-28)

In (4-21) and (4-22)  is the phase when rocking initiates. In (4-23) and

(4-24) , where  is the time that  is reached. In (4-25) and (4-26),

, where  is the time that  and the block experiences its first impact. In

(4-27) and (4-28), , where  is the time that  is reached. Stepping

through time the values of ,  and  are detected by monitoring the value of the rotation

angle . The solution obtained with the linear formulation is used to validate the fidelity of the

numerical solution of (4-9) that is achieved with a state-space formulation.

Figure 29 plots the minimum overturning acceleration spectra computed with the linear

formulation. A behavior similar to that computed with the nonlinear formulation is observed. For

small values  (approximately ) anchored equipment survive higher accelerations;
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Figure 29. Comparison of overturning acceleration spectra due to a one-sine pulse of an anchored

equipment ( , , , , and )

computed with the linear formulation for  and0.6. Lines: analytical solution. Points:

numerical solution.
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however for values of , anchored equipment topple under a lower acceleration than that

needed to overturn the same equipment that is free standing. The results are computed with the

analytical solution presented herein and the numerical integration that is achieved with a state-

space formulation. The agreement of the two solutions is excellent.

The elastic-brittle behavior in conjunction with the linear formulation allows for an analyt-

ical solution that was used to validate the fidelity of the numerical integration. It was found that

even at the limit of the linear approximation, there is a neighborhood of  values where a

free-standing block can survive a stronger acceleration than anchored blocks. Figure 30 compares

the overturning spectra of an anchored block with  (top) and  (bottom)

computed with the linear and nonlinear formulation. When the frequency of the one-sine pulse is

relatively low, both formulations yield comparable results. As the excitation frequency increases,

the linear formulation yields minimum overturning acceleration amplitudes drastically larger than

those obtained with the nonlinear formulation. This result is because under the nonlinear formula-

tion, the overturning “bay” generated by mode 1 of overturning penetrates further into the safe

area under the overturning spectrum due to mode 2. As the excitation frequency further increases,

the linear and nonlinear formulations again yield comparable results. This finding indicates that

when , the linear formulation should be avoided since it gives erroneous results even

for slender blocks.

4.2  Ductile Behavior

Figure 31 illustrates the force-displacement relation of restrainers with ductile behavior. In gen-

eral the restrainers can exhibit a post-yielding stiffness and maintain their strength until they reach

a fracture displacement, . A measure of their ductile behavior is the ductility coefficient,

. A suitable model to approximate such nonlinear hysteretic behavior is given by

(4-29)

where  is the extension of the restrainer,  is the pre-yielding stiffness,  is the ratio of the

post- to pre-yielding stiffness,  is the yield displacement, and  is a hysteretic dimension-

less quantity that is governed by

(4-30)

In the above equation ,  and  are dimensionless quantities that control the shape of the hys-

teretic loop. The hysteretic model, expressed by (4-29) and (4-30), was originally proposed by
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Figure 30. Comparison of the overturning acceleration spectra due to a one-sine pulse of an

anchored equipment ( , , ,  and

) computed with the linear and nonlinear formulation for  (top) and

 (bottom)
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Figure 31. Force-displacement curve of an element with bilinear behavior
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Bouc (1971) for n = 1, subsequently extended by Wen (1975, 1976), and used in random vibration

studies of inelastic systems.

In this study the special case of elasto-plastic behavior is considered by setting the post-

yielding stiffness equal to zero ( ). However, the developed formulation can easily be

extended to account for situations with .

