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ABSTRACT

In the design or analysis of structures for seismic loads, the effects of forces acting simulta-
neously in a member must be considered. The most common example is the interaction of bend-
ing moments and axial load in a column. The usual response spectrum method provides the
maximum values of individual responses, but the critical combination of these responses may not

involve any of these maxima.

In this report, a response-spectrum-based procedure for predicting the envelope that bounds
two or more responses in a linear structure is developed. It is shown that for an assumed orienta-
tion of the principal axes along which the ground motion components are uncorrelated, this enve-
lope is an ellipsoid. For the case when the orientation of the principal axes is unknown, a
“supreme” envelope is derived that corresponds to the most critical orientation of the axes. The
coordinates of these envelopes are computed by using values available in conventional response
spectrum analyses, i.e., response spectral shapes in one, two or three directions, and the modal
properties of the structure. The response envelope can be superimposed on a capacity surface to

determine the adequacy of a given design.

The accuracy of the elliptical envelope for linear structures is examined by means of com-
parison with time-history analyses using artificial and recorded ground motions. It is found that
the elliptical envelope has a level of accuracy that is commensurate with its response spectrum
bases. The significance of the proposed envelopes is demonstrated by designing the columns of
an example reinforced concrete bridge by the proposed and conventional methods. Savings as

high as 45% in the required reinforcement ratio are gained by use of the proposed method.

Linear analyses are appropriate for serviceability limit states associated with moderate-
intensity ground motions. However, when a structure is subjected to high-intensity ground mo-
tions, its behavior is expected to be nonlinear and, hence, the response spectrum method cannot
be used. Furthermore, the envelope bounding a vector of responses is usually not elliptical. In
this study, a comprehensive investigation is carried out using time-history analyses with artificial
and recorded ground motions to simulate and examine the envelopes that bound vectors of seis-
mic responses in a nonlinear structure. New and practical insight into the behavior of nonlinear
structures and the effectiveness of current seismic design methodologies is gained by examining

these response envelopes in the multidimensional response space. Particularly noteworthy are (1)



the adverse effects of near-fault ground motions on the nonlinear response of the structure, (2)
the effectiveness of plastic hinges as fuses to limit the forces transmitted to critical elements of
the structure and (3) the use of simulated response envelopes to identify the spatial distribution

of plastic hinges in the structure and the expected sway mechanism under severe seismic loading.
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1 Introduction

1.1 MOTIVATION

In earthquake engineering, the response spectrum method is commonly used to estimate the
maximum values of responses acting in linear structures subjected to seismic ground motions.
With this method, individual peak modal responses are obtained using a prescribed set of re-
sponse spectra that characterize the ground motion expected at the location of the structure.
These modal maxima are then combined in an appropriate manner to estimate the maximum val-
ues of the responses of interest. Combination rules that properly account for correlations between
modal responses and between components of ground motion are well developed (e.g., see
Rosenblueth and Elorduy, 1969; Singh and Chu, 1976; Der Kiureghian, 1981; Gupta, 1990;
Singh and Maldonado, 1991; Der Kiureghian and Nakamura, 1993; Menun and Der Kiureghian,
1998). The 1996 edition of the “Blue Book” issued by the Structural Engineering Association of
California observes that response spectrum analysis “is the preferred method (of dynamic analy-
sis) for most buildings” (SEAOC, 1996, page 139).

The conventional response spectrum method is ideally suited to the design or analysis of
structural elements that are controlled by the maximum value of a single response quantity; e.g.,
a beam governed by the maximum bending moment. For members in which the simultaneous
action of multiple seismic responses must be considered, e.g., a column subjected to an axial
load and bending moments, the critical combination of responses may not coincide with the
maximum value of any of the responses. For such cases, an envelope that bounds the evolution
of the vector of seismic responses in time is desirable. This envelope can then be superimposed
over the capacity surface of the member (commonly known as the interaction diagram) to deter-
mine the critical combination of responses. In the current practice, it is common to use the re-

sponse-spectrum-based estimates of the individual response maxima to construct a rectangular



envelope for this purpose. As shown later, this envelope provides an upper bound that can be
overly conservative for many design situations.

In this report, a response-spectrum-based procedure for predicting the envelope that
bounds a vector of seismic responses in a linear structure is developed. When the principal direc-
tions along which the ground motion components are uncorrelated are known, the envelope that
bounds a vector of seismic responses in a linear structure is an ellipsoid that is inscribed within
the rectangular envelope described above. Naturally, the elliptical envelope provides a tighter
bound on a vector response process than the rectangular envelope. Consequently, improved
economy in the design of elements that resist the simultaneous action of multiple seismic re-
sponses may be achieved by using the elliptical envelope, rather than the conventional rectangu-
lar envelope, for the design calculations. When the principal directions of ground motion are not
known in advance, which is normally the case, the uncertainty in the orientation of these direc-
tions must also be addressed. We do this by constructing a “supreme” envelope that bounds the
union of the elliptical envelopes for all orientations of the principal directions. The supreme en-
velope is naturally more conservative than any of the elliptical envelopes that it bounds. How-
ever, we will see that the supreme envelope is not necessarily overly conservative. In fact,
improved economy in design can be realized by using the supreme envelope rather than the con-
ventional rectangular envelope.

Response-spectrum-based procedures are valuable tools for the seismic analysis and de-
sign of structures, particularly in the light of the recent recommendation by SEAOC (1995) to
consider the effects of serviceability level ground motions during which the structure is to remain
linear. However, it is usually uneconomical to proportion structures to remain linear during large
magnitude events. Unfortunately, the use of modal superposition in the response spectrum
method precludes the direct consideration of nonlinear behavior. The approach usually taken to
circumvent this problem is to scale the response spectrum down by a “structural system factor”

R, >1 that is “a measure of the ability of the system to sustain cyclic inelastic deformations

without collapse” (SEAOC, 1996, page 123). The structure is then designed to remain linear un-
der this reduced level of seismic input. In this way, the underlying assumption of linear behavior
in the response spectrum method is satisfied. However, because the actual ground motion will be

more intense than that assumed, the structural elements are expected to yield and must therefore

be detailed to sustain the level of nonlinear deformation anticipated for the value of R,, assumed.



Consequently, there is a need to examine the ways in which the envelope that bounds a vector of
seismic responses in a linear structure changes when nonlinear elements are introduced. The ad-
ditional insight gained from such investigations will help us better understand the nonlinear be-

havior of structures and the effectiveness of current seismic design methodologies.

1.2  OBJECTIVES AND SCOPE

The primary objective of this report is to improve the procedures currently used by structural en-
gineers to design elements that resist the simultaneous action of multiple seismic responses. This
objective is achieved by conducting a detailed study of the envelopes that bound vectors of seis-
mic responses in linear and nonlinear structures and by developing ways of incorporating the in-
formation provided by these envelopes in the seismic analysis or design of structures. While the
issues addressed in this study are closely related to the vector-outcrossing problem in the field of
structural reliability, this approach is numerically intensive and involves concepts that are gener-
ally not well known or fully understood by the majority of practicing engineers. It is therefore
unlikely that any procedure founded upon this reliability-based approach would be adopted by
the engineering community. Thus, the emphasis in this work is to extend and improve existing
procedures routinely used by practicing engineers.

For linear structures, we formulate a response-spectrum-based procedure for predicting
the envelope that bounds a vector of seismic responses. In accordance with its response spectrum
basis, the envelope is statistical in nature, i.e., in any given direction in the response space, there
is a finite probability that the response vector will exceed the envelope. As discussed earlier, two
envelopes are developed: an elliptical envelope for the case in which the principal directions of
ground motion are known, and a supreme envelope for the case in which the orientation of the
principal directions is uncertain. Closed-form procedures for computing the coordinates of these
envelopes using quantities readily available in conventional response spectrum analyses are de-
rived and their accuracy is evaluated for two example structures by means of comparison with
time-history analyses using artificial and recorded ground motions. In addition, generic algo-
rithms are developed to facilitate the use of these envelopes in the analysis or design of struc-
tures. Finally, the significance of using the elliptical or supreme envelope, rather than the
conventional rectangular envelope, in the design of reinforced concrete columns subjected to ax-

ial loads and bi-axial bending moments is demonstrated.

3



For nonlinear structures, the response spectrum method cannot be used to predict the en-
velopes that bound response vectors. Instead, time-history analyses must be used to simulate
these envelopes. In this study, we consider a steel moment frame building in which yielding can
occur only in the beam-column connections and at the bases of the columns. Elastic-perfectly-
plastic, non-degrading hysteretic elements are introduced at these locations. Geometric nonlin-
earity due to column buckling is not considered. The envelopes bounding selected response
quantities are simulated and studied in detail by using ensembles of artificial and recorded
ground motions in order to gain insight into the nonlinear behavior of the structure and the effec-
tiveness of current seismic design methodologies. The results obtained from this study suggest
ways in which the information provided by the envelopes that bound seismic response vectors

can be used to improve the design of structures located in seismic environments.

1.3 NEW ADVANCES IN THE REPORT

When the principal directions along which the ground motion components are uncorrelated are

known, the response-spectrum-based envelope developed in this report is identical to that de-

rived previously by Gupta and Singh (1977) and Anastassiadis (1993). However, this study ad-
vances the topic beyond that presented in these earlier works in the following ways:

(1) We use the theory of random vibrations to establish a response-spectrum-based procedure for
predicting the peak values of multiple response quantities and the correlation structure that
exists between them. This mathematical basis is missing in the previous works, which start
with the conventional response spectrum method as their bases.

(2) We develop the response-spectrum-based envelope in a physically intuitive manner, which
provides insight as to why the resulting ellipsoid is an appropriate upper bound on the possi-
ble combination of responses when the principal directions of ground motion are known.
Similar physically motivated interpretations of the envelope are not provided in the previous
developments.

(3) Recognizing that the principal directions of ground motion are normally not known in ad-
vance, we derive the supreme envelope that accounts for the uncertainty in the orientation of
these directions. This uncertainty in the principal directions of ground motion has not been

addressed for vector responses in earlier works.



(4) A comprehensive series of time-history analyses are performed in this study to evaluate the
accuracy of the elliptical envelope. Attempts to verify the accuracy of the procedure were not
conducted in the previous works.

(5) We develop new algorithms to facilitate the use of the elliptical and supreme envelopes with
capacity surfaces in order to determine the adequacy of a design. Clearly, such algorithms are
necessary if the information that is provided by a response envelope is to be used effectively.

(6) We investigate whether the use of the elliptical or supreme envelope, rather than the rectan-
gular envelope commonly used in the current practice, has any significant effect on the de-
sign of structural elements subjected to seismic loads. Previous studies have recognized that
the rectangular envelope is conservative relative to the elliptical envelope. However, no re-
search has been conducted to date to quantify the level of conservatism introduced by the use
of the rectangular envelope.

(7) Finally, we simulate and examine the envelopes that bound vectors of seismic responses in a
nonlinear structure. Because we currently have no means of predicting the envelopes that
bound response vectors in nonlinear structures, investigations of this type provide valuable
insight into the nonlinear behavior of structures and the effectiveness of current seismic de-
sign methodologies. To the authors’ knowledge, all research conducted to date on the nonlin-
ear seismic response of structures has considered only single response quantities. The present
investigation of the envelopes bounding vectors of responses in nonlinear structures is un-

precedented.

14  ORGANIZATION OF THE REPORT

Following this introductory chapter, in Chapter 2 we use the theory of random vibrations to es-
tablish a response-spectrum-based procedure for predicting the peak values of multiple response
quantities and the correlation structure that exists between them.

Using the results derived in Chapter 2, response-spectrum-based envelopes are developed
in Chapter 3 for linear structures. Two types of envelopes are developed: (1) an elliptical enve-
lope for the case in which the principal directions of ground motion are known and (2) a supreme
envelope for the case in which the principal directions are not known. The treatment of static re-

sponse quantities acting concurrently with the seismic responses is also addressed in this chapter.



Chapter 4 describes the example structures and the ensembles of ground motions used in
the numerical investigations performed in Chapters 5, 7 and 8.

In Chapter 5, a series of time-history analyses using artificial and recorded ground mo-
tions are performed to verify the accuracy of the response-spectrum-based envelopes developed
in Chapter 3.

In Chapter 6, we describe the ways in which the elliptical or supreme envelope can be
used in conjunction with a capacity surface to determine the adequacy of a design and develop
generic algorithms for this purpose.

In Chapter 7, design examples are used to investigate whether the use of the elliptical or
supreme envelope, rather than the conventional rectangular envelope, has any significant effect
on the design of structural elements subjected to seismic loads.

In Chapter 8, a comprehensive series of time-history analyses using artificial and re-
corded ground motions are used to simulate the envelopes bounding selected response vectors in
a nonlinear structure. Based on the observations made in this chapter, ways in which these simu-
lated response envelopes can be used to improve the design of structures located in seismic envi-
ronments are suggested.

Finally, a summary of the observations made in this study and their significance on the

seismic design of structures is presented in Chapter 9.



