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ABSTRACT

One of the future needs of the engineering community is a general computational
platform for the seismic analysis of structures, structural components, and the interaction
between structures and surrounding soil.  However, before a large effort is expended, a
thorough evaluation of current capabilities is required to establish the state of the art and
to determine the direction that should be taken with regard to design needs and analytical
approaches.  A specific area of interest is the analysis of reinforced concrete components,
including cracking and crushing of concrete and yield of steel.  The focus of the work of
this report was to perform an evaluation of current capabilities in this area by applying
several existing software packages to a benchmark problem.  Data from a set of recent
experimental tests involving the flexural and shear performance of a reinforced concrete
column were obtained.  Cyclic and monotonic load cases were performed for several
types of analysis using a degrading plastic hinge model, a fiber beam model, and a
detailed three-dimensional finite element model.  Details of the data preparation and
analysis results are presented.  Reasonable results were obtained from all models to
varying degrees, but the three-dimensional finite element model was unable to provide
meaningful solutions in the inelastic range due to numerical difficulties.  Therefore, either
the use of the degrading hinge model or the fiber beam model is recommended for
practical structural analysis.
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1 Introduction

Many seismic analyses involve the need to model concrete structural components.
Nonlinear effects in reinforced concrete during seismic activity result from a number of
mechanisms, including concrete crushing and cracking; yield and strain hardening of
reinforcement; buckling of reinforcement; bond slip; interaction between axial force,
biaxial bending, biaxial shear force, and torsional moment; and degradation of stiffness
and strength under cyclic loads.  Analyses of concrete structures may be performed at a
number of levels.  For the simplest approach, reinforced concrete beams and columns are
modeled as traditional beam elements, with material nonlinearity lumped at discrete
plastic hinges.  Refinements would include a relationship between column axial force and
inelastic bending moment, an algorithm for proper hysteretic behavior, and a damage
coefficient to consider strength and stiffness degradation.  At the next level, a fiber model
may be used for structural members, in which the material behavior is integrated over the
cross section and along the length of the element.  At the highest level, the concrete is
modeled in detail with two or three dimensional solid elements, while the reinforcement
is included with bar elements.

In order to evaluate the ability of existing software and analysis techniques to accurately
model the behavior of actual reinforced concrete members, a benchmark test specimen
was chosen.  The test sequence was then modeled using the software WSU-NEABS,
which employs lumped hysteretic plastic hinges, ABAQUS, with a fiber beam model, and
ABAQUS, using nonlinear three-dimensional finite element analysis.



2 Benchmark Test Specimen

A series of tests were recently performed (Jaradat et al. 1998) to investigate the flexural
and shear performance of typical existing bridge columns.  The test arrangement was
designed to represent the entire column from foundation to cap beam.  The column was
fixed at the base by a strong oversized footing, bolted to the test floor, and fixed at the top
by an oversized cap which was attached to a W 14 x 61 steel beam and a tubular steel
strut (5-inch o.d. x 0.25-inch w. t.), as shown in Figure 1.  The column was circular with
a diameter of 10 inches, and had a length of 70 inches.  It was longitudinally reinforced
with eight No. 4 ASTM Grade 40 steel bars (52 ksi measured yield strength) evenly
spaced around the perimeter.  Transverse steel reinforcement consisted of 9-gage wire in
the form of circular hoops spaced at 3.85 inches on center.  The column base
incorporated a lap splice with a length of 20 longitudinal bar diameters.  The concrete had
a measured compressive strength of 4200=′cf  psi.

Cyclic lateral load was applied by a computer-controlled actuator operating with
displacement control, based on a pattern of progressively increasing displacements.  In
addition, an axial load of 19.0 kips was applied to the column, corresponding to

gc Af ′05.0 .  The actual axial load resisted by the column varied according to the applied

lateral load direction, due to framing action.  This variation in column axial load would
also occur in actual multi-column bridge bents under lateral loading.
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Figure 1.  Test setup

2.1 Experimentally Observed Behavior

Specimen performance was evaluated on the basis of moment capacity, shear strength,
displacement ductility, strength degradation, and hysteretic behavior.  For this specimen,
the measured yield displacement, y∆ , was 0.56 inches.  Vertical cracks in the bottom

splice region and circumferential cracks in the top hinging section were observed while
loading to a displacement level of y∆2 .  The concrete cover started to spall off at y∆4  in

both the top and bottom hinge regions.  Longitudinal bar buckling was observed in the
top hinging region during cycling to y∆5  and testing was stopped.