4.2.1  Elasto-Plastic Behavior

Figure 32 (center) illustrates the moment-rotation relation that results from the presence of

restrainers with elasto-plastic behavior; while Figure 32 (top) illustrates again the moment-rota-

tion relation of a free-standing block. Under these two restoring mechanisms, the equations that

govern the rocking motion of an anchored block with mass  and moment of inertia  (about

pivot pointO or ) is

, (4-31)

and

, (4-32)

where  is the force originating from the restrainers that for the general case is give by (4-29)

and the special elasto-plastic case ( ) reduces to

(4-33)

With reference to Figure 32, , and equation (4-33) gives

(4-34)

Substitution of (4-34) into (4-31) and (4-32)gives

, (4-35)

and

, (4-36)

Using that for a rectangular block, , equation (4-35) and (4-36) can be expressed in

the compact form:
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Figure 32. Moment-rotation curves of (Top) Free-standing block; (Center) Elastic-plastic

anchorage; (Bottom) Anchored block with elastic-plastic restrainers
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(4-37)

where , , , and  is the solution of (4-30) which in

terms of rotations takes the form

(4-38)

Equation (4-37) is valid as long as the restrainers hold. Once their fracture displacement,

, is reached they do not provide any resistance, and equation (4-37) reduces to the

equation of motion of the free-standing block given by (4-4).

Figure 32 (bottom) shows the moment-rotation relation during the rocking motion of an

anchored block that its restrainers exhibit elasto-plastic behavior. For rotation angles ,

energy is lost only during the reversal of motion due to impact. Once  is exceeded, the restrain-

ers along the uplifted side yield. In the case that the motion reverses before the rotation reaches

, additional energy is dissipated equal to the area of the flag-shape shaded regions. This dissi-

pation mechanism will be repeated as long as the maximum rotation does not reach the fracture

rotation, . If  is exceeded, the restrainers fracture and the moment curvature curve reduces to

that of the free-standing block.

The transition from equation (4-37) to (4-4) is conducted with the fracture function

defined as

 when (4-39)

and

 when (4-40)

where  and  is given by (4-6). With the help of the fracture function, the pre-fracture

and post-fracture equation of rocking motion can be expressed as

(4-41)

The integration of (4-41) requires the simultaneous integration of (4-38). In this case the state vec-

tor of the system is
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(4-42)

and the time derivative vector  is

(4-43)

Figure 33 plots the normalized minimum acceleration amplitude, , of a one-sine

pulse needed to overturn an anchored block. The results are computed with the nonlinear formula-

tion for an influence factor , ductility , and various values of the restrainer

strength .

At the zero-limit of  a block with finite size is subjected to a very long duration

pulse. When this pulse is near its peak, the block is subjected to a nearly constant acceleration

. When the restrainers yield elastic-plastic behavior (see Figure 32) the balance of moment

when the restrainers reach their ultimate strength is

(4-44)

in which  is given by (4-6). After dividing both sides of (4-44) with  one

obtains

(4-45)

Equation (4-45) is the equivalent West’s formula (Milne 1885) for an anchored block with elasto-

plastic restrainers that exhibit ultimate strength . The parameters , , and , related to

electrical equipment, yield a value of  much smaller than , while . Under these

conditions equation (4-45) simplifies to

, (4-46)
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Figure 33. Overturning acceleration spectra due to a one-sine pulse of an anchored block

( , , ,  and ) with

restrainer strength ,0.4, and 1.0. The solution is computed with the nonlinear

formulation.
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and for slender blocks, , ; therefore, equation (4-46) further

simplifies to

(4-47)

when terms are retained up to .

At the zero-frequency limit the numerical solution for  approaches the static limit

computed with (4-46) or with its slender-block approximation given by (4-47). As the ratio

increases, the acceleration needed to overturn an anchored block with ductility  maintains a

nearly constant value and then increases drastically. The larger the strength ratio, , the

larger is the frequency range that the minimum overturning acceleration is constant. This finding

leads to the counterintuitive situation where within the range , the stronger the

restrainers, the smaller the acceleration needed to overturn the block; whereas, free-standing

blocks are the most stable. When  is sufficiently large so that an anchored block overturns

with mode 2, then an anchored block can sustain a slightly larger acceleration than free-standing

blocks.