2 Response Spectrum Method for Response
Vectors

2.1 INTRODUCTION

In this chapter, we develop the response spectrum basis for the procedures formulated in Chapter
3. This development parallels work previously done by Der Kiureghian (1981) and Smeby and
Der Kiureghian (1985). However, unlike these previous works, which focus on predicting the
peak values of scalar response quantities, the derivation described here is for the more general
case of predicting the peak values of multiple response quantities and the correlation structure

that exists between them.

2.2 THE RESPONSE VECTOR

Consider an N-degree-of-freedom linear and classically damped structure. Let
x(2) =[x,(®), x5 (),..., X, ()] T be a time-varying m-vector of responses, where each response

component x, (), r=1,2,...,m, is expressed as a linear function of the nodal displacements

u(@) = [ (0)suy (@),...,uy O17 , ice.,

x, () =qru(). 2.1)

The N-vector q, is a function of the stiffness and undeformed geometry of the structure and the

superscript T denotes the vector transpose. Typical response quantities of engineering interest,
e.g., interstory drifts, axial and shear forces, bending moments and stress components can all be

expressed in this form. To describe the m-vector of responses, we introduce the N xXm matrix

Q=I[q;,9;,-.-,9,,] so that

x(1) = QTu(). (2.2)



When the structure is subjected to three translational components of ground motion, u(z)

satisfies

Mii(z) + Ca(?) + Ku(z) = -Mlii, (r), (2.3)

where a superposed dot denotes differentiation with respect to time, M, C and K are the mass,
damping and stiffness matrices, respectively, U, (2) =[iig(?), g2 (2),lig3 ()17 is the vector of
components of ground acceleration and I =[I,,I,,I5] is the N X3 influence matrix in which the
kth column, I, , contains the nodal displacements due to a unit displacement in the kth compo-

nent of ground motion.

It is advantageous to solve (2.3) by modal decomposition. Let ® =[¢,,0,,...,0,] denote
the Nxn matrix of mode shapes included in the analysis, where n<N, and
y@) =[y,(®),y,(),....,y,®)] T denote the normal coordinates that represent the time-varying

amplitudes of these modes. We can then write
u@®)=® y(©) = 0,y,0). (2.4)
i=1

The equality in (2.4) is strictly true only when n = N . However, it is common practice to reduce
the size of the problem, with negligible loss in accuracy, by including in the analysis only the

n < N modes that contribute significantly to the total response of the structure. When the mode

shapes are chosen to satisfy the eigenvalue problem K¢, = a),-ZMQ)i , i=1,2,..., n, substituting

(2.4) into (2.3) and pre-multiplying by @7 yields n uncoupled modal equations

5:(0) +280,9,(t) + 0 y; () = —y[ ik, (1), i=12,...,n (2.5)

where o; = [0! K9, / (6TMo,)] /2 and g; = ¢,.TC¢,. / (2a)i¢,-TM¢i) are the natural frequency and
damping ratio of mode i and Y7 = [yy;,¥5;,¥5] = ¢,.TMI/ (67 M¢,) is the row vector of partici-
pation factors associated with the three components of ground motion for mode i. Let

t

dy () = [iig (7) B (t - D)z (2.6)
0



denote the displacement response of an oscillator that has the frequency and damping ratio of

mode i and is subjected to the kth component of ground motion, where

b () = ——exp(~C ;1) sin(@g, 1) | @2.7)
Wy,

is the unit impulse response function of mode i and @, = ®;+/1- £? .1t then follows from (2.5)

3
that y;(r) = Eyk,-d « (¢) and, upon substitution of this result into (2.4),
k=1

n 3
u®) =YY 0;7ud@). (2.8)

i=1 k=1

Finally, substituting (2.8) into (2.1) yields

n 3
X =qL Y, 0¥ udy (@) (2.9)

i=1 k=1

as an expression for x,(¢) in terms of the modal responses due to each component of ground mo-

tion.

2.3  STATISTICS OF THE RESPONSE VECTOR FOR THREE-COMPONENT
GROUND MOTION

Assume u g(t) is a zero-mean, stationary Gaussian vector process with the two-sided power

spectral density matrix Gﬁgﬁ‘g (w). The cross-power spectral density between modal responses

d,;(¢) and d(z) is given by
G 4y (@)= Hi(w)H;(w)Giigkﬁgl (@), (2.10)

where H;(w) = (a),-2 —w? +2i¢ ,.a),.a))'1 is the complex frequency response function for mode

G,:gk iig] () is the (k, ) element of Giigij e (w) and represents the cross-power spectral density of

ground acceleration components i , (#) and i (t), i=+/—1 and an asterisk denotes the complex



conjugate. Given (2.9) and (2.10), standard procedures of the theory of random vibrations (Wung
and Der Kiureghian, 1989) yield

n 3 3
G, @)= 33 3 (070,74 )07 0,7, JH. (@) H ()G iy iy (@) @.11)

i=1 j=1k=11=1

n

for the cross-power spectral density of responses x, (z) and x,(z).

It is a common practice to resolve the translational ground motions into components di-
rected along the structure axes. We assume that one of the structure axes is vertical and denote
the components of ground motion along the two horizontal structure axes and the vertical axis as

Ug (7), tig,(¢)and i ¢3(t) , respectively. As a result of this convention, G,,-gk ﬁgl(a)), Y1 and y;; in

(2.11) are associated with the components of ground acceleration directed along the structure
axes. Penzien and Watabe (1975) observed that during the strong motion phase of an earthquake
the translational ground motion components are uncorrelated along a well-defined orthogonal
system of axes whose orientation remains reasonably stable over time. These axes, which are de-
noted the principal axes of the ground motion, are usually oriented such that the major and in-
termediate principal axes lie in the horizontal plane and the minor principal axis is vertical. We
denote the components of ground acceleration directed along the major, intermediate and minor

principal axes as iy, (), liy, (t) and iy (), respectively, and define their diagonal matrix of
power spectral densities by Gﬁ:g iy \@ (@) = diag [Gu o1l 1( w), Giijgziigz (@), G,-‘-:? 3ity3 (w)] The com-

ponents along any other system of axes obtained by a rotation of these principal axes are natu-
rally correlated. Consequently, unless the principal axes of ground motion coincide with the

structure axes, the cross terms corresponding to k#/ in (2.11) are not zero and must be included

in the analysis. We account for these cross terms by relating the components of ground motion
directed along the structure axes to the principal components of the ground motion though the

rotational transformation

i, = AT, 2.12)

where l'i;, @)= [ii;,1 (t),ii;,z(t), ii;3(t)] T and

10



cos@ sind@ O
A=|-sinf cos@ 0], (2.13)
0 0 1

in which the counterclockwise angle 6 specifies the orientation of the horizontal principal axes
relative to the horizontal structure axes in the horizontal plane, as in Figure 2.1.
Using (2.12), the power spectral density matrices of the ground accelerations directed

along the two sets of axes are related through
Gy, (@)= ATGyy (0)A. (2.14)

Substituting the (k,l) element of (2.14) into (2.11) yields

G, i 2"1 (‘lr )(qftb,« )[g vu¥yH(0)H () G iy iy (@)

i=1 j=1

2
Z k+l yleb ( )H;(Cl)) Gii’gk gk (a))sin2 7]
=1

Mw

~
I
—

2
-y (-1 (,,uyzj + 7211, )i, (w)H (@) G irgeitge (w)sin B cos 9] . (2.15)

k=1

Using the Wiener-Khintchine relation (Soong and Grigoriu, 1993), the covariance o,

between zero-mean responses x,(¢) and x,(?) is

2 3 2 2
=22(qf¢,-)(q?¢,~){2 750P =33 (1) y,7,08 sin26
. 2

k=1 I=1

2
- z (‘ 1)k (71i72j T V201 ) o'i(jk) sin @ cos 9] ) (2.16)
k=1
where
o = jH G iy iy, (@)d (2.17)

is the covariance between modal responses d; () and d K @).

11



24  THE RESPONSE SPECTRUM METHOD

For the purposes of structural design, the components of ground motions at a site are commonly
described by their response spectra, which are functions that specify the maximum response of a
single-degree-of-freedom oscillator due to a given component of ground motion for a range of
frequencies and damping ratios of the oscillator. Therefore, it is useful to express (2.16) in terms
of the response spectra of the principal components of ground motion. This entails the introduc-

(k)

tion of approximations for the covariance terms o/

and o, in (2.16) under the following set of

assumptions.

The formulation developed here is an extension of the Complete Quadratic Combination
(CQC) modal combination rule developed by Der Kiureghian (1981) for predicting the peak
value of a single response quantity resulting from a single component of ground motion. Conse-
quently, the assumptions involved in the following derivation are the same as those originally
made by Der Kiureghian (1981). In particular, we assume that (1) each component of the seismic
input is a wide-band, zero-mean Gaussian process having a stationary duration that is several
times longer than the fundamental period of the structure, (2) the significant modes of vibration
are within the range of dominant frequencies of the excitation, and (3) the structure is not too

lightly damped ({; 20.02, i=1,2,...,n). In general, the assumptions are sufficiently satisfied

for typical structures subjected to far-field earthquakes with long, stationary phases of strong
shaking. We note that for short, impulsive ground motions, such as those commonly recorded
during near-field events, the first assumption may not be valid. Unusually stiff or flexible struc-
tures can also violate these assumptions.

Following the derivation of the original CQC rule, an approximation for the covariance

term O'fjk) in (2.16) is introduced. We first write

k k k k
o = pP\JoPo® . 2.18)

is the variance of d,;(r) and pf"

where o{© is the correlation coefficient between modal re-
sponses d,; () and d,;(r). We then substitute the following approximations for p,-(jk) and

oPinto (2.18).

12



For p, it has been shown by Der Kiureghian (1980, 1981) that when the significant

,:I‘ ’
modes of vibration are within the range of dominant frequencies of the wide-band seismic excita-

tion, the following expression is a good approximation

,0,-(,-") —p, - ( 8,/§’i§ja)ia)j (C,-a),- +{0; )a),-a)j . 2.19)

2 2 2 2 2) .2 2
60,-2—(0,2) +4§i;jwiwj(wi +wj)+4(;i +¢; )wi @D;

This expression, which is based on response to white noise, is independent of the ground motion

components; thus, the superscript on p;; is removed as indicated.

When the response is a stationary zero-mean Gaussian process, 0',.(,." ) can be expressed as

2
o =(iD,dJ : (2.20)

1

where D,; = E[max d,;(?)] is the mean displacement response spectrum ordinate for mode i due
to the kth principal component of ground motion and p; is a peak factor that has a mild depend-

ence on the power spectral density and the duration of the excitation. We note that the original
CQC rule is based upon the conventional absolute value definition of the response spectrum,

D,; = E[max |d(z)|]. The reason for adopting the one-sided definition of the response spec-

trum in this study will become apparent in Chapter 3. The difference between the two defini-
tions is normally negligible, i.e., less than 5%, for damping ratios typical of conventional

structures. We also note that the expectation operator E[-] in the definition of D,; implies that
the ground motion ii;k (r), which gives rise to dj;(¢), is a realization from an ensemble of

ground motions that can be characterized as a stochastic process. As we will discuss in Chapters
4 and 5, this implicit assumption of the response spectrum method places limitations on what we
can infer from the time-history results generated from the ensembles of recorded ground motions
introduced in Chapter 4.

Substituting (2.18) and (2.20) into (2.16) yields

n 1 3 2 2 )
O, = ZZ (‘1:4);' ) (‘l:q’j )[; }’szkjpijDkkaj - 22(' I)M V1Y 15 Py D Dy sin® 6

i=1 j=1 PiDPj k=1 I=1

2

N iVl )p,.jDk,.ij sin @ cos BJ : (2.21)
k=1

13



Under the assumption that the response is a stationary, zero-mean Gaussian process, the variance

o? of x,(t) can be expressed as

2
o= Lx, |, 222)
Pr

where X, = E[max x,(¢)] is the mean of the maximum value of x,(¢) and p, is a peak factor.
Equation (2.22) is clearly analogous to (2.20). Using the relationship o,, = 0,0,p,,, in which

P, is the correlation coefficient between responses x,(z) and x,(r), we can substitute (2.22)

into (2.21) to yield
O PP [T T 2 3 & k+l .2
X, = 22__, . (qr ¢i)(qs ¢j)|:ZYkiykjpijDkkaj - E(‘l) Yi¥ij Py D Dy; sin® 6
i=1 j=1 PiPj k=1 k=1 I=1
2 ] .
- 2(‘ 1) (7’11’721' +7Y2uV1j )pijDkkaj sin 90056] ) (2.23)
k=1

where X, = X X p, . As discussed by Der Kiureghian (1981), because the response peak fac-
tors p,, r=12,...,m, are approximately weighted averages of the modal peak factors,
pii=L12,...,n,
PrPs o (2.24)
pPiD;
Thus, we can write, without much loss in accuracy,

n n 3 2 2
X, = 22(‘1;%)(‘1?%)[2 ykiykjpijDkiDlg' _22(_ l)k” ?’Ii?’szijDkkaj sin’ @
k=1

i=1 j=1 k=1 I=1

2
-Y (1) (yuyz i tValhj )p,-j D,;Dy; sin @ cos 9] . (2.25)
k=1

The above expression defines the elements of the “response matrix” introduced in the next sec-
tion. However, before proceeding, we make the following observations.