The hysteresis curves for the specimen are shown in Figure 2.  The peak applied lateral
load of 8.0 kips occurred at a displacement of 1.1 inches and was followed by a gradual
degradation in load capacity.  From the hysteresis curves for the top-section and bottom-
section moments, it can be seen that the loss in capacity was primarily a result of
degradation of the splice region at the base of the column.  The top-section moment
capacity showed a stable behavior until degradation started at a lateral displacement of
2.4 inches as a result of bar buckling.
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Figure 2.  Hysteresis curves for the specimen (1 in. = 25.4 mm, 1 kip = 4.448 kN)



3 Software for Plastic Hinge Model

Tseng and Penzien developed a nonlinear mathematical model for bridge structural
systems in 1973 in which an elasto-perfectly-plastic beam-column element and a bridge
expansion joint element were presented (Tseng and Penzien 1973), called NEABS
(Nonlinear Earthquake Analysis of Bridge Systems).  The program was later modified by
Kawashima and Penzien (1976), and again by Imbsen, et al. (1978).  To study energy
absorption characteristics of highway bridges under seismic conditions, Imbsen and
Penzien later presented a new nonlinear beam-column element that added kinematic
hardening effects to NEABS (Imbsen and Penzien 1986).  At the same time, a gapped
tension-compression, tie-bar element was also developed for inclusion in the NEABS
nonlinear expansion joint element.  McGuire et al. (1994) modified the 1978 version of
the program to include the effects of soil-structure interaction.

NEABS can evaluate a discrete bridge system subjected to applied dynamic loadings or
prescribed support motions.  The equations of motion in NEABS are solved by a step-by-
step direct integration procedure.  Either the constant acceleration or the linear
acceleration method may be chosen for integration, and to increase the speed of
convergence at each time step, an option is provided to subdivide the time step.
However, this program has a major limitation in that the softening behavior of beam-
columns due to damage is not considered. The structural elasto-plastic stiffness matrix for
beam-column elements was derived for the original program by using plastic flow theory.
It was assumed that the material behavior of the beam-column element was elastic-
perfectly plastic (Fig. 3a), in which plastic hinges were point hinges (zero-length hinges).
However, reinforced concrete members exhibit damage and softening behavior, i.e.,
decreasing bending moment at advanced flexural deformations before failure.
Damage/softening is important for the dynamic analysis of pre-1971 designed highway
bridges. Because most columns designed before 1971 had inadequate confinement and
were lap-spliced at the connection zone between columns and footings (plastic hinge
region), the flexural strength of columns in the potential plastic hinge region degrades
rapidly with increased demand. The decrease of flexural strength of columns causes a
redistribution of structural element forces, so that the seismic response of the entire
highway bridge is significantly influenced. Moreover, an important aspect to dynamic
column behavior is the degradation of stiffness when members are subjected to cyclic
loadings, for which structural stiffness will decrease with reloading. The hysteresis rule
used in the original version of NEABS is a conventional elastic-plastic model (Fig. 3b)
that does not accurately represent the degradation of stiffness with increasing
deformations for reinforced concrete. Therefore, the original NEABS program is not
appropriate for evaluating the earthquake response for the highway bridges that were
constructed before 1971.
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(a) (b)

Figure 3. Moment-curvature relation and conventional hysteresis rule models used in
original NEABS; (a) Moment-curvature relation; (b) Hysteresis rule

To overcome this limitation of NEABS and provide a realistic and practical method for
the assessment of the effectiveness of different retrofit measures, a model for
damage/softening behavior of beam-column elements based on an isotropic softening
model with degradation of stiffness was proposed and then implemented into NEABS, as
described in detail elsewhere (Cofer et al. 1997; Zhang et al. 1999).  A basic description
of the model is repeated below for completeness.

3.1 Beam-Column Element with Damage

For the elastic-perfectly plastic R/C beam-column element originally used in NEABS, the
moment-curvature relation and hysteretic model in a one-dimensional force space are
shown in Figure 3.  However, most experimental results for R/C beams or columns
subject to cyclic loading exhibit rather complicated behavior that includes such effects as
rounding, pinching, and stiffness degradation (Imbsen and Penzien 1986). The most
significant influence on structural analysis is stiffness degradation. According to
experiments conducted by Priestley and Seible (1994), the elastic-perfectly-plastic model
cannot represent the actual behavior if the plastic deformation is allowed to increase
without limit. When plastic deformation at an end grows beyond a certain value (called
critical curvature, φc), the material may undergo damage, which is represented by
softening. In this stage, the moment decreases with an increase in plastic rotation.