Figure 34 plots the ratio between the minimum overturning acceleration of an anchored

block, , to the minimum overturning acceleration, , of a free-standing block. In the fre-

quency range, , the ratio  is less than one; therefore, the effect of anchor-

age is destructive. For an electrical equipment with frequency parameter , this

range corresponds to frequencies ; or in terms of predominant pulse peri-

ods . For this period range that is of central interest to earthquake engi-

neering, a free-standing block can withstand a larger acceleration amplitude than an anchored

block.

Figure 35 compares the overturning acceleration spectra of anchored blocks that have

restrainers with the same strength but different ductility. Again there is a frequency range where

the block equipped with the less ductile restrainers will survive stronger accelerations than the

block with more ductile restrainers.

The limited capacity of the restrainers with finite ductility to prevent the toppling of large

blocks can be illustrated again by comparing the potential energy of the block at the verge of over-

turning with the strain energy dissipated by the ductile restrainers. Assuming an elasto-plastic

behavior ( ), Figure 32 (center) indicates that the strain energy dissipated by the restrainers

before they fracture is
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Figure 34. Normalized minimum overturning acceleration levels needed to overturn an anchored

block (elastic-plastic behavior, ) to the acceleration level needed to overturn the same block

when it is free standing. When , blocks should not be anchored since the effect of the

restrainers is destructive or virtually insignificant.
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Figure 35. Comparison of overturning acceleration spectra computed with the nonlinear

formulation for an anchored block ( , ,  and

) with two levels of ductility:  and . Top: ; Bottom:
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(4-48)

At the verge of overturning ( ) the kinetic energy of the block is zero since the one-sine

pulse has expired and its potential energy is given by (4-12). Therefore, the ratio of the dissipated

strain energy to the total energy of the block at the verge of overturning is

(4-49)

where, , is the yield displacement.

For a value of  and ductility , the ratio  for the

block ( ,  and ) is equal to 0.83%, which is a very

small fraction. Even if the restrainers had strength , the strain energy lost due to ductile

behavior is 8.3% of the energy needed to topple the free-standing block.

Equation (4-49) reveals the same geometrical and scale effects:

(i) The  term indicates that restrainers are much more effective in preventing toppling the

slender of two blocks of the same size (sameR).

(ii) The  term indicates that restrainers are more effective in preventing toppling the smaller

of two geometrically similar blocks that have the same .

Equation (4-49) can be expressed alternatively in terms of the length, , of the bolts used

to anchored the equipment. Using that the yield strain of the bolt , equation (4-49)

gives

(4-50)

in which  depending on the bolt steel.

Equation (4-49) or (4-50) is the result of an ultimate strength approach that is independent

of the dynamic effect. Consequently the ratio , which is the ratio of the total

energy that the anchored block has adopted at the verge of overturning, to the corresponding

energy that the free-standing block has adopted does not relate directly to the ratio between the

minimum overturning acceleration of the anchored block, , and the minimum overturning

acceleration, , of the free-standing block.
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CHAPTER 5
ROCKING RESPONSE OF ANCHORED EQUIPMENT TO EARTHQUAKE

EXCITATIONS

In chapter 4 an in-depth analysis of the rocking response of anchored equipment subjected to a

Type-A trigonometric pulse was presented. The analysis revealed that under a one-sine (Type-A)

pulse there are two modes of overturning. The presence of restrainers is more effective for low-

frequency pulses or small blocks. As the size of the block or the frequency of the pulse increases,

the presence of restrainers is destructive, since anchored blocks overturn under acceleration

amplitudes smaller than those needed to overturn free-standing blocks. For large values of ,

blocks overturn only along mode 2 (no impact) and the effect of the restrainers is marginal.