First, it should be apparent from the above derivation that, when r # s, X, is related to

the covariance between responses x,(t) and x, (). The algebraic sign of X,, indicates whether

14



the responses x,(¢) and x,(z) are positively or negatively correlated. If x,(z) and x,(z) are un-

correlated, then X,, =0; whereas if x,(z) is proportional to x,(¢), then the two responses are
perfectly correlated, i.e., p,, =+, and |X,|=X X,.

Second, when r = s, (2.25) becomes
5 n n r T 3 2 2 k4l .9
X, = 2 2 (qr o; er o; )[2 ViV Py DDy — 2 (— 1) V1Y 1j Py DDy sin 6
i=1 j=1 k=1 k=11=1

2
— S (<1 (yu7s; + ya11; )0y DDy sin O cos 6} . (2.26)

k=1

by virtue of the fact that p,, =1 and, therefore, X, =X 2. We note that (2.26) is a response-
spectrum-based estimate for the square of the expected maximum value of x,(¢) due to multiple

components of ground motion. In fact, (2.26) is fundamentally identical to the multi-component
modal combination rules developed by Smeby and Der Kiureghian (1985) and Lopez and Torres
(1997). Furthermore, considering the case when the structure is subjected to a single component

of ground motion directed along the z; structure axis shown in Figure 2.1, i.e., D,; = D3; =0 for

all modes and @ =0, (2.26) reduces to

n

X?= ZZ(qu)i}/li X‘lf‘bﬂ’u )pileiDlj , (2.27)

i=1 j=1

which is the original CQC rule developed by Der Kiureghian (1981).

Finally, we note that + X, can be interpreted as a bounding envelope on x,(z) as it
evolves in time. Thus, the peak values of the individual response components can be used to de-
fine a rectangular domain in the m-dimensional response space that envelops the response vector

x(¢). This envelope, however, is obviously conservative, as the individual response maxima

normally do not occur at the same time. As we will see shortly, when & is specified, the
envelope derived in this study is an ellipsoid in the m-dimensional response space that is

inscribed within this conservative rectangular envelope.

15



25  MATRIX FORMULATION

For the derivation of the elliptical envelope in Chapter 3, it is convenient to rewrite (2.25) in a

matrix form. Define the nxn diagonal matrices D, =diag[Dki] and T, =diag[y,a.] for

k =1,2,3 and the nXn correlation matrix R = [/0,-,- ] We can then rewrite (2.25) in the form

k=1 k=1 I=1

2
X, =qf¢[i(rkaRD£r£) 33 (1), D,RDITT Jsin 0

2
=Y (1) (F,DkRDZFg +T,D,RDITT )sinecos 0]<1>qu , (2.28a)
k=1
=q (Zl +Z,sin? @ + Z, sin O cos 0) q, (2.28b)
=q,Zq,, (2.28¢)
where
3
z,=o| ¥ (r,D,RDITT ) |07 (2.29a)
L k=1
2 2
z,=0 -3 ¥ (-1*(r,D,RDITT )]ch (2.29b)
L k=ll=1
2
Z,= cb[— ¥ (-1)(r,D,RDITT +T,D,RDITT )}(DT (2.29¢)
k=1
and
Z=7Z,+2Z,sin*0+Z,sinfcosb. (2.30)

One can easily verify that Z is an N X N symmetric matrix. For a given structure and response

spectra, and for known principal directions of the ground motion, Z is known and is identical for
all response quantities. Furthermore, since X,, = X2 =q’Zq, >0 for any non-trivial response,
Z is a positive definite matrix.

Collecting (2.28c¢) for all response pairs, we define the mxm “response matrix”

X =Q7ZQ, (2.31)

16



in which the (r,s) element is X ;. This matrix, which is closely related to the covariance matrix

of x(t), plays a central role in the development of the response-spectrum-based procedure for

predicting the envelope that bounds the vector of seismic responses as described in Chapter 3.

17



7y, Zp = structure axes

%> 25 = major and intermediate principal
axes of the ground motion, respec-

2y *
Plan view of
the structure

Figure 2.1. Definition of 6.
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3 Envelopes for Response Vectors in Linear
Structures

31 INTRODUCTION

In this chapter, a response-spectrum-based procedure for predicting the envelope that bounds a
vector of seismic responses is developed. When the principal directions along which the compo-
nents of ground motion are uncorrelated are known, the envelope is shown to be elliptical in
shape and is identical to that derived previously by Gupta and Singh (1977) and Anastassiadis
(1993). In this study, we advance the topic beyond that presented in these earlier works in several
distinct ways. First, the procedure developed here is based upon results obtained from the theory
of random vibrations that are described in Chapter 2. As a result, the assumptions and approxi-
mations involved in the procedure are clearly identified and their ramifications can be under-
stood. The derivations described in the previous works start with the response spectrum method
as a basis for the procedure. Consequently, they do not offer as much insight regarding the appli-
cability of the procedure and the conditions under which it might fail to provide accurate results.
Second, once the mathematical basis for the method has been established, we demonstrate how
the envelope can be constructed in a physically intuitive manner. We will see that this approach
is helpful for understanding why the resulting ellipsoid is an appropriate upper bound on the pos-
sible combinations of responses. Similar physically motivated interpretations of the envelope are
not offered in either of the previous works. Finally, because the principal directions of ground
motion are normally not known in advance, an envelope that accounts for the uncertainty in the
orientation of these directions is developed. This envelope, which in general is not elliptical, is
the union of the elliptical envelopes for all orientations of the principal directions. For this rea-
son, it is called the “supreme” envelope. This uncertainty in the orientation of the principal direc-

tions of ground motion is not addressed in the earlier works.



3.2 THE ELLIPTICAL ENVELOPE

In Chapter 2, we defined the mxm response matrix

X=Q'zQ, (3.1)

in which the (,s) element is X rs - Because Z is symmetric and positive definite, X is symmetric

and positive semi-definite. Furthermore, X is singular only when there are linearly dependent
columns in Q, i.e., when one or more of the responses considered are linear functions of other
responses. In the following derivation of the elliptical envelope we first assume that such linear
dependence between the response components does not exist so that X is positive definite and

invertible. The case of linearly dependent responses is treated as a special case.
Consider the case where the orientation of the principal directions of ground motion, 6, is

known. To derive a response-spectrum-based envelope of the vector response process x(z) as it
evolves in time, consider the projection of X(#) on a unit vector @ in the m-dimensional re-

sponse space
x, () =a"x(). (3.2)

When the rth element of « is taken to be unity with all other elements equal to zero, we obtain

X, (t) = x,(2) . For an arbitrary unit vector ¢, X, (?) is a linear combination of the elements of the

response vector x(z) and, therefore, of the nodal displacements. Substituting (2.2) into (3.2), one

obtains
x, () =" QMu(r) = ¢u(r), (3.3)

where q}, =" QT is an N-vector of constants that are functions of the stiffness and undeformed

geometry of the structure and the specified direction in the response space. Comparing (2.1) to

(3.3), it is evident that (2.26) can be used to estimate X «=F [max X, (t)], i.e., the expected peak

value of the projection of the response vector along the direction specified by a. Hence, using

(2.28¢c) with r = s = and (3.1), we can write

X.=ql2q,=2"Q"ZQa=a"Xa. (.4)
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Now consider the unit vector along the response axis in direction 1, i.e.,
a=11,0,0,...,0]" . Equation (3.4) yields X,, which establishes the bound x,(¢) < X,. A similar

bound — X, < x,(¢) is obtained by considering the direction vector a = [— 1,0,0,...,0]T. These
bounds define two hyperplanes that are perpendicular to the x; axis and are located at distances
+ X, from the origin. Note that the distance to the bounding hyperplane in direction « is the
maximum value of the projection of x(r) on & Hence, this distance should be predicted using
the one-sided definition of the response spectrum described in Chapter 2, rather than the conven-
tional absolute value definition of the response spectrum. Next, consider o = [O, 1, O,...,O]T,
i.e., unit vectors along the response axis in direction 2. Using (3.4), the bounds
- X, <x,(t) < X, on the second response quantity are obtained, which similarly define two hy-

perplanes perpendicular to the x, axis. Continuing this process for the remaining response axes,

one obtains m parallel pairs of hyperplanes normal to the response axes. The intersection of the
domains between each pair of parallel planes defines an m-dimensional rectangular domain that
envelops the vector response process. Figure 3.1a shows a representation of this rectangular do-

main in the two-dimensional space of responses x; and x,. This rectangular envelope is the one
used when the maxima of individual response quantities are combined to evaluate the adequacy
of a given design.

Now consider an arbitrary vector & that is not aligned with any of the response axes. The
projection of the response vector along this direction is bounded by x,(t) < X, with X, given
by (3.4). This bound defines a hyperplane that is perpendicular to ¢ and is at a distance X,
from the origin of the response space. Obviously, the response vector should be contained within
the intersection of the half-space a’x< X o defined by this hyperplane and the rectangular do-

main defined earlier. This intersection is shown in Figure 3.1b in the two-dimensional space of

x, and x,. This procedure can be repeated for many directions ¢, thus gradually tightening the
envelope. Figure 3.1c shows the resulting envelope in the plane of x; and x,. In the following,

we show that this envelope is an ellipsoid that is completely defined by the response matrix X.

Consider the bounding hyperplane defined by the unit normal vector ¢ and distance X,

from the origin of the response space and a unit vector # having an acute angle y with a. Let
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Sg () denote the distance from the origin to the hyperplane in the direction of £ and S p de-

note the distance to the envelope in the same direction. Figure 3.2 shows these distances in the

plane defined by vectors @ and f. One can write

b

(2 -

£5()= X (aTXaf)

- 3.5)

For a given f3, the distance to the envelope Sz is the minimum of s B (a) with respect to . To

obtain this distance, we solve

45, Lexa]* 2a7x(p7a)-(exa) *p B e
da ( A7 a)z '
for azand substitute into (3.5). Upon rearranging (3.6) and using (3.5), one has
" X(p70)=(e"Xa)p" = [(7a)s,] BT 3.7
Hence, |
"X =(B7a)s3 BT (3.8)

and, provided X is not singular,
o =(BTa)s3BTX (3.9)

Substituting this result into (3.5) for & yields

%
|(B7a)sk BTx'xx71853 (7] i
sg= e
1
=52 (,BTX",B)A, (3.10)
or, since sz in (3.10) is a minimum,
S, =(87x"p) ” (3.11)
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This equation defines an ellipsoid in the polar coordinate system. It can be used to determine the

distance S, from the origin of the response space to the envelope in any direction specified by

the unit vector £.

An alternative and more convenient expression for developing the elliptical envelope is
as follows: Consider Figure 3.3, which shows the orientation of ¢ that minimizes sg4 (). It is
clear that the point x =S4 B on the envelope satisfies the relation a’x=X « - Using (3.4), one

has

T
_ o Xa 7 (3.12)
(aTXa) 2
Since « is arbitrary,
= Xa& 7 (3.13)
(aTXa) 2

This expression provides the Cartesian coordinates of a point on the envelope corresponding to a
selected . Note that the expression does not require inverting X. Furthermore, due to the scaling
involved, the vector & need not have a unit length. These properties prove to be useful when
computing the envelope in design applications, as is done in Chapter 6.

We now examine properties of matrix X that are helpful in understanding the geometry of

the envelope defined by (3.11). First, we rewrite (3.11) by squaring both sides of the expression

and multiplying through by B7X™'/ to obtain

(s58)"x7(s,8)=1. (3.14)

As mentioned earlier, the point x =S4/ is located on the envelope in direction [ from the ori-

gin. Hence, the envelope is defined by the locus of points x in the response space that satisfy
X' X 'x=1. (3.15)

Because X is symmetric and real-valued, it can be expressed as
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X =¥YAY¥YT, (3.16)

where A is an mXxm diagonal matrix whose elements A =A%, r=12,...,m are the eigenval-
ues of X and ¥ is an mXxm orthogonal matrix whose rth column is the eigenvector associated
with the eigenvalue A2. The columns of ¥ form a basis for the response space that can be
adopted as a new coordinate system. We designate these coordinate axes x,, r =1,2,...,m, and

note that, in general, they are rotated with respect to the coordinates x,, r =1,2,...,m. Any point

ro

x in the response space can be specified by x” in the rotated coordinate system through the trans-

formation
X =9"x. (3.17)
Substituting (3.16) into (3.15) and making use of (3.17) and the identity ¥~ = ¥7 yields
x) A (x)=1 (3.18)

as an expression that defines the envelope in the coordinate system formed by the columns of ¥.
Expanding (3.18), we see that the envelope is the locus of points in the response space that sat-

isfy

();11;2)2+();;+)2+---+%:!’3‘)—2=1. (3.19)

It is clear from the preceding equation that the envelope is an ellipsoid as we asserted earlier.

Moreover, the principal axes of this ellipsoid coincide with the coordinate system defined by the

columns of ¥, which were identified as the eigenvectors of X, i.e., the eigenvectors of X are the

principal axes of the envelope. In addition, the length of the rth semi-axis is A,, which is the
square root of the rth eigenvalue of X.