Based on the experimental work done by Priestley, Seible, and Chai (1992), four models,
as shown in Figure 4, were proposed to represent the strength and ductility of different
plastic hinge conditions for column members. The parameter, µ∆, is the displacement
ductility, defined as the ratio of maximum displacement at the top of a column divided by
the yield displacement.  The line (1) represents columns that have a comparatively well-
confined section, in which the nominal moment capacity, Mn, will be reached at 1=∆µ ,
and then strain-hardening of flexural reinforcement and confinement effects will occur so
that the moment reaches an overstrength moment capacity, M0, that can be attained by
moment-curvature analysis. This model is a typical representation of the relation between
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strength and ductility for columns with sufficient confinement or retrofitting, i.e., steel
jacketing, etc.

Figure 4.  Flexural strength and ductility of sections (Priestley and Seible 1994)

Line (2) represents a poorly confined column without lap splices in the plastic hinge
region, for which the maximum strength is typically equal to the nominal strength. This
model is suitable for the columns designed by pre-1971 design codes. Strength
degradation will occur if the limit for line (1) or line (2) is reached due to crushing of
core concrete and buckling of longitudinal reinforcement.

Line (3) represents degradation of a column with lap splices and poor confinement in the
plastic hinge region, in which the nominal moment capacity will not be achieved. The
strength starts degrading before 1=∆µ  to a residual flexural strength, Mr , which is a
function of the magnitude of the axial load. The cause of the degradation is that the
longitudinal bar in the lap splice region can not develop its yield force before slip and/or
buckling occurs.

Line (4) represents degradation of a column with partially confined lap splices, in which
the nominal moment capacity Mn can be reached and then a relatively small plastic
plateau can be achieved before degradation begins. The degradation occurs when the
extreme fiber compression strain ε c is 0.002. This model indicates that the longitudinal
bar in the lap splice region can develop its yield force before slip and/or buckling. The
line degrades to Mr , parallel to line (3).

Both lines (3) and (4) show the typical flexural strength and ductility of column sections
designed prior to 1971, in which the lap splices were in the range of 20 to 35 longitudinal
bar diameters, and confinement reinforcement was inadequate, typically No. 4 (13 mm)
reinforcement on 305 mm centers.  In this report, a column behavior model, shown in
Figure 5, is described. It should be noted that strain hardening in this model is neglected.
The hysteretic rule is discussed subsequently.
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Figure 5.  Moment vs. curvature relation of the element

3.1.1 Damage Coefficient

To derive the stiffness matrix for the softening stage, a damage coefficient, D, is
introduced. The damage coefficient is defined such that a value of 0 indicates no damage
while a value of 1 means total damage. Failure of actual components is observed to occur
at an intermediate value of damage, Dmax. Therefore, during the evolution of softening,
the damage coefficient is equal to

D
p cp

cp
=

−

−

θ θ

θ θ
max

, 0 ≤ ≤D Dmax ≤ 1 (1)

where θ p is total plastic rotation angle, θcp is the critical plastic rotation angle that

indicates the point at which softening begins, and θmax is the maximum theoretical plastic
rotation angle. θcp and θmax may be calculated through the following formula:

θ φ φ
cp

l
p c y

= ⋅ −( ) (2)

θ φ φ
max ( max )= ⋅ −l

p y (3)

where pl  is plastic hinge length and φmax is the curvature for which the maximum

moment capability is equal to zero, theoretically. Thus, according to the definition of the
damage coefficient, at any point during the softening stage, the maximum moment
capacity is

M D M
y

= −( )1 (4)

where M y is the yielding moment.
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3.1.2 Yield Function

The form of the generalized yield surface used in NEABS is shown in Figure 6. The
formula is given as

M
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where M yu  and Mzu are the bending moment values about the y and z-axes, respectively,

on the interaction surface for a fixed value of axial force, Pu. M yp  and Mzp are the

ultimate bending moment values about the y and z-axes, respectively, for the same fixed
value of Pu when M y and Mz are applied separately. To consider the influence of axial

force Pu, the following cubic equations are used to compute M yp  and Mzp:
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where Pt is the ultimate axial tensile force, 0P  is the ultimate axial compressive force,

M y0 and Mz0 are yielding moments about the y and z-axes, respectively, in pure bending,

and a a a b b1 2 3 1 2, , , , , and b3 are constants.

Figure 6.  Generalized yield surface
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One should note that the yield function mentioned above is only suitable for a perfectly
plastic material, in that the yield stress level does not depend in any way on the degree of
plastification. This means that the yield surface is fixed.  For softening behavior,
however, the yield surface is no longer unchanged in size, shape, or position with
increasing plastification. The selected model for the evolution of softening in this paper is
isotropic, in which the subsequent yield surface is a uniform contraction of the original
one, as shown in Figure 7. The cause of the yield surface contraction is that the yield
stress level at a point decreases with increasing plastic deformation.