In this chapter the seismic response of anchored blocks subjected to selected strong

ground motions is presented. Figure 36 (left) portrays the fault-normal component of the acceler-

ation, velocity, and displacement histories of the January 17, 1994, Northridge California, earth-

quake recorded at the Rinaldi station. This motion resulted in a forward ground displacement that

recovered partially. The velocity history has a large positive pulse and a smaller negative pulse

that is responsible for the partial recovery of the ground displacement. Had the negative velocity

pulse generated the same area as the positive velocity pulse, the ground displacement would have

fully recovered. Accordingly, the fault-normal component of the Rinaldi station record is in

between a forward and a forward-and-back pulse. Figure 36 (center) plots the acceleration, veloc-

ity and displacement histories of a Type-A cycloidal pulse given by (Jacobsen and Ayre 1958;

Makris 1997)

, , (5-1)

, , (5-2)

, . (5-3)

by assuming a pulse duration  and a velocity amplitude  which

are approximations of the duration and velocity amplitude of the first main pulse shown in the

record. This comparison indicates that the simple one-sine pulse that was used in this study to

uncover the many complexities of the rocking response of a rigid block can approximate the kine-
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Figure 36. Fault normal components of the acceleration, velocity, and displacement time histories recorded at the Rinaldi station during

the January 17, 1994, Northridge, California, earthquake (left); a cycloidal type-A pulse (center); and a cycloidal type-B pulse (right)
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matic characteristics of some recorded ground motions. Figure 36 (right) plots the acceleration,

velocity and displacement histories of a Type-B cycloidal pulse given by (Makris 1997)

, , (5-4)

, , (5-5)

, . (5-6)

by considering a pulse duration  and a velocity amplitude .

We commence our analysis by computing rocking time histories of a

( ) block with frequency parameter, , and slenderness, .

Consider that this block is the idealization of an electrical equipment with weight,

 that is anchored with restrainers that exhibit an ultimate strength from each

side of  and a yield displacement . Consider further that the

stiffness of these restrainers is . These parameters yield an influence factor

 and . Under a horizontal excitation only, Figure 15

indicates that a level of 78% of the Rinaldi station record is capable of overturning the block.

Figure 37 plots the response of the block with restrainer ductility, , at the verge of

overturning. A 88% level of the Rinaldi station record is capable of overturning the block. Assum-

ing that the Rinaldi station record can be approximated with a one-sine pulse with ,

the corresponding frequency ratio is . For this value of the frequency ratio, Figure

27 (that has been generated by considering a slightly different block) indicates an approximate

acceleration amplitude, , which is close to the acceleration level

.

Figure 35 indicates that when the ductility of the restrainers is increased from  to

, a slight increase is expected in the acceleration needed to overturn the same

 block. Indeed Figure 38 shows that when the restrainers have ductility, , a

93% level of the Rinaldi station record is capable of overturning the block. For this level restrain-

ers with ductility, , are capable of preventing overturning. Figure 39 shows that a 99%

level of the Rinaldi station record is capable of overturning the block that is anchored with

restrainers that have ,  and . Comparing this level with

the 78% one that was needed to overturn the free-standing block, one concludes that restrainers

have a limited effect in preventing toppling.
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Figure 37. Rotation and angular velocity time histories of an anchored block (b = 0.5 m, h = 1.5 m, ) subjected to the fault-

normal Rinaldi station motion. An 88% acceleration level is capable of overturning the block with restrainers exhibiting ductility .
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Figure 38. Rotation and angular velocity time histories of an anchored block (b = 0.5 m, h = 1.5 m, ) subjected to the

fault-normal Rinaldi station motion. A 93% acceleration level is capable of overturning the block with restrainers exhibiting ductility

; whereas when  the block survives.
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Figure 39. Rotation and angular velocity time histories of an anchored block (b = 0.5 m, h = 1.5 m, , ) subjected

to the fault-normal Rinaldi station motion. Left: no overturning (98% acceleration level). Right: overturning (99% acceleration level).
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To proceed with the analysis the rocking response is computed for a larger block

( ) that has a frequency parameter, , and the same slenderness,

. Under the same assumption that the Rinaldi station record can be approximated

with a one-sine pulse with , the corresponding frequency ratio is .