It is useful to examine special cases of the response vector. We consider the following

cases: (1) a two-component response vector, (2) statistically independent responses, and (3) line-

arly dependent responses.
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3.2.1 Two-component Vector Process

When m =2, a convenient closed-form solution for the eigenvectors and eigenvalues of X can
be derived and used to define the envelope. Let i denote the counterclockwise angle between the
coordinate axes (x;,x,) and the principal axes (x;,x3) of the ellipse, as shown in Figure 3.4. It

follows that

- [cc?s w —sin u/:I . (3.20)
siny  cosy

Using ¥~! = ¥7 and (3.16) we have
A=¥YTX¥ (3.21)
for the diagonal matrix of eigenvalues. Expanding (3.21) yields
A2 =X2cos>y+ X3sin®y +2X,, sinycosy (3.22a)
A3 =X2sin?y+ X} cos’ y —2X,, sinycosy . (3.22b)

As noted earlier, A and A, are the lengths of the semi-axes of the ellipse. To obtain the angle v,

we substitute (3.20), (3.22a) and (3.22b) into the eigenvalue equation

(X-A)¥=0 (3.23)
and solve for . The result is
1o 2X
=—tan | —=—|. (3.24
V=3 ( X2 -X} } )

Hence, the size and orientation of the elliptical envelope in a two-dimensional response space are
completely defined by (3.22a), (3.22b) and (3.24) in terms of the elements of the 2Xx?2 response
matrix X.

As an example, the envelope associated with

2 4 2
X={X1 Xlzz]:{ ] (3.25)
X12 X2 2 2
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is shown in Figure 3.5a. This figure shows that the resulting ellipse is inscribed within the rec-

tangular envelope specified by the peak values X, = E [max X ()] and X , =FE [max X, o).

3.2.2 Statistically Independent Response Components

When response components are mutually statistically independent, the cross terms X, ,r#s,
are zero and X is a diagonal matrix. It follows from (3.16) and (3.17) that ¥ is an mxm identity
matrix, A =X and x"=x. Consequently, the principal axes of the elliptical envelope coincide
with the coordinate axes defined by the response quantities x,, » =1,2,...,m, and the lengths of
the semi-axes are identical to the individual peak responses X,, r=12,...,m. As an example,

Figure 3.5b shows the envelope for the two-dimensional response matrix

2 4 0
X= Xi X122 = . (3.26)
Note that the matrices defined in (3.25) and (3.26) differ only in the value of the cross term X,,.

It is clear that the cross terms in the response matrix X, which are related to the covariances be-

tween responses, carry the information on the orientation of the elliptical envelope.

3.2.3 Linearly Dependent Response Components

In the presence of linearly dependent response components, X is singular and has one or more
zero eigenvalues. The lengths of the corresponding semi-axes of the ellipsoid vanish and, hence,
the envelope has zero distance from the origin in these directions. It follows that in determining
the envelope one needs only consider directions « that are orthogonal to all principal axes hav-

ing zero eigenvalues. As an example, consider the two-dimensional response matrix

2
x=[X1 X12]=[4 2‘5}, (3.27)

X, X2| |22 2

in which X, = X,X,. One can easily verify that the above matrix is singular having the eigen-
values 0 and 6. The ellipse has now degenerated into a line, as shown in Figure 3.5c, implying

that the responses x;(¢) and x,(z) are perfectly and positively correlated. Note again that the
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matrix in (3.27) differs from those in (3.25) and (3.26) only in the value of the cross term X, .
As previously observed in Figures 3.5a and 3.5b, the envelope shown in Figure 3.5¢c (i.e., the di-
agonal line) is also inscribed within the rectangle defined by the peak values X; and X,. How-
ever, unlike the cases in Figures 3.5a and 3.5b, the envelope here predicts that these peak
responses occur simultaneously. We note that if the cross terms in (3.27) were replaced by
X, = —24/2, then the ellipse would degenerate into a line having a negative slope; i.e., x,(t)

and x,(#) would be perfectly and negatively correlated.

3.3 THE SUPREME ENVELOPE

It is evident from (2.30) and (3.1) that the size and orientation of the elliptical envelope are func-
tions of the orientation of the principal axes of ground motion, 6. In the preceding derivation, 6
was assumed to be known. Normally, however, this information is not available during the de-
sign phase of a structure. In such cases, it is prudent to consider all possible values that @ can
assume. That is, the envelope used for design should bound all the elliptical envelopes obtained
for 0< 6 <27z . In this section, we derive expressions for this bounding envelope, which we de-
note as the “supreme” envelope.

For a specified direction & in the response space and a given orientation 8 of the princi-

pal axes of ground motion, the distance X, to the hyperplane defined by « that bounds the
elliptical envelope is given by (3.4). Using (2.30) and the trigonometric identities

sin?0 = (1—co0s20)/2 and 2sin&cosb =sin 26, (3.4) can be rewritten as
2 _ TT 1 1 1, .
X;=a'Q [(Zl +5Z2)——2—Z200520+-2—Z3 sm249} Qc. (3.28)

For a specified ¢, the value of 6 that maximizes X, is found by solving

2
%‘L =a’Q[Z,sin20 +Z;cos20] Qe =0 (3.29)
such that
d?x?
# =a"QT[2Z, cos20 - 2Z,sin20] Q< 0. (3.30)
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The result is

TAT
cos 26 = _M

TT
sin2g = L2 484 Q;3Qa

where

H= l:(aTQTZZQa)Z + (O:TQTZ3Qa')2 ]}é

Substituting (3.31a) and (3.31b) into (3.28) yields

TNAT TNAT
Xczr =aTQT|:(Z1 +%Z2)‘%Zz(—a Q Z_ZQCZ]'F%Z:,'(“ Q Z3Qa]}Qa

H H

— T
=a X,

where

H 2

TAT TAT
X5 =QT{(Z1 +—;Z2)—-1—Z2[—-————a Q ZzQa]+lZ3[a Q Z3QaJ:IQ-

2 H

(3.31a)

(3.31b)

(3.32)

(3.33)

(3.34)

Equation (3.33) defines the distance to the hyperplane tangent to the supreme envelope and hav-

ing & as its unit normal vector. This expression is analogous to (3.4) derived earlier for the el-

liptical envelope. However, the matrix X here is dependent upon ¢ and, as a result, the

supreme envelope is not an ellipsoid. It is evident that the supreme envelope is a union of all el-

liptical envelopes obtained for 0 <@ < 27 . Furthermore, the bounding hyperplane in a given di-

rection ¢ is tangent to that ellipsoid in the union that is defined by X evaluated at ¢. It follows,

from a derivation similar to that used to derive (3.13), that points x on the supreme envelope sat-

isfy the relation

X.x
X= S

a’X .«
"X,

-
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One can use this relation to compute points on the supreme envelope by varying . Each such

point corresponds to a value of @ that can be computed in terms of « by either (3.31a) or
(3.31b).

As a two-dimensional example, consider the case with

5 4

4 2
QTZ&:[ ] QTZZQ:_lL 1

ry o 1[5 4
5 > " } QZ3Q—2[ J. (3.36)

4

The resulting supreme envelope is shown in Figure 3.6. As discussed above, this envelope
bounds the elliptical envelopes for all € values. For reference, the elliptical and rectangular en-
velopes corresponding to & =0 and 6 =7/2 radians are also shown in Figure 3.6. The case of
6 =0 is identical to the example case (3.25) studied earlier. It is important to note that the su-
preme envelope exceeds the rectangular envelope for certain values of 6. Hence, designing by
use of the rectangular envelope for a prescribed 6 value can be unconservative when € is un-
known.

The preceding derivation of the supreme envelope assumed that 0 <6 <27z. One can
generalize this result for the case where 8 varies over a subset of the interval [0, 27). This
would be the case, for example, when the earthquakes affecting the structure originate in a well-
defined extended source near the site. In this case, the distance to the hyperplane bounding the
supreme envelope in direction & is the maximum value of X, in (3.28) over the range of 6
that defines the location of the extended source relative to the structure. A closed-form expres-
sion for the supreme envelope for this case does not exist. Instead, the envelope can be con-
structed in a manner similar to that illustrated in Figure 3.1c, with the distances that define the
bounding hyperplanes computed numerically. Alternatively, the envelope can be constructed by

superimposing the elliptical envelopes for all € values in the interval of interest.

3.4  CONTRIBUTION OF STATIC FORCES

In the preceding derivations of the elliptical and supreme envelopes, only time-varying responses

arising from seismic excitation of the base were considered. In general, however, static loads are
o . T .
present that cause time-invariant components X, = [xm,xoz,..., xOm] to act concurrently with

x(t) . Because the structure is linear, x(#) and X, can be added to yield a total response vector
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that varies in time about point X, in the response space. The size and orientation of the two en-
velopes are unaffected by the presence of these static responses. The center of each envelope is
simply translated from the origin of the response space to x,. Modifying (3.15) for this transla-

tion, we can mathematically define the elliptical envelope as the locus of points in the response

space that satisfy
(x—x%,) X (x—x,)=1. (3.37)

However, for use with capacity interaction charts commonly encountered in practice, e.g., mo-
ment-axial interaction diagrams used for column design, it is more convenient to use (3.13) to

compute the envelope bounding x(#) and superimpose it on to the capacity chart so that it is cen-

tered on x,. Mathematically, (3.13) becomes

x=—22% iy, (3.38)

(aTXcz)y2

The same procedure is applicable to the supreme envelope by modifying (3.35) so that

x=— 2% Ly (3.39)

(aTXSOZ)%

The adequacy of the structure can then be determined by comparing these demand envelopes
with the capacity curves. Algorithms for this procedure are described in Chapter 6 and applied

to the design examples that are presented in Chapter 7.
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Figure 3.1. Construction of the response-spectrum-based envelope.

Figure 3.2. Geometry of the elliptical envelope.
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Hyperplane
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Figure 3.3. Solution « for a given f.

-------

Figure 3.4. Principal axes of the response-spectrum-based envelope for a two-component
VecCtor process.
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Figure 3.5. Elliptical envelopes of a two-component vector process with varying de-

Figure 3.6. Supreme envelope of a two-component vector process.

grees of correlation.
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4 Example Structures and Ground Motions

41 INTRODUCTION

The numerical analyses employed to demonstrate the accuracy and application of the response-
spectrum-based procedures developed in Chapter 3 must be carefully designed to best illustrate
the possibilities and potential limitations of the method. In this chapter, we describe the example

structures and the ground motions considered in these numerical investigations.

42 EXAMPLE STRUCTURES

The seismic responses of a three-story steel moment frame building and a reinforced concrete
freeway overpass are examined in the numerical analyses. These structures were selected be-
cause they are representative of two large classes of structures that are commonly encountered in
practice and, therefore, appropriate for the purposes of determining the validity and significance
of the proposed procedures. The material properties, member sizes and connection details of
these structures were selected, in part, to reflect current design philosophies and construction
practices. Care was also taken to ensure that the responses considered had significant contribu-
tions from more than one mode so that the modal combination rules embedded within the pro-
posed procedures make a contribution to the total computed response. DRAIN-3DX (Prakash et

al., 1994) was used to model and analyze the structures.

4.2.1 Example Building

The three-story steel building shown in Figure 4.1 is the first structure that is considered in the
following numerical analyses. The lateral force resisting system consists of four moment frames,
each three bays in length, on the perimeter of the building. In accordance with common practice,

the corner columns are not used in the moment frames. This is done primarily because steel sec-



tions, such as hollow structural tubes or built-up members composed of I-beams and plates, that
are capable of resisting the bi-axial bending moments experienced by corner columns tend to be
uneconomical in low-rise construction.

The beam and column sizes and material properties are listed in Figure 4.1, where E, is
the modulus of elasticity and F, is the yield stress of the steel. All moment frame beams and

columns are oriented such that their strong axes are perpendicular to the plane of the moment
frame. To ensure that the lateral loads are resisted only by in-plane action of the moment frames,
the columns are assigned pinned end conditions for rotations about their weak axes. The ends of
the comer columns are free to rotate about both axes, so they resist only axial loads. Also, the
ends of the beams spanning between the corner columns and moment frames are free to rotate
about their strong axes so that elements that lie outside of the moment frames do not participate
in resisting lateral loads. To approximate the in-plane stiffness of a floor diaphragm, the axial
stiffness of the beams are set to large values and stiff bar elements that connect the corner nodes
to a node located at the center of the floor are introduced, as shown in Figure 4.1. The section
properties of the beam, column and diaphragm elements used as input for the DRAIN-3DX
analyses are summarized in Table 4.1.