Figure 7.  Yield curve of isotropic strain softening material for a fixed axial force

The yield function that also includes softening is defined as

( )
M

yu
M

yp

M
zu

M
zp

D












 +













 = −

2 2

1 2
(8)

where D  is the aforementioned damage coefficient and it is a function of plastic

deformation. Because ( )1 2− D  is less than or equal to one, the yield surface shrinks,
providing a generalization of the curves of Priestley, Seible, and Chai (1992) for multiple
dimensions.

3.1.3 Hysteresis Model

In this report, to imitate the actual behavior of reinforced concrete members subjected to
cyclic deformation, a degradation of stiffness is considered.  The application of stiffness
degradation is illustrated by the moment vs. curvature curve in Figure 8. The loading,
unloading, and reloading behavior are defined by the curve. The stiffness during
unloading is assumed to be the same as the initial elastic stiffness, but the stiffness during
reloading is allowed to degrade.
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Figure 8.  Hysteresis Model for the Beam-Column Element

The beam-column element is a three-dimensional element. During the elastic loading or
unloading stage, as shown in Figure 8, the flexural capacities about the y and z-axes are
modeled as being fully continuous with no stiffness degradation. However, during the
elastic reloading stage, the end conditions about the y and z-axes are considered to be
between fully continuous and fully hinged conditions, in which the degradation of
stiffness is produced due to the damage. It should be noted that the approach is also based
on the assumption that the shear and axial capacities remain intact. To obtain the
degradation stiffness during the elastic reloading stage, the damage coefficient is used
again to define the loss of elastic stiffness of the member due to damage.  Detailed
element derivations may be found elsewhere (Zhang 1996; Cofer et al. 1997).

3.2 Input Data for Plastic Hinge Model

To apply the Plastic Hinge Model, the yield function and the initiation and evolution of
the damage parameter must be specified.

3.2.1 Yield Function

The expression for the yield function, which includes the interaction between bending
moment and axial force, is given as Equations 6 and 7 for the two principal axes of the
member.  The required coefficients were determined by fitting a cubic curve to the axial
force-bending moment strength interaction data computed for the specific column cross
section upon attainment of a maximum concrete strain of 002.0=cuε .  The computed

interaction data was generated by a computer program which discretizes the column cross
section and utilizes material constitutive laws developed by Burns and Seiss for steel and
by Park and Kent for concrete, as reported by Park and Paulay (1975), in its force
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equilibrium calculations.  To facilitate this curve fitting, the following equations were
developed, which force the curve to pass through the yield moment in pure bending
(My0 or Mz0) and the ultimate axial compressive capacity, P0, and cause it to “peak” at
Mm, as defined below.

10 =a

( )[ ]rqrra 32
1 4

1 −−=
α

( )[ ]23
2 312

1
rqra −−=

α
(9)

( )[ ]rqra 21
1 2

3 −−=
α

[ ]1421
2

1
31

2
11

3

+−−−−= aaaa
a

s

where:

≡mM  maximum yield moment,

≡mP  compressive axial force at maximum yield moment (positive); Mm and Pm

would typically occur at the balance point of an axial force-bending
moment curve for a square cross section,

0

0

y

ym

M

MM
q

−
≡ ,

0P

P
r m≡ , 5.0≠r ,

( )22 1 rr −≡α ,

≡s  ratio 
0P

Pt , required as input, where Pt is the ultimate axial tensile capacity.

Properties for bending about the z-axis are computed similarly.  For the circular column
considered here, the properties about the y-axis and the z-axis are identical.  Figure 9
shows a comparison of the axial force-bending moment strength interaction data
calculated for the column and the cubic curve obtained by the above procedure; the fit is
quite close.

The region in the lap splice must be treated differently from the rest of the column
because the longitudinal reinforcing steel may be unable to develop its full yield strength.
The strength of a bar in a lap splice may be determined by postulating the full pattern of
cracking that must develop to enable it to slide relative to the adjacent bar with which it is
lapped.  The tensile strength necessary to fracture this surface may be assumed to be
equal to the direct concrete tension strength, i.e.,

ct ff ′= 4 psi (10)
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For a circular column, the total tensile force developed in a bar is:

( ) sbtb lcd
n

D
fT 



 ++

′
= 2

2

π
(11)

where
=n   number of longitudinal bars,
=c   bar cover,

=bd bar diameter,

=′D bar pitch circle diameter, and
=sl  splice length.

Then, a reduced effective yield stress of 
b

b
s A

T
f =  may be used in the moment-curvature

analysis.