For this value of the frequency ratio, Figure 33 (that has been generated for a smaller, less slender

block, ,  and ) indicates that a free-standing block might sur-

vive a stronger acceleration level than an anchored block. Indeed Figure 40 indicates that the

 free-standing block overturns at a 127% level of the Rinaldi record, whereas the

same block anchored with restrainers having strength  and ductility

 overturns under only a 119% level of the Rinaldi acceleration record, as shown in Figure

41. This study was partly motivated by this puzzling result, and sought to address the problem in a

systematic and lucid manner.
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Figure 40. Rotation and angular velocity time histories of the free-standing block (b = 1.0 m, h = 3.0 m) subjected to the fault-normal

Rinaldi station motion. Left: no overturning (126% acceleration level). Right: overturning (127% acceleration level).
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Figure 41. Rotation and angular velocity time histories of a larger anchored block (b = 1.0 m, h = 3.0 m,  and ) sub-

jected to the fault-normal Rinaldi station motion. Left: no overturning (118% acceleration level). Right: overturning (119% acceleration

level). The free-standing block can survive a stronger acceleration level than the anchored block (see Figure 40).
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CHAPTER 6
CONCLUSIONS

This report investigates the transient rocking response of anchored electrical equipment and other

tall structures that can be approximated as rigid blocks. In addition, various practical issues that

control overturning, such as the effect of the vertical component of ground acceleration and the

effect of the coefficient of restitution during impact, are also addressed.

An in-depth study of the rocking response of a free-standing equipment subjected to a

one-sine (Type-A) pulse is first presented. It is shown that under a one-sine pulse (forward dis-

placement) rigid blocks can overturn with two distinct modes: (a) with one impact; (b) without

impact. The second mode (no impact) is responsible for the existence of a safe region that is

located over the minimum overturning acceleration spectrum. It is found that the shape of this

region depends on the coefficient of restitution and is very sensitive to the nonlinear nature of the

problem. The study uncovers a frequency range where the linear formulation can give erroneous

results even for slender blocks. Under a one-cosine (Type-B) pulse, a similar safe region located

over the minimum overturning acceleration spectrum exists. In this case the differences in the

response obtained with the linear and nonlinear formulations are less drastic to those observed

under a one-sine pulse.

Restrainers with elastic-brittle and elastic-plastic behavior are considered. It is found that

restrainers are more efficient in preventing overturning of small slender blocks subjected to a low-

frequency ground excitation. Again, under one-sine pulse anchored blocks can overturn with the

two aforementioned modes of overturning. Before the transition from mode 1 to mode 2, the pres-

ence of restrainers has a destructive effect. The stronger the restrainer, the smaller is the accelera-

tion amplitude needed to overturn a rigid block; whereas a free-standing block can withstand the

higher acceleration amplitude. This counterintuitive response extends when the restrainers exhibit

finite ductility, since the study shows that there is a frequency range where blocks with the most

ductile restrainers will withstand the smaller acceleration level. Larger blocks can overturn only

without experiencing any impact, and in this case the effect of restrainers is marginal even when

their strength equals the weight of the equipment. The limited effect of restrainers in preventing

toppling is also found under earthquake excitations. The study shows that under the Rinaldi sta-

tion record restrainers with strength  and ductility  have a mild constructive

effect in preventing toppling of a  block; they have a destructive effect in prevent-

Fu W⁄ 0.4= µ 5=

0.5 m 1.5 m×
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ing toppling of a  block. The  free-standing block survives the

motion that overturns it when it is anchored.

Furthermore, the report concludes that the effect of the vertical component of recorded

ground motions is marginal and virtually does not affect the level of the horizontal acceleration

needed to overturn an electrical equipment. An increasingly inelastic impact (smaller coefficient

of restitution) results in smaller angles of rotation; however the values of the impact velocities

might occasionally be larger.

1.0 m 3.0 m× 1.0 m 3.0 m×
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