The moment connections at the ends of the beams and at the column bases of the moment

frames are modeled using zero-length elements that have rotational stiffnesses

Eslb

k, =25 (4.1a)

ES IC

k, =100 (4.1b)

respectively, where I, and I, are the moments of inertia about the strong axes of the beams and

columns, respectively, and L and /4 are the moment frame bay width and story height, respec-
tively, as indicated in Figure 4.1. The stiffness values in (4.1a) and (4.1b) are typical of “fully
restrained” connections defined in (AISC, 1994). For the nonlinear analyses conducted in Chap-
ter 8, these connection elements are the only locations within the structure where yielding is as-
sumed to occur. Each connection is modeled as an elastic-perfectly-plastic hysteretic element

that has a plastic moment capacity
M, =nF,Z, (4.2)
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where Z is the plastic section modulus of the member that the connection supports and 7 is a
prescribed strength ratio. The positive and negative moment capacities of the connection are
equal. For the stiffnesses given in (4.1a) and (4.1b), connections modeled in this manner are de-
scribed as “rigid” when 7>1.0, “stiff semi-rigid” when 0.2<7<1.0 and “pinned” when
n <0.2. In the current practice, stiff semi-rigid connections are commonly used with 720.7

recognized as a practical lower limit when seismic loads govern the design. The nonlinear analy-
ses in Chapter 8 are performed assuming 7 =1.0, 0.7 and 0.4 . For the linear analyses presented
in Chapter 5, 7 is set to a large value that prevents any yielding from occurring in the structure.
The properties of the connection elements used as input for the DRAIN-3DX analyses are sum-
marized in Table 4.2. For shear and axial loads, these connection elements are modeled such that
they have infinite stiffness (by setting each translational degree of freedom at one end of the
element equal to the corresponding degree of freedom at the other end) and unlimited capacity.

For the dynamic analyses, the weight of the building is modeled in DRAIN-3DX by
assigning lumped masses at the column locations and at the center of the floor plate as specified
in Table 4.3. The resulting weight and center of mass of each floor is indicated in Figure 4.1. The
center of mass is offset from the center of the floor plate by 5% of the building dimension along
both horizontal structure axes.

The N xN damping matrix, C, for the model is defined by
c=aM+Y BK, (43)
i=1
where n, is the number of elements in the model, M is the NxXN mass matrix, K; is the
NxN contribution to the global stiffness matrix from the ith element and a and S,
i=12,...,n,, are coefficients chosen such that the resulting modal damping ratios are reason-

able for the type of structure considered. For the numerical analyses of the building, & =0.5

and B; =0.001 are used for all elements except those elements that model the beam and column
connections. For these zero-length elements, 5, =0 is used. However, these connection ele-

ments naturally introduce hysteretic damping in the nonlinear analyses.
Using the above stiffness, mass and damping values, the structural model has the modal

periods and damping ratios listed in Table 4.4, for the modes of vibration included in the analy-
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ses. The response of the building to vertical ground motions is not considered. Due to the rigidity
of the floor diaphragms, the first 9 modes account for over 99% of the participating mass.

The response of the building due to gravity loads is computed by applying the loads
shown in Figure 4.2 to the perimeter frames. The load patterns in Figure 4.2 correspond to the
floor framing plan shown. The application of gravity loads is performed prior to every dynamic
analysis. While this is not necessary for the linear time-history analyses presented in Chapter 5,
for which the responses of the building due to gravity and seismic loads can be superimposed, it
must be done for the nonlinear analyses in Chapter 8, for which the principal of superposition
does not hold. The resulting responses due to these gravity loads are the static components of the

response vectors considered in the investigation.

4.2.2 Example Bridge

The reinforced concrete bridge shown in Figure 4.3 is the secohd structure considered in this
study. The seismic forces are resisted by the three bents aligned with the freeway that passes un-
der the structure and a moment frame parallel to the longitudinal axis of the bridge that incorpo-
rates a box girder as its horizontal member. The top face of the box girder serves as the bridge
deck. From Figure 4.3 we see that due to the angle at which the bridge crosses the freeway, the
lateral force resisting elements are not orthogonal to each other. However, we recognize this as a
common configuration. This skewness of the overpass is introduced in order that the response
vectors considered in the following numerical analyses receive significant contributions from
more than one mode of vibration.

The dimensions of the bridge girders and columns are shown in Figure 4.3 along with the

assumed material properties, where E, and f, are the modulus of elasticity and compressive
strength of the concrete, respectively, and f, is the yield strength of the reinforcing steel. All

girders are post-tensioned elements. Due to the compressive forces present in all members of the
overpass (resulting from either post-tensioning or gravity loads), the gross section properties of
the members are assumed when calculating their stiffnesses.

A cross section of the longitudinal box girder is shown in Figure 4.4. As shown in this
figure, this girder is modeled by three parallel lines of elastic beam-column elements that span

between the transverse girders located along gridlines ‘A’, ‘B’, ‘D’, ‘F’ and ‘G’. Stiff bar ele-
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ments that lie in the horizontal plane are used to connect these beam-column elements together.
The section properties of the individual members used to model the box girder, which are listed
in Table 4.5, were selected such that the flexural and axial stiffness of the resulting truss-like as-
sembly of elements matches that of the actual box girder. The bar elements have pinned end
conditions. All other connections are fixed.

Also shown in Figure 4.4 are sets of six springs at each end of the bridge that represent
the horizontal stiffness of the abutments. The assumed stiffness values of these springs are listed
in Figure 4.4. The transverse girders at the abutments are fixed for translation in the vertical di-
rection at gridlines ‘1°, ‘2’ and ‘3’. No restraints are placed on the rotations of the ends of the
bridge, apart from what is provided by the abutment springs and girders.

The seismic mass of the bridge is modeled in DRAIN-3DX by assigning the lumped
masses listed in Table 4.6 at the nodes used to define the box girder shown in Figure 4.4. The
resulting weight of the bridge is indicated in Figure 4.3.

The damping matrix, C, for the model is defined by

C=aM+ K 4.4)

where M and K are the mass and stiffness matrices, respectively, and « and f are coefficients
chosen such that the resulting modal damping ratios are reasonable for the type of structure and
level of seismic loading considered. For the linear time-history analyses performed using this
structure, & =0.5 and £ =0.001 are used.

Using the above stiffness, mass and damping values, the structural model of the bridge
has the modal periods and damping ratios listed in Table 4.7 for the modes of vibration included
in the analyses. In order to compute the response of the bridge to vertical ground motions accu-
rately, it is necessary to include 15 modes.

The computed axial force and bending moments about the z; and z, axes due to gravity
loads at the bases of columns ‘B1’°, ‘B2’, ‘D1’ and ‘D2’ in Figure 4.3 are listed in Table 4.8.
These responses are the static components of the response vectors considered in this investiga-

tion.
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43 GROUND MOTIONS

Six ensembles of ground motions are used in the numerical analyses. Two sets consist entirely of
artificially generated accelerograms that satisfy the basic assumptions behind the response spec-
trum method and the Penzien-Watabe characterization of multi-component ground motions de-
scribed in Chapter 2. Thus, these ensembles are appropriate for evaluating the accuracy of the
elliptical envelope in the context of the response spectrum method. However, as we will see
shortly, these ground motions are generated in a purely numerical manner by use of a stochastic
model for the ground motion. As such, they may not adequately characterize real earthquake
ground motions. The other four ensembles of ground motions considered were originally com-
piled for Phase 2 of the SAC' Joint Venture Steel Project (Somerville et al., 1997). Two of these
ensembles consist mostly of recorded accelerograms, but also include some synthetic records.
The remaining two ensembles consist entirely of synthetic ground motions. Unlike the artificial
records mentioned above, the synthetic ground motions in these ensembles were generated using
seismologically based methods, i.e., propagating seismic waves through soil strata from an artifi-
cially generated extended source model (Somerville et al., 1997). Consequently, they are be-
lieved to be more realistic than ground motions generated in a purely numerical manner by direct
use of a stochastic model of the ground motion. In this study, we denote ground motions gener-
ated using a seismological model as “synthetic” and those generated in a purely numerical man-
ner as “artificial” in order to distinguish them. The SAC ensembles of ground motions are
primarily used for the nonlinear analyses presented in Chapter 8. Details of the four ensembles

are given in the following sections.

4.3.1 Artificially Generated Ground Motions

Two sets of 50 statistically independent artificial ground motions are generated as described be-
low. The statistical properties of the resulting ensembles satisfy the assumptions employed in the
development of the response spectrum method; namely, the ground accelerations are samples of
a wide-band, zero-mean Gaussian process having a stationary duration that is several times

longer than the fundamental period of the structure. One ensemble consists of records that have

! Structural Engineers Association of California, Applied Technology Council and California Universities for
Research in Earthquake Engineering.
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intensities and durations that are representative of a “serviceability” level earthquake, during
which the structure is expected to remain elastic and, consequently, the response spectrum
method remains valid. This ensemble is used in Chapter 5 for the purposes of establishing the
accuracy of the elliptical envelope. The mean response spectrum of this ensemble is used in
Chapter 7 for the application examples. The second set of artificial records have intensities and
durations that are representative of an “ultimate” level event, for which life safety must be as-
sured but the structure is expected to be severely damaged, possibly beyond repair. This ensem-
ble is used primarily in the nonlinear analyses presented in Chapter 8.

When the power spectral density function G,-‘-g,;g (w) of the strong motion phase of an

earthquake accelerogram is specified, a realization of the process i, (f) can be generated using

the formula (Wung and Der Kiureghian, 1989)

i, (1) = A( )nf \/ 2Gy i, (0;)Aw cos(wit +0,) (4.5)

i=1
where 9 are uniformly distributed random phase angles over [0, 27), w;, i=12,...,n,, are a

set of equally spaced frequencies at intervals Aw that are included in the sinusoidal superposi-

tion, and A(z) is a time modulation function that characterizes the temporal variation in the in-
tensity of the ground motion. For this study, n,=1000 frequencies in the range

712 rad/s £ w; <407 rad/s (0.25Hz < f <20Hz) are used and

Vi 1<,

A@) = 1 1, <t<t, 4.6)
expl-c(t-1,)] 1, <t

where ¢, and ¢, are prescribed times that define the strong motion phase of the ground motion

and ¢ is a coefficient that controls the rate of decay in the ground motion intensity after the

strong motion phase. The form of A(r) in (4.6) is due to Ruiz and Penzien (1969). The parame-
ters t,, t, and ¢ in (4.6) must be selected to match the duration of the strong motion phase and

the variation in ground motion intensity expected for the type of seismic event considered. For

the serviceability level earthquake, 7, =1.0sec, ¢, =2.7sec and ¢ =0.55 are assumed. For the

ultimate level earthquakes, #, =1.0sec, #, =12.5sec and ¢ =0.155 are used. Plots of A(r) for
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the two types of events are shown in Figure 4.5. Note that the strong motion phase of the ser-
viceability event is considerably shorter than that of the ultimate event. The effect of this shorter
strong motion phase of the serviceability event on the accuracy of the response-spectrum-based
envelope is examined in Chapter 5.

To generate the ensemble of artificial ground motions used in this study, we choose not to

specify G,-‘-gl-‘-g (w) in (4.5) but, instead, define the coefficients

B, = JzGﬁgﬁg (w)dw , i=1,2,...,n, 4.7)
so that (4.5) becomes
ng
iy (t)=A(t)Y, B; cos(w;t +0,). (4.8)

i=1
The coefficients B; are then determined such that the mean displacement response spectrum of
the ensemble of artificial ground motions, denoted D (®,{) , approximately matches a target dis-

placement response spectrum D™ (w,{) that is representative of the type of seismic event under
consideration for a prescribed damping ratio { . We do this in an effort to properly capture the

intensity and frequency content of the target event. The following iterative procedure, which is
roughly based on the SIMOKE algorithm developed by Gasparini and Vanmarcke (1976), is used
to find the coefficients.

Denote the displacement response spectrum of the kth sample of ground motion obtained

using (4.8) as D, (w,¢) . The mean response spectrum of the ensemble of artificial ground mo-

tions can thus be calculated as

— g
D@.)=—3D,@,0), “9)

ng k=1

where n, is the desired number of ground motions in the ensemble. Let B\’ and DY (,{)
denote the values of B; and B(a), {) at the jth iteration, j=1,2,..., and initialize

Bi(]) =1, i=12,...,n,. At the jth iteration, (4.8) is used to generate the desired number of
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ground motions in the ensemble and DY (w,¢) is computed using (4.9). The estimates of the
coefficients are then updated using

pu _ i D@.8) (4.10)
3 i 5(/) (a)i’ é’) ’ '

The coefficients BY*™ are now used to carry out the next iteration.
We note that because @ in (4.8) are random, D(w,{) is also random. Furthermore, as
noted by Gasparini and Vanmarcke (1976), the response spectrum ordinate D(w;,{) depends

not only on the frequency amplitude B; but also on frequency amplitudes close to @;. Conse-

quently, we do not expect the mean response spectrum of the ensemble to converge exactly to
the target spectrum. There will always be some deviation between these two spectra, which will
converge to some unknown value. Therefore, a possible convergence criterion for this algorithm
might involve the amount by which the root mean square difference between the mean response
spectrum of the ensemble and the target spectrum changes between successive iterations, i.e.,

convergence is said to occur when

w i=l1 w i=1

\[—1-5)1[5””’(% )-D(w;, )]2_\/_3_5’:[5(,-)(% )-D*(,.0))" |<e, @11)

where ¢ is a suitably small tolerance. However, this convergence criterion is not invoked in this
study. It was observed in a series of trial applications of the algorithm that the mean response
spectrum of the ensemble always matched the target response spectrum with sufficient accuracy
after only two or three iterations. Based on this observation, rather than using the convergence
criterion (4.11) to terminate the algorithm, the number of iterations to be used was simply speci-
fied a priori. We note that Gasparini and Vanmarcke (1976) make a similar recommendation. In

this study, the coefficients B; obtained after three iterations are used.