Using equations 10 and 11, tf  was computed to be 259.2 psi, bT  was computed to be

10.1 kips, resulting in an effective yield stress of 50.4 ksi.  This value was used in the
moment-curvature computer program to determine the section strength at the splice.  In
addition, a reduced amount of strain hardening was assumed.  Pertinent data for the
column and the splice are given in Table 1.
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Figure 9.  Calculated and assumed strength characteristics of the column

Table 1.  Moment and axial force parameters for the column and the splice

M0

(K-in.)
P0

(Kips)
Mm

(K-in.)
Pm

(Kips)
q r α

Column 306 330 494 119 0.614 0.360 0.0531
Splice 294 330 490 115 0.667 0.350 0.0518
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Table 2.  Coefficients for axial force-bending moment interaction

a0 a1 a2 a3 s
Column 1 -3.51694 -5.31628 -0.79934 0.213335
Splice 1 -3.99298 -6.49039 -1.49741 0.189511

3.2.2 Hinge Properties

The curvature from nonlinear behavior in reinforced concrete members that is
represented as a plastic hinge is typically assumed to occur within the equivalent plastic
hinge length, lp.  Often, lp is taken as half the depth of the member.  However, in recent
research by Chai et al. (1991), the following equation was suggested:

bp dll χ+= 08.0 (12)

where

=l  length from the critical section to the point of contraflexure,
=bd  nominal diameter of the longitudinal reinforcement used in the member,

=χ  6 for grade 40 longitudinal reinforcement,
=  9 for grade 60 longitudinal reinforcement.

For the column under investigation, the point of contraflexure was assumed to occur at
the center of the member, resulting in l = 35 inches, db was 0.5 inches, and χ was set to a
value of 6, resulting in a plastic hinge length, lp = 5.8 inches.

Damage was only assumed to occur at the bottom of the column, which contained the lap
splice.  From the moment-curvature analysis, the yield moment, My, was 266 kip-inches
while the residual moment, Mr, was determined to be 94 kip-inches.  Their ratio is:

353.00 ==
y

r

M

M
r (13)

Then,

647.01 0max =−= rD (14)

Also, from the moment-curvature analysis, the curvature at yield, φy, the critical curvature
at which damage initiates, φc, and the curvature for which moment is theoretically zero,
φmax, were specified.  On the basis of equations 2 and 3, θcp and θmax were computed as
given in Table 3.
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Table 3.  Plastic hinge parameters

φy φc φmax θcp θmax
410119.3 −× 410502.8 −× 310458.3 −× 310122.3 −× 210825.1 −×

.

3.2.3 Elastic Properties

For column behavior in the elastic range, the geometric moment of inertia for a circular
section was used with an equivalent modulus of elasticity that was chosen on the basis of
the moment-curvature analysis.  For a required bending stiffness, EI, of 610136.1 × , the
equivalent modulus of elasticity was defined as 2314 ksi.

3.3 Analysis and Results

A model of the test specimen was developed, as shown in Figure 10.  The support at the
footing (node N1) was assumed to be fully fixed while the support at the base of the
vertical strut (node N10) was assumed to be pinned.  A hinge was assumed to exist at the
connection between the vertical strut and the horizontal restraint beam (node N9).
Relatively stiff elements were included to model the effect of the cap at the top of the
column (elements M5 and M6) and the finite width of the horizontal restraint beam
(element M8).  Because of possible numerical difficulties arising from the fact that a
degrading hinge at the base of the column results in a near mechanism, a weak horizontal
spring element was added at the top right corner, node N8.  Loading was applied as
concentrated forces at node N6.  The horizontal load was assumed to vary with time
while the vertical load remained constant.  Both monotonic and cyclic loading was
applied.  To remove inertial effects, mass was not included.  However, a nominal amount
of system damping was applied to improve numerical performance.

Figure 10.  Model layout; horizontal load applied to show location and direction
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For the monotonic loading case, the model was loaded horizontally in both the positive
direction (push) and the negative direction (pull).  The loading was ramped linearly from
a zero value to a final value of 18 kips, which was chosen to be greater than the collapse
load, as shown by experimental results.  In the analyses, collapse is indicated by
unbounded displacement or by divergence.  Sample elastic deflected shapes are shown in
Figure 11.  The load-deflection curve is shown in Figure 12, while bending moment at
the top and bottom of the column is shown in Figures 13 and 14, respectively.

 
Figure 11.  Example elastic deflected shapes for push and pull loading
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Figure 12.  Lateral force vs. deflection for the test frame
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Figure 13.  Bending moment at the base of the column
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Figure 14.  Bending moment at the top of the column

The effect of the splice at the base of the column is apparent when comparing the
moment responses in Figures 13 and 14, in which the moment at the base degrades with
damage.  The difference between loading in the push and pull directions is shown to have
a minor influence on strength due to an increase in column axial compression when
pulled and a decrease in column axial compression when pushed.  Numerical data for
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peak loading is given in Table 4.  Agreement for strength data is fairly close although the
deflection data indicates that the model behavior is somewhat stiff.  However, monotonic
and cyclic results are not strictly comparable due to cyclic degradation, which is not
considered in the analysis.

Table 4.  Comparison of results from analysis and experiment

Peak Applied Lateral Load
(kips)

Lateral Deflection
(inches)

Experimental (push) 8.0 0.8
Present Analysis (push) 8.9 0.39
Experimental (pull) -7.7 -1.0
Present Analysis (pull) -10.3 -0.53

For the cyclic loading case, an increasing series of ramped loads in alternating push and
pull directions were applied, as given in Table 5.  The load values were chosen to roughly
correspond to the experimental procedure.  The first cycle is slightly below the load for
first yield while the second is somewhat higher than first yield and the third and fourth
cycles are well above the strength of the system.  Because there is no provision for cyclic
degradation at plastic hinges in the model, only a single cycle of load was applied at each
load level, as opposed to two cycles in the experimental tests.  The time history data for
lateral displacement, column shear, and top and bottom column moment are given in
Figures 15 through 18, respectively.  Hysteretic behavior is given in Figures 19, 20, and
21.  Failure of the system was indicated by nonconvergence of the solution.

Table 5.  Numerical value of load cycles

Cycle Applied Lateral Load
(kips)

1 42.7±
2 58.10±
3 88.15±
4 00.18±

.
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Figure 15.  Time history of lateral deflection
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Figure 16.  Time history of column shear
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Figure 17.  Time history of top column moment
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Figure 18.  Time history of bottom column moment
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Figure 19.  Hysteresis curve for the system
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Figure 20.  Hysteresis curve for bottom column moment
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Figure 21.  Hysteresis curve for top column moment

As expected, loading above the maximum capacity in the push direction resulted in a
sharp drop in moment resistance at the base of the column which in turn resulted in near
mechanism behavior.  The results are quite similar to those obtained experimentally with
recognition of the fact that displacement control was used for the tests while load control
was used for the analyses.  Lateral load capacity and column moment values are given in
Table 6.

Table 6.  Comparison of experimental and numerical results; plastic hinge model

Experimental
Value

Value from Present
Analysis

Ratio of Results

Peak Lateral Force
(push) (kips)

8.1 8.45 1.04

Peak Top Moment
(kip-inches)

348 377 1.08

Peak Bottom Moment
(kip-inches)

326 379 1.16
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4 Software for the Fiber Beam Model

ABAQUS/standard is a commercially available, general-purpose finite element system
with a wide variety of elements, materials, and procedures (ABAQUS 1998).  For the
analyses reported here, a nonlinear static procedure was employed using the Newton
method for solution.  Nonlinearities result from inelastic material behavior and from
finite deformations.  For the reinforced concrete column, a Timoshenko (i.e., shear-
flexible) beam element was chosen with an assumed circular cross section and numerical
integration through the beam depth.

Material properties were defined separately for the concrete and the steel reinforcing.
The concrete material model is quite general, and it is intended for situations with low
confining pressure and loadings that are relatively monotonic.  The “smeared crack”
assumption is employed, with the onset of cracking defined by the attainment of a “crack
detection surface,” which is a function of equivalent pressure stress and equivalent
deviatoric stress.  Gradual material softening is assumed, with the rate of softening
determined by tension stiffening, allowing for the effects of interaction with
reinforcement, or by crack opening displacement to consider consistent fracture energy
release.  The reduction in shear stiffness as a crack opens may also be specified.

For concrete loaded principally in compression, plasticity theory is used with a
compression yield surface, similar to the crack detection surface, and assumed associated
flow and isotropic hardening.  These assumptions are considered to be inaccurate when
concrete is subjected to significant pressure stress, but reasonable and computationally
efficient otherwise.  In addition, no attempt is made to include hysteretic behavior or a
reduction in stiffness with cyclic loading.  Concrete material properties are given in
Tables 7, 8, and 9.  Where specific values were not determined experimentally, accepted
values from practice were used.