The target response spectra are obtained from the Abrahamson and Silva (1997) attenua-
tion relationship for rock sites and strike-slip events. For the serviceability level earthquake, the
site is assumed to be 8 km from the closest point on the rupture plane of a moment magnitude

M, =55 event. For the ultimate level earthquake, an M, =7.5 event whose rupture plane

comes within 2 km of the site is assumed. The target pseudo-acceleration response spectra,
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A" (@,0)=w*D* (,¢), are plotted in Figure 4.6. We note that the above attenuation relation-

ship yields the conventional two-sided response spectrum, i.e., the response spectrum corre-
sponding to the maximum absolute value of the response. Consequently, the response spectra
plotted in Figure 4.6 and in subsequent figures in this chapter correspond to this definition. Fur-

thermore, the algorithm used to determine the coefficients B, in (4.8) must also employ this two-

sided definition. However, for the response spectrum analyses performed in the following chap-
ters, the one-sided definition of the response spectrum, i.e., the response spectrum corresponding
to the maximum positive value of the response, is assumed. These one-sided response spectra are
computed directly from the ensembles of ground motions generated by (4.8).

Sample accelerograms from the two ensembles and the corresponding pseudo-
acceleration response spectra, together with the target response spectra are plotted in Figure 4.7.
Naturally, the target response spectra are much smoother than the response spectra of the indi-
vidual motions. In Figure 4.8, the target response spectra are plotted along with the mean re-
sponse spectra of the two ensembles. Also plotted in Figure 4.8 are the mean-plus-or-minus-one-
standard-deviation response spectra predicted by the attenuation relationship and computed from
the ensembles of ground motions. It is clear from Figure 4.8 that the mean response spectra of
the generated ensembles closely match the target response spectra. However, the variability in
the response spectra of the artificial motions is much less than that predicted by the attenuation
relationship. There are two reasons for this discrepancy in the variability of the spectra. First, in

(4.8) only the phase angles @, are random; a more realistic model would include uncertainty in
the frequency amplitudes B; as well as in the parameters that define A(f). These additional

sources of uncertainty would obviously increase the variability in the two ensembles of simu-
lated response spectra. However, to the authors’ knowledge, there are no established models for
these random quantities. Second, because the attenuation relationship is based on regression of
ground motions recorded at a variety of sites for a variety of earthquake mechanisms, the vari-
ability predicted by the attenuation relationship is greater than what one would expect for any
given site. The actual variability of the response spectra for a given site probably lies some-
where between that computed using the ensemble of generated motions and that predicted by the
attenuation relationship. In this study, we do not adjust the variability of the artificial records,
since any attempt would be somewhat arbitrary in nature and could produce misleading results.

Instead, we simply acknowledge this reduced variability in the response spectra of the artificial
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ground motions and exercise caution when drawing inferences from the time-history data that

may be affected by this apparent shortcoming.

4.3.2 Recorded Ground Motions

It is well known that the response of nonlinear structures can be sensitive to the time-dependent
variations in the intensity, frequency content and phasing of the input ground motions. Conse-
quently, time-history analyses conducted with the artificial ground motions described in the pre-
vious section may not yield a realistic representation of the nonlinear response of a structure
subjected to a large magnitude event. For this reason, several ensembles of recorded and syn-
thetic accelerograms that are representative of a variety of seismic events are also considered in
this study. These ensembles of ground motions, which are described below, were originally

commissioned for Phase 2 of the SAC Joint Venture Steel Project (Somerville et al., 1997).

4.3.2.1 Seattle ground motions

The first ensemble of recorded and synthetic accelerograms used in this study contains pairs of
horizontal ground motion components that are representative of a broad range of seismic events
near Seattle, Washington, which have a probability of occurrence of 2% in 50 years. The source
of each accelerogram included in the ensemble is listed in Table A.1 of Appendix A. Additional
details of the events and the ways in which they were modified are described by Somerville et al.
(1997).

This ensemble was compiled “to provide a statistical sample of the variability in phasing
and spectra through a set of time histories that are realistic not only in their average properties
but in their individual characteristics” (Somerville et al., 1997). However, each pair of original
accelerograms was scaled by a single factor that was chosen to minimize the weighted sum of the
squared errors between a target spectrum and the average response spectrum of the two compo-
nents at four prescribed control periods (Somerville et al., 1997). The periods used to match the
response spectra were 0.3, 1.0, 2.0 and 4.0 sec. The weights assigned to these periods were 0.1,
0.3, 0.3 and 0.3, respectively. We note that due to the ragged nature of actual response spectra,
this approach can result in unrealistic levels of variability in the response of structures whose

predominant periods lie away from the more heavily weighted control periods. This is the case
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for both structures considered in this study. Furthermore, recall that an implicit assumption of the
response spectrum method is that the ground motions are realizations of a common underlying
stochastic process. Consequently, due to the variety of fault mechanisms, geographical locations,
distances and durations described by Somerville et al. (1997) for the Seattle records, this collec-
tion of ground motions does not constitute a “true” ensemble for the purposes of applying the
response spectrum method. We must exercise caution when examining the statistical measures of
the time-history results generated using this ensemble in the following chapters.

For this study, each pair of accelerograms in this ensemble was decomposed into uncor-

related components through the rotational transformation
i () cos¢ sing ||, ()
faDl_| Cose sing ¥y @4.12)
gy ()] |—sing cosg ||iig, ()
where i, (t) and i ,,(¢) are the scaled ground motions in the original ensemble, i’ (r) and
gl g2 gl
ii’gz (z) are the uncorrelated components and ¢ is the required rotation. To determine ¢, we first

compute the combined Arias intensity of the event, defined as

t,
I = [l 0] +1i g, (0] e @.13)

0

where 7, is the length of the record. The times at which 5% and 95% of the Arias intensity is real-

ized, denoted #; and 2y respectively, are then determined by solving

Is

0057, = [ {Li @) + liiyo ()} et

0 (4.14)

Igs

0951, = [ {Liy 1% + [iig, () }a .
0

The length of the record spanning from # to 745 (known as the Arias duration) is then used to
compute ¢ such that
los

1374 Y4 1 .o/ Y4
(it i) = [ iy @) iy @) dr=0 (4.15)
Tos —1s Z,
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where we assume i}, (f) and liy,(t) are zero-mean processes for 75 <7 <tos and (> denotes the

temporal average. Substituting (4.12) into (4.15) and solving for ¢ yields

1 {@2,0) - (@ o)+ \/ (12 0) - (a2 ®))* + iy @) iy, )
2{ii y iy (1)

¢ =tan" (4.16)

where the sign in the numerator of the argument of (4.16) is chosen such that <u;21 (t)> > <u’gzz (t)>,

assuming that the magnitudes of <u;21 (t)> and <L’i'gzz (t)> are sufficient to determine the relative

intensities of the two uncorrelated components.

The values of %, 7,5 and ¢ for each event included in this ensemble are listed in Table

A.1 of Appendix A. Plots of each pair of uncorrelated ground acceleration records along with the
corresponding ground velocity and displacement records and the pseudo-acceleration response
spectra are also presented in Appendix A. The mean and mean-plus-or-minus-one-standard-

deviation response spectra for the major (ii};) and minor (ii}, ) components of these ground mo-

tions are plotted in Figure 4.9. A comparison of Figure 4.9 with Figure 4.8 reveals that variabil-
ity in the response spectra of these uncorrelated ground motion components is comparable to that
predicted by the Abrahamson and Silva attenuation relationship for the ultimate level event,

which we argued earlier may be excessive for a given site.

4.3.2.2 Near-fault ground motions

Three ensembles of near-fault records are used in this study. All three ensembles contain pairs of
fault-normal and fault-parallel ground motions that are representative of the seismic environment
near Los Angeles, California. One ensemble consists entirely of recorded accelerograms. The
other two ensembles each contain five pairs of synthetic records. These ensembles are included
in response to the recent attention directed by the engineering community at the behavior of
structures subjected to near-fault motions. The source of each recorded ground motion is listed in
Table B.1 of Appendix B and the target events used to generate the synthetic records are listed in
Table C.1 of Appendix C. Plots of each pair of near-fault ground accelerations along with the

corresponding ground velocity and displacement records and the pseudo-acceleration response
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spectra are presented in Appendices B and C for the recorded and synthetic ensembles, respec-
tively. Additional details of the events included in these ensembles can be found in (Somerville
etal., 1997).

Unlike the ensemble of ground motions compiled for Seattle, no attempt was made to
scale the recorded near-fault accelerograms to a target spectrum and the ensemble does not rep-
resent a statistical sample of such ground motions (Somerville et al., 1997). As a result, caution
must be exercised when examining the statistical measures of the ensemble of structural re-
sponses that are obtained using these ground motions in the following chapters. Each of the syn-
thetic ensembles though appear to consist of closely related ground motions that can be
considered as realizations of a common underlying stochastic process. This attribute makes them
attractive for the purposes of testing the response-spectrum-based procedures developed in Chap-
ter 3. Unfortunately, the small size of these ensembles limits their use in providing statistically
significant results and conclusions.

It is possible to decompose each pair of accelerograms in these ensembles into uncorre-
lated components, as was done for the Seattle ensemble. However, such a decomposition may
not be appropriate for these records, which do not have pronounced phases of stationarity and,
therefore, cannot be adequately described by second moment statistical measures such as correla-
tion. By convention, components of near-field motions are generally provided for directions
normal and parallel to the strike of the fault. This is the case for the ensemble used in this study.
It is assumed that the motions in these two directions are statistically independent.

Studying the figures in Appendices B and C, we note that many of the near-fault records
do not have a pronounced near-stationary strong motion phase. Thus, these ground motions vio-
late one of the underlying assumptions of the response spectrum method. The mean and mean-
plus-or-minus-one-standard-deviation response spectra for the fault-normal and fault-parallel
components are plotted in Figures 4.10, 4.11 and 4.12 for the recorded and two synthetic ensem-
bles, respectively. Comparing Figure 4.10 to Figures 4.8 and 4.9, we see that the variability in
the response spectra of the recorded near-fault ground motions is comparable to that predicted by
the Abrahamson and Silva attenuation relationship for the ultimate level event and the ensemble
of Seattle ground motions. Conversely, for the period range of interest for the example structures
considered, the synthetic ensembles shown in Figures 4.11 and 4.12 display a level of variability

closer to that of the artificial ground motions generated for this study.
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Table 4.1. Section properties of the elements in example building.

Section Area Momenjt of iner- | Plastic section
Element Level desienation ) tia modulus
gn (mm°) (mm*) (mm®)
Columns All | W14 x 398 7.55 % 10* 2.50 x 10° 1.31 x 10’
2 W36 x 160 6.45 x 10° 4.06 x 10° 1.02 x 10’
Beams 3 W33 x 152 6.45 % 10° 3.40 x 10° 9.16 x 10°
4 W30 x 99 6.45 % 10° 1.66 x 10° 5.11 x 10°
Diaphragms | All — 6.45 x 10'° — —

Table 4.2. Section properties of the connection elements in example building.

o Plastic moment capacity (kKN'm)
Supported Level Initial stiffness
element (kN-m/rad)
n=04 n=0.7 n=10
Columns Base 1.22 x 10’ 1.30 x 10° 227 % 10° 3.25x 10°
2 2.66 x 10° 1.01 x 10° 1.77 x 10° 2.53x10°
Beams 3 2.23 x 10° 0.91 x 10° 1.59 x 10° 2.27 % 10°
4 1.09 x 10° 0.51 x 10° 0.89 x 10° 1.27 x 10°

Table 4.3. Lumped masses assigned at each level of the example building.

Mass (kg) Mass (kg)
Nodel Zl ZZ Nodel Zl Z2
loading loading loading loading
A2 — 1.86 x 10° Bl 1.86 x 10° —
A3 — 1.86 x 10* Cl 1.86 x 10° —
A5 — 1.86 x 10* El 1.86 x 10* —
A6 — 1.86 x 10* F1 1.86 x 10° —
G2 — 3.46 x 10* B7 3.46 x 10° —
G3 — 3.46 x 10* C7 3.46 x 10° —
G5 — 3.46 x 10* E7 3.46 x 10° —
G6 — 3.46 x 10* F7 3.46 x 10° —
D4 426 x 10° 4.26 x 10°

! Refer to Figure 4.1
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Table 4.4. Modal properties of the example building.

Mode Period (sec) Damping ratio
1 0.6755 0.03102
2 0.6706 0.03086
3 0.3785 0.02246
4 0.2196 0.02192
5 0.2180 0.02195
6 0.1231 0.02841
7 0.1193 0.03044
8 0.1185 0.03059
9 0.0669 0.04851

Table 4.5. Section properties of the elements used to model the box girder of the example bridge.

Moment of inertia Moment of inertia Polar moment of
Element 2 Area about Zzix;zontal about vertical axis inertia
(mm?) (mm*) (mm*) (mm®)
Box girder | ¢ 10 8.17 x 10° 5.54 x 10'2 2.69 x 1012
elements
Transverse | ) ec o 106 3.60 x 10° 2.30 % 108 5.49 x 107
girders
Bar 1.60 x 10'2 — — —
elements
2 Refer to Figure 4.4
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Table 4.6. Lumped masses assigned at the nodes of the bridge model.