Table 7.  Elastic-plastic material properties for concrete

Modulus of
Elasticity

(psi)

Poisson’s Ratio Uniaxial
Compressive
Yield Stress

(psi)

Uniaxial
Ultimate

Compressive
Stress
(psi)

Plastic Strain at
Ultimate

Compressive
Stress

61072.3 × 0.18 1750 4200 0.0015
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Table 8.  Data to define the failure surface for concrete

Ratio of Ultimate
Biaxial

Compressive Stress
to Ultimate

Compressive
Uniaxial Stress

Ratio of Uniaxial
Tensile Failure

Stress to Uniaxial
Compressive Failure

Stress

Ratio of Principal
Plastic Strain at

Ultimate Stress in
Biaxial

Compression to
Plastic Strain at

Ultimate Stress in
Uniaxial

Compression

Ratio of Tensile
Principal Stress at

Cracking to Tensile
Cracking Stress
under Uniaxial

Tension

1.18 0.05 1.25 0.2

Table 9.  Data to define retained tensile stress normal to a crack

Tensile Stress at Crack Initiation
(psi)

Direct Cracking Strain at Complete Stress
Release

210 0.0016

Reinforcing steel is included in the form of discrete bars at specific locations within the
beam cross section.  Only longitudinal reinforcing is considered.  Elastic-plastic
assumptions are employed with specific data used to specify hardening and/or softening
in regions past initial yield.  Continuous bars were assumed to be elastic-perfectly-plastic.
To include the effect of the lap splice, the yield stress and post-yield behavior of bars in
the splice region were adjusted, as previously described.  Numerical values are given in
Table 10.  Note that softening is assumed to begin immediately upon yielding in the lap
splice region.

Table 10.  Reinforcing steel properties

Continuous Reinforcing Lap Splice
E (ksi) 29,000 29,000
σy (ksi) 52.0 50.4

50.4/0.
48.0/0.007

Stress (ksi)/plastic strain Assumed perfectly plastic

10.0/0.015
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4.1 Analysis and Results

Two models were developed and analyzed to determine the effect of mesh size.  For the
first model, denoted as coarse, eleven elements were used to represent the column.  The
length of the elements at the top and bottom were specified to match that of the plastic
hinge, computed earlier to be 5.8 inches.  The other model, denoted as fine, was
composed of twenty-two elements, evenly spaced along the column.  All other aspects of
the model were equivalent to the degrading hinge model.  Figures 22 and 23 show the
layout of the models.  Note that the Timoshenko beam elements have three nodes,
resulting in a linear distribution of curvature.

Figure 22.  Mesh layout of the coarse model
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Figure 23.  Mesh layout of the fine model

The axial compressive load was applied through a concentrated mass at the column top
while lateral loading was applied via prescribed displacement.  Because of the structure
of the ABAQUS software, the mass was applied as an initial step and cyclic loading was
applied with a number of independent steps in the push and then pull directions.  For each
step, the structure was loaded until a displacement of three inches was attained or a lack
of convergence ended the solution.  Curvature diagrams with exaggerated views of the
deformed shape at the latter stages of deformation for the coarse and fine models are
given in Figures 24 and 25.  The figures show that, as damage progresses, curvature
becomes concentrated at the hinge locations at the top and bottom of the column.  The
length of the hinge is always that of a single element.
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Figure 24.  Curvature diagram and exaggerated deformed shape for the column; coarse
mesh

Figure 25.  Curvature diagram and exaggerated deformed shape for the column; fine
mesh

Comparisons of cyclic results for lateral load with those of the experiment are shown for
both models in Figures 26 and 27.  The response of the fine model is similar to that of the
coarse model during the early stages of loading.  However, with the formation of a plastic
hinge at the bottom, the solution quickly diverged due to the reduced hinge length.  For
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the coarse model, values for the moment at the bottom and top of the column are shown
in Figures 28 and 29.  A comparison of peak numerical values is given in Table 11.
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Figure 26.  Hysteresis curve for the system; coarse model
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Figure 27.  Hysteresis curve for the system; fine model
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Figure 28.  Hysteresis curve for bottom column moment; coarse model
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Figure 29.  Hysteresis curve for top column moment; coarse model

Table 11.  Comparison of peak numerical values for the coarse fiber beam model

Experimental
Value

Value from Present
Analysis

Ratio of Results

Peak Lateral Force
(push) (kips)

8.1 8.83 1.09

Peak Top Moment
(kip-inches)

348 330 0.95

Peak Bottom Moment
(kip-inches)

326 324 0.99
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5 Software for Nonlinear Three-Dimensional
Finite Element Analysis

ABAQUS/standard was also used for the detailed three-dimensional, finite element
analysis of the column.  The analysis procedure was essentially the same as that used for
the fiber beam model, except that 20-node quadratic brick elements were used for the
concrete, with embedded reinforcing steel.  Material models and constants were also
unchanged.  The finite element model is shown in Figure 30.  Note that a plane of
symmetry was included.  Also, proper constraints were applied at the interface between
the solid elements at the top of the column and the beam element representing the rigid
cap to result in a transfer of bending behavior.