Node? Mass (kg) Node® Mass (kg) Node® Mass (kg)
Al 5.50 x 10* C2 9.63 x 10* E3 9.63 x 10*
A2 5.50 x 10° C3 9.63 x 10* F1 1.24 x 10°
A3 5.50 x 10* Dl 1.18 x 10° F2 1.24 x 10°
Bl 1.24 x 10° D2 1.18 x 10° F3 1.24 x 10°
B2 1.24 x 10° D3 1.18 x 10° Gl 5.50 x 10*
B3 1.24 x 10° El 9.63 x 10° G2 5.50 x 10*
Cl 9.63 x 10° E2 9.63 x 10* G3 5.50 x 10°
3 Refer to Figure 4.4

Table 4.7. Modal properties of the example bridge.

Mode Period (sec) Damping ratio
1 0.2593 0.02243
2 0.2386 0.02266
3 0.2118 0.02326
4 0.2115 0.02327
5 0.2079 0.02338
6 0.1997 0.02368
7 0.1691 0.02531
8 0.1689 0.02532
9 0.1679 0.02539
10 0.0665 0.04991
11 0.0321 0.09910
12 0.0321 0.09912
13 0.0314 0.10136
14 0.0314 0.10136
15 0.0311 0.10241
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Table 4.8. Axial loads and bending moments in selected bridge columns due to gravity loads.

4 Axial load Moment about z. axis Moment about z, axis
Column 1 2
(kN) (kN m) (kN m)
Bl 1550 47.2 25.2
B2 2500 -11.4 36.4
D1 1860 -55.1 -5.9
D2 3080 0.0 0.0
4 Refer to Figure 4.4
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Level 4 W30x99
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Level 3 W33x152 v
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Level 2 W36x160 v X
z =
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All columns W14x398
E, = 200,000 MPa L =7,620 mm Weight= 6,250 kN / level
Fy = 248 MPa h=4115mm Center of mass at

(z452,) = (1905 mm, 1905 mm)

Figure 4.1. Example three-story steel moment frame building.
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2,130
‘_4,260

‘_4,260
2,130

Elevation
Z3 =
1,220 ¢ g« 1,220 ¢ 1,220 ¢
7, Z] 7 \U
Columns : 1,220 ¢ E, = 27,600 MPa
Girders along @ ® @ @ and © :1.220x 1,524 fJ= 30 MPa
See Figure 4.4 for cross section of bridge deck. f, = 400 MPa
All dimensions in mm Weight = 19,700 kN

Figure 4.3. Example reinforced concrete bridge.
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Figure 4.5. Time modulation functions for artificial ground motions.
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Figure 4.6. Target pseudo-acceleration response spectra for artificial ground motions.
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Figure 4.7. Sample accelerograms and corresponding pseudo-acceleration response

spectra for artificial ground motions.
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Figure 4.8. Target and ensemble mean and mean-plus-or-minus-one-standard-deviation
pseudo-acceleration response spectra for artificial ground motions.
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Figure 4.9. Mean and mean-plus-or-minus-one-standard-deviation pseudo-acceleration
response spectra for ensemble of Seattle ground motions.
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Figure 4.10. Mean and mean-plus-or-minus-one-standard-deviation pseudo-acceleration
response spectra for ensemble of recorded near-fault ground motions.
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Figure 4.11. Mean and mean-plus-or-minus-one-standard-deviation pseudo-acceleration
response spectra for synthetic near-fault ground motion ensemble #1.
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Figure 4.12. Mean and mean-plus-or-minus-one-standard-deviation pseudo-acceleration
response spectra for synthetic near-fault ground motion ensemble #2.
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5 \Verification of the Elliptical Envelope

5.1 INTRODUCTION

The procedure developed in Chapter 3 is based upon the response spectrum method and the Pen-
zien-Watabe (1975) characterization of multi-component ground motions. Consequently, it in-
herits a number of assumptions and approximations implicit in these methods. In particular, as
discussed in Chapter 2, the response spectrum method is based on notions of stationary random
vibrations and entails approximations involving peak factors, while the Penzien-Watabe idealiza-
tion assumes that the directions of the ground motion remain fixed for the duration of the strong
motion. In essence, the motion is assumed to have a nearly stationary strong motion phase that
has a broad frequency content and a duration several times longer than the fundamental period of
the structure. Naturally, these assumptions and approximations affect the accuracy of the proce-
dure for actual earthquakes.

In this chapter, we examine the accuracy of the response-spectrum-based envelope by
means of comparison to “exact” results obtained by time-history analyses for the two structures
described in Chapter 4. For the steel building, the horizontal roof displacements are studied. For
the reinforced concrete bridge, attention is focused on the axial load and bending moments acting
in one of the columns.

The first set of the numerical analyses compares the mean elliptical and simulated enve-
lopes predicted and obtained, respectively, for the ensembles of artificial ground motions de-
scribed in the previous chapter. In light of the assumptions used to develop the response
spectrum method in Chapter 2 and the statistical nature of the peak value estimates provided by
the method, we argue that this comparison is a fair test of the validity of the response-spectrum-
based procedure developed in Chapter 3. A selected number of orientations of the principal axes
of ground motion, defined by the angle 6 in Chapters 2 and 3, are considered. Because the su-

preme envelope is constructed by superimposing elliptical envelopes for 0 <6 <27, its accu-



racy is comparable to that observed for the elliptical envelopes for varying & . For this reason, no
attempt is made to simulate the supreme envelope.

Having established the accuracy of the elliptical envelope for the ensembles of artificial
ground motions, we then examine the ability of the method to predict the envelopes that arise
when the example structures are subjected to the synthetic near-fault motions. While the results
obtained from this part of the numerical investigation cannot be regarded as conclusive due to
the limited sizes of the ensembles, they do suggest that the response-spectrum-based procedure
developed in Chapter 3 can be used with these near-fault motions with some degree of confi-
dence.

Finally, in the last section of this chapter, we examine the ability of the method to predict
the envelope of a time-varying response vector resulting from a specified ground motion. We
note that this is a misuse of the procedure because the response spectrum method has a statistical
basis that enables it only to correctly predict expected peak values over ensembles of time-
history results. As such, the observations made in this part of the numerical analyses cannot be
used to either validate or refute the accuracy of the elliptical envelope; however, they do provide
additional insight into the probabilistic nature of the response-spectrum-based estimates obtained

from the proposed procedure.

5.2 COMPARISON OF MEAN ENVELOPES — ARTIFICIAL GROUND MOTIONS

To assess the ability of the proposed method to accurately predict the envelope of a vector of
seismic responses, the set of 50 serviceability level artificial ground motions was randomly di-
vided into 25 sets of two. For each of these pairs of accelerograms, time-history analyses were
conducted by applying them as orthogonal, statistically independent components of horizontal
ground motion acting on the two example structures. Vertical accelerations were not applied.
The time-history results are used to compute the mean envelopes bounding the response vectors
considered. These simulated envelopes are then compared to the elliptical envelopes predicted
by the response-spectrum-based procedure developed in Chapter 3 using the mean of the ensem-
ble response spectra, as described below.

We denote the one-sided displacement response spectrum of the major principal direction
of ground motion D, and assume it is the mean one-sided displacement response spectrum of the

ensemble of 50 artificial ground motions. The ordinates of this response spectrum corresponding
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to the periods and damping ratios of the modes included in the analyses are tabulated in Tables
5.1 and 5.2 for the example building and bridge, respectively. As is common in practice, the re-
sponse spectrum of the intermediate principal direction of ground motion, i.e., the horizontal
component orthogonal to the major axis, is assumed to be proportional to D, . However, we note
that the procedure is not restricted to this special case. Based on the observations made by Pen-
zien and Watabe (1975), we assume D, =0.85 D, for the intermediate principal direction of
ground motion. In the time-history analyses that follow, the artificially generated ground mo-
tions applied along the intermediate principal axis are scaled by 0.85 to be consistent with the
assumed response spectra.

Four orientations of the principal axes of ground motion, relative to the structure axes, are
considered: 6 =0, /8, 7/4 and 37/8 radians. Due to the symmetry of the example building,
these values of @ provide a nearly complete description of the influence of 6 on the computed
envelope for this structure. For the example bridge, values of z/2 < 6 <7 should be included
for completeness; however, preliminary investigations indicated that the nature of results ob-
tained for this range of & do not differ in any significant way from what is presented below.
Therefore, results for this range are not presented. The major principal component of ground mo-
tion is applied along an axis that is rotated by the angle @ in the counterclockwise direction from

the z, axis of the structures shown in Figures 4.1 and 4.2.

For the building example, we consider the horizontal roof displacements, 4,(#) and
4,(t) in the z; and z, directions, respectively, at corner ‘G7’ in Figure 4.1 (located at the inter-
section of gridlines G and 7). For the bridge, attention is focused on the axial load, P(z), and the
bending moments, M,(z) and M,(z) about the z; and z, axes, respectively, acting in column
‘B1’ of Figure 4.3 (located at the intersection of gridlines B and 1). Apart from the fact that these
response quantities are of engineering interest, they are considered in the following numerical
investigation because they each receive significant contributions from more than one mode of
vibration for some directions of loading, as is evident in Tables 5.3 and 5.4. Thus, the modal
combination rule embedded in the response spectrum procedure contributes to the observed re-
sults. We note from the results presented in Table 5.3 that the peak values 4,(z) and A4,(¢) are
strongly dependent upon the direction in which the horizontal ground motion is applied. How-

ever, the results tabulated in Table 5.4 indicate that the peak bridge column responses are compa-
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rable for ground motions directed along any of the horizontal axes considered. This unusual
characteristic of the example bridge is due to the fact that its lateral force resisting elements are
not orthogonal to each other.

For each time-history analysis, the response quantities were recorded as they evolved in

time. Hence, for each orientation of the principal axes of ground motion considered, 25 realiza-

tions of the response vector X(t)=[4,(?),4, )" for the building example and

x(1)=[P(t),M,(t),M z(t)]T for the bridge example were obtained. These realizations of x(z)

were used to estimate the mean bounding envelope on the corresponding vector process as fol-
lows: The peak value of the projection of the response vector along a specified direction & in
the response space was computed for each time history. For a given time history, this peak value
defines a plane perpendicular to ¢ that the response vector touches but does not cross, i.e., this
plane defines the upper bound of the response in direction ¢ for the particular realization. The
mean of the 25 peak values obtained for a given direction « thus defines a plane that, in an av-
erage sense, bounds the vector process in that direction. This calculation was repeated for a large
number of directions in the response space, each yielding a plane that bounds the vector process
in an average sense. A mean envelope for the vector process was developed using this ensemble

of planes in a way analogous to that illustrated in Figure 3.1c.
The simulated mean envelopes bounding the building response x(¢) =[4,(2), 4, @®)]1" are

shown in Figure 5.1 along with the elliptical envelopes computed using the mean response spec-
tra. In Figure 5.2, the simulated mean envelopes and the corresponding elliptical envelopes
bounding the bridge column response are projected onto the three planes defined by the response

pairs (P,M,), (P,M,) and (M,,M,). For both structures, the static components of the re-

sponse vectors due to gravity loads were calculated and the envelopes were shifted accordingly
in the response space as described in Section 3.4. The results obtained for the four orientations of
the principal directions of ground motion are presented in Figures 5.1 and 5.2. These figures
show excellent agreement between the simulated and predicted mean envelopes.

Also indicated in Figures 5.1 and 5.2 are the simulated and predicted mean-plus-one-
standard-deviation envelopes for the response vectors. These envelopes are obtained in a manner
similar to that described above for the mean envelopes. While the agreement between the simu-
lated and predicted mean-plus-one-standard-deviation envelopes is good, it is not as good as that
found for the mean envelopes. This observation is a consequence of the well-known fact that, for
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a fixed number of data points (in this case, the 25 realizations of the distance to the bounding hy-
perplane in any give direction), the mean of the data can be estimated more accurately than the
standard deviation.

We note that the sizes and orientations of the envelopes in Figures 5.1 and 5.2 appear to

be relatively insensitive to the value of 6. This result is primarily due to the assumed ratio,
S,/S; =0.85, between the response spectra of the two principal components of ground motion.
As originally noted by Smeby and Der Kiureghian (1985), as S, /S, increases to unity, the con-
tributions to the total response made by the terms in (2.28a) that are functions of 6 decrease to
zero. In fact, for S,/S; =1, the elliptical envelope is independent of & and there would be no

difference between the theoretical results predicted for the different orientations. Had we used a

smaller value for S,/S, in these numerical analyses, the results would have shown greater sensi-

tivity to 6. As an extreme example, the mean elliptical envelopes bounding the responses in
bridge column Bl are plotted for the case of a single component of ground motion,

ie.,S,/S; =0, in Figure 5.3. We note that the correlation structure between P(r), M,(z) and
M, (t) changes significantly with @ in Figure 5.3, but the peak values of these responses change

only slightly. This insensitivity of the peak values to changes in 6 stems from the fact that the
peak column responses are comparable for ground motions directed along any horizontal axis, as
can be deduced from the modal contributions listed in Table 5.4.