Figure 30.  Finite element mesh for the three-dimensional finite element model

5.1 Analysis and Results

As with the fiber beam model, a concentrated mass was applied at the top of the column
and lateral loading was applied through prescribed displacement until lack of
convergence ended the solution.  The displaced shape for a typical case is shown in
Figure 31.  Contours of vertical stress, vertical strain, and crack opening strain are shown
in Figures 32-34.  Stress is given in units of psi.  The initiation of cracking is assumed to
occur at a tensile stress level of 210 psi, while complete stress release occurs at a strain
level of 0.0016.  From the figures, it is apparent that, although compressive failure has
not yet occurred, cracking is widespread throughout the tensile portion of the column,
with a localized concentration at the top.  The concentrated cracking at the top is



34

responsible for the nonconvergence that inhibited the ability of the model to continue
significantly into the plastic range, as shown in Figure 35.

Figure 31.  Deformed shape, three-dimensional finite element model

Figure 32.  Contours of vertical stress
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Figure 33.  Contours of vertical strain

Figure 34.  Contours of crack-opening strain
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Figure 35.  System behavior, three-dimensional finite element model

As with previous models, Figure 35 shows that the column has an initial stiffness that is
somewhat higher than that observed experimentally.  With the fiber beam model,
however, the stiffness for subsequent cycles compared quite well, suggesting that the
stiffness of the actual column is significantly affected by initial cracking.  For monotonic
loading, the stiffness of all three models compared closely, as shown in Figure 36.
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Figure 36.  A comparison of system stiffness for all models
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6 Discussion and Conclusions

For the work of this report, a benchmark reinforced concrete column test for cyclic
behavior was analyzed using existing software and techniques to determine their ability
to obtain reasonable numerical simulations.  A model based on classical frame elements
with degrading hinges, one based on Timoshenko beam elements and fiber concepts for
applying material behavior, and a detailed three-dimensional finite element model were
considered.  For each analysis, common engineering practice was used to obtain the
required input data, based solely on cylinder strength information for concrete and
coupon tests for steel.  In general, the results were quite accurate for all methods, with
varying degrees of robustness, as described below.

6.1 Degrading Hinge Model

This was the simplest model, but it required the most effort to obtain input data, using
separate software and engineering assumptions to define moment-curvature and
hysteretic behavior for the plastic hinges.  However, the solution was accurate and quite
robust as long as the hinge has the ability to degrade.

6.2 Fiber Beam Model

The input for this model was more basic than that of the degrading hinge model in that it
consisted mainly of material information.  Although the material model is rather
complex, the use of default values for most input items led to reasonable results.  A
quadratic Timoshenko beam element was chosen, which resulted in a linear variation of
curvature along the length of the element and included shear deformation, both of which
seemed significant.  As with many applications in finite element analysis dealing with
failure, the results were mesh dependent.  However, with an appropriate estimate of the
plastic hinge length in the column, results were obtained that were quite accurate.

The initial stiffness of the column model was significantly higher than that observed
experimentally, but after the occurrence of cracking during the first cycle, they were quite
close.  Thus, a reduction of initial section properties to consider residual cracking is
probably in order, particularly for elastic analysis.  Often, analysts choose to use half of
the gross moment of inertia for the section.

The force, displacement, and moment results from this model were quite close to those
obtained experimentally.  In addition, the solution was efficient and relatively robust.

6.3 Three-Dimensional Finite Element Model

Although the effort for model development and the computer requirements for this model
were much greater than for the others, detailed output information regarding stress and
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strain distribution, along with cracking, is available.  However, the solution did not
converge beyond initial cracking, rendering it useless for evaluating hysteretic behavior
that involves gross yielding of reinforcement or crushing of concrete.

6.4 Conclusions

Only a single structure was analyzed for the work of this report using three specific
programs, and any conclusions that are drawn are not necessarily universal.  However,
the following may be surmised:

1. The degrading hinge model is the simplest and most robust of the three
considered, making it the most practical for the analysis of large structures.
Although it was not the best performer, the results from the model were
reasonably accurate as long as the hinge model includes the effect of axial
force in the column and degradation, and as long as care is taken in defining
yield properties, hysteretic behavior, and hinge length.

2. The fiber beam model was the best overall performer with regard to accuracy,
but it was not as robust as the degrading hinge model.  In addition, the
solution was sensitive to the degree of mesh refinement.

3. The three-dimensional finite element model was unable to provide usable
results due to numerical difficulties.  Other material models and crack
algorithms may offer improved performance, but the computational power and
modeling effort required make this approach impractical for anything beyond
detailed component analysis.

In conclusion, reasonable engineering solutions for the cyclic behavior of reinforced
concrete structures appear attainable with existing techniques as long as the analyst
understands the assumptions and limitations inherent in them and takes proper care in
developing the input data and interpreting the results.
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