The symmetric appearance of the deviations between the simulated and predicted enve-
lopes in Figures 5.1 and 5.2 suggests that they are primarily due to the approximations inherent
in the response spectrum method and the Penzien-Watabe characterization of the ground mo-
tions. If a significant component of these deviations were due to the limited number of realiza-

tions of x(¢) used to determine the simulated envelope, we would have observed more chaotic

deviations in Figures 5.1 and 5.2. We note, however, that the differences are relatively small.
Among all directions in the response space, the maximum difference between the simulated and
predicted mean envelopes is approximately 10%. For most directions, the difference is much
less than this worst case.

Some of the discrepancy between the elliptical and simulated envelopes appearing in
Figures 5.1 and 5.2 may be due to the short duration of the serviceability level event assumed in

the analyses. Recall that one of the assumptions of the response spectrum method is that the
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strong motion phase of the earthquake is several times longer than the fundamental period of the
structure. This condition is imposed to ensure that the response of the structure reaches an
approximate state of stationarity. Comparing the sample accelerogram for the serviceability
event shown in Figure 4.7 to the natural period of the bridge listed in Table 4.7, one can argue
that this condition is satisfied for the bridge. However, for the analyses involving the building,
which has a longer natural period (see Table 4.4), the assumption that the response of the struc-
ture reaches a state of stationarity for this short-duration event is questionable. To further explore
this effect, the above analyses were repeated using the ensemble of artificial ground motions for
the ultimate level earthquake. As can be seen in Figure 4.7, this event has a much longer strong
motion phase than the serviceability level earthquake. Therefore, we should expect an
improvement in the agreement between the predicted and simulated envelopes, especially for the
building example. The results of these analyses are presented in Figure 5.4 for the building
example and Figure 5.5 for the bridge example. Due to the apparent insensitivity of the accuracy
of the predicted envelopes to & observed in Figures 5.1 and 5.2, only the results for 8 =0 are
shown. As we speculated, the agreement between the predicted and simulated envelopes for the
building example shown in Figure 5.4 is better than that shown in Figure 5.1. For the mean
envelopes shown in Figure 5.4, the maximum difference in any direction is less than 4%. For the
bridge example, the agreement between the predicted and simulated results shown in Figure 5.5

is only marginally better than that shown in Figure 5.2, as we predicted.

5.3  COMPARISON OF MEAN ENVELOPES — SYNTHETIC NEAR-FAULT
GROUND MOTIONS

In this section, we repeat the analyses performed in the previous section with the two ensembles
of synthetic near-fault ground motions. As mentioned in Chapter 2, impulsive, short duration
events that are commonly recorded in the near-field of an earthquake do not properly satisfy
some of the assumptions invoked in the development of the response spectrum method. The ob-
jective of the following analyses is to investigate the possibility of using the response-spectrum-
based procedure developed in Chapter 3 with ground motions of this type. Unfortunately, due to
the limited size of the synthetic ensembles, conclusive results cannot be expected.

For both ensembles of synthetic near-fault motions, the simulated and predicted mean

envelopes bounding the vectors of responses considered above were computed as described for
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the artificial motions. However, unlike the analyses done above, a scale factor is not applied to
either component of these ground motions for obvious reasons. Furthermore, in light of the re-
sults in Figures 5.1 and 5.2, only the case of 8 =0 is considered. Finally, for reasons that will be
explained shortly, the simulated mean-plus-or-minus-one-standard-deviation envelopes are also
shown for the building displacements. The results are plotted in Figures 5.6 and 5.7 for the
building and bridge responses, respectively.

Studying Figures 5.6 and 5.7, we first remark on the relative magnitudes of the events
contained in the two ensembles. It is obvious from the figures that the first ensemble of synthetic
near-fault motions is stronger than the second one. Furthermore, a comparison of the mean-
minus-one-standard-deviation envelope of the first ensemble to the mean-plus-one-standard-
deviation envelope of the second ensemble in Figure 5.6 suggests that it is not reasonable to
combine these ensembles. The statistical measures of the combined ensemble would be meaning-
less due to the “clumping” of the two sets of data evident in Figures 5.6 and 5.7.

Overall, the agreement between the simulated and elliptical mean envelopes plotted in
Figures 5.6 and 5.7 is good, considering the limited number of the ground motions used in the
computations. Except for the building response due to the second ensemble, the differences be-
tween the simulated and theoretical envelopes in Figures 5.6 and 5.7 have a symmetric appear-
ance similar to that noted in Figures 5.1 and 5.2. As we argued earlier, this observation suggests
that the discrepancies between the simulated and elliptical envelopes are primarily due to the ap-
proximations inherent in the procedure and not due to a lack of data. On the other hand, in con-
trast to the simulated envelopes plotted in Figures 5.1 and 5.2, the simulated envelopes in Figures
5.6 and 5.7 have sharp “corners” in some directions. Each of these comers is due to a single
ground motion dominating the time-history results in that direction, which suggests that more
data is required to properly resolve any differences between the mean simulated and predicted
envelopes for the near-fault motions. The result obtained for the building response to the second
ensemble also suggests that larger ensembles should be used. In spite of this apparent lack of
data, the differences between the simulated and elliptical mean envelopes are relatively small,
particularly when one considers the spread in the data indicated by the mean-plus-or-minus-one-
standard-deviation envelopes. The maximum difference between the simulated and predicted en-
velopes in some directions of the response space is approximately 15%. While this difference is
larger than what was observed for the envelopes obtained using the artificial far-field motions
above, it is not excessive. For most directions, the difference is much less than this worst case.

71



Moreover, it is evident from Figures 5.6 and 5.7 that the response-spectrum-based procedure cor-
rectly predicts the correlation between the various responses.

Unfortunately, we cannot draw any strong conclusions from the numerical analyses per-
formed with these synthetic near-fault ground motions. The results presented in Figures 5.6 and
5.7 suggest that the response-spectrum-based procedure may be able to predict the mean enve-
lopes that bound seismic response vectors resulting from near-fault motions with reasonable ac-
curacy. However, the limited sizes of the available ensembles do not provide sufficient
resolution of the simulated envelopes necessary to either validate or refute the use of the proce-
dure for ground motions of this type. This problem should be revisited with larger ensembles of

near-fault motions designed to provide conclusive, statistically sound results.

54  COMPARISON OF TIME HISTORIES WITH ELLIPTICAL ENVELOPES

Due to the probabilistic basis of the response spectrum method, the procedure developed in
Chapter 3 should be used to predict the envelope that bounds a response vector in a statistical
sense, i.e., the mean or mean-plus-one-standard-deviation over an ensemble of ground motions.
Our attention thus far has focused on the agreement between the simulated and elliptical mean
envelopes obtained for what are believed to be “true” ensembles of ground motions in the con-
text of the response spectrum method. However, it is also interesting and insightful to examine
the relationship between individual time histories and the elliptical envelopes predicted using the
actual response spectra of the input ground motions. In particular, these comparisons will help
reveal the probabilistic nature of the response spectrum procedure developed in Chapter 3. Also,
it is interesting to compare the qualitative nature of the results obtained for the artificial ground
motions, which satisfy the assumptions of the response spectrum method, to that of the ensem-
bles of more realistic records. Recall that these ensembles of recorded ground motions are not
“true” ensembles in the context of the response spectrum method; hence, we can only indirectly
evaluate the procedure for these ground motions by making these qualitative comparisons. Be-
fore proceeding, we stress that comparisons made between individual time histories and re-
sponse-spectrum-based estimates are, strictly speaking, a misuse of the response spectrum
method. Thus, the results reported in this section cannot be used to either validate or refute the

accuracy of the response spectrum procedure. Our objective is simply to examine the relationship

72



between the response-spectrum-based envelope and realizations of the time-varying response
vector it is supposed to bound.

Cataloged in Figures 5.8 through 5.12 are the trajectories of the building roof displace-
ment corresponding to @ =0 for the ensembles of artificial ground motions, the ensembles of
synthetic and recorded near-fault motions, and the ensemble of Seattle ground motions. Plotted
with every trajectory is the elliptical envelope computed using the actual response spectra of the
input ground motions. For the artificial ground motions and the synthetic near-fault motions, the
mean and mean-plus-one-standard-deviation elliptical envelopes computed using the correspond-
ing response spectra for the ensemble are also shown. Naturally, the elliptical envelopes com-
puted using the ensemble response spectra are the same for every time history. Preliminary
analyses revealed that the qualitative nature of the results obtained for the bridge example do not
differ from that observed for the building. Therefore, the time histories recorded for the bridge
are not cataloged.

We first examine the time-history results obtained for the ensembles of artificial ground
motions. These are recorded in Figures 5.8 and 5.9 for the serviceability and ultimate level earth-
quakes, respectively. For the majority of the time histories plotted in these figures, the envelope
predicted using the actual response spectra of the input ground motions bounds the trajectory of
the response vector with reasonable accuracy. In general, the trajectories recorded for the ulti-
mate earthquakes appear to “fill in” the corresponding elliptical envelopes better than the trajec-
tories recorded for the shorter duration serviceability level events. While nearly every response
vector trajectory crosses the envelope computed using the actual response spectra, none of the
observed excursions appears to be excessive. However, for time histories #2, #13 and #16 in
Figure 5.8, the orientation of this envelope, which is related to the correlation between the ele-
ments of the response vector, does not appear to match the orientation along which the response
vector trajectory evolves. Similar discrepancies, although not as pronounced, are evident in some
of the results plotted for the ultimate level events in Figure 5.9. Time history #5 in Figure 5.9
appears to have at least two distinct phases during which the orientation suggested by the trajec-
tory of the response vector is different from that predicted by the elliptical envelope. We should
not be surprised nor alarmed by these discrepancies between the predicted orientation of the en-
velope and the orientation of the response trajectory for a given ground motion. The correlation
predicted by the response spectrum method is statistical in nature and should not be expected to
agree with the orientation of any given realization of the response vector it is supposed to bound.
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As an analogy, we do not expect every sample drawn from a random population to be equal to
the mean of the population. There are many factors that contribute to the correlation between the
elements of a sample response vector, e.g., the frequency content and relative intensities of the
components of ground motion as well as the existence (or non-existence) of time intervals during
which the components are in or out of phase. For recorded ground motions, temporal variations
in the frequency content and intensities can also contribute. We note, however, that for artificial
records such as those used in this study, these effects should cancel each other out as the length
of the record increases. This most likely explains the better agreement that is observed in the re-
sults obtained for the ultimate level events plotted in Figure 5.9, compared to the results plotted
for the shorter duration serviceability events in Figure 5.8.

For some of the time histories in Figures 5.8 and 5.9, the envelope computed using the
actual response spectra is notably different in size and/or orientation from the envelope com-
puted using the mean response spectra of the ensemble. These differences are an indication of the
probabilistic nature of the response spectrum method. Of course, we should expect to see some
variation between the envelopes predicted using the actual and the mean response spectra, be-
cause, by definition, the mean response spectrum is an average of the actual response spectra
over the ensemble of ground motions. Recall from Figures 5.1 and 5.4 that the simulated and el-
liptical mean envelopes agree very well for these ensembles of motions, in spite of these ob-
served differences in Figures 5.8 and 5.9. It is noted that the envelopes based on the actual
response spectra are in better agreement with the response trajectories than the envelopes based
on the mean response spectra

It is also interesting to compare the response vector trajectories to the mean-plus-one-
standard-deviation envelopes shown in Figures 5.8 and 5.9. In any given direction in the re-
sponse space, the projection of the response vector exceeds the projection of this envelope in ap-
proximately 10% — 15% of the time histories, which is a reasonable rate for the probability level
associated with this bound. However, in 44% of the time histories plotted in Figure 5.8 and in
40% of the time histories plotted in Figure 5.9, the response vector crosses the mean-plus-one-
standard-deviation envelope at least once. This increased rate arises from the simple fact that the
response vector does not cross the envelope in the same direction for all realizations. It is obvi-
ous from Figures 5.8 and 5.9 that the response vector crosses the mean envelope much more of-
ten. In light of these observations, it may be prudent to adopt at least the mean-plus-one-
standard-deviation envelope for design purposes. We note however that this choice, which is
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usually specified by the building codes in an implicit manner, also depends upon the load factors
applied to the seismic responses and any performance factors applied to the limit state surface
that defines the boundary between acceptable and unacceptable behaviors.

We now turn our attention to the time histories obtained for the ensembles of synthetic
near-fault ground motions, which are catalogued in Figure 5.10. It is evident from the results pre-
sented in this figure that there are two distinct sub-ensembles of ground motions in this collec-
tion, which supports our decision in Section 5.3 to examine the mean envelopes of these two
groups separately. Also, note that in the second group (time histories #6 — #10), the response
vector trajectories obtained using ground motions #6 and #7 have noticeably longer excursions

in the — 4, direction than in the + 4, direction. This bias is the cause of the offset between the

simulated and elliptical mean envelopes observed for this ensemble of ground motions in Figure
5.6.

The qualitative relationship between the response vector trajectories and the elliptical en-
velopes plotted in Figure 5.10 appears to be similar to that observed for the artificial ground mo-
tions in Figures 5.8 and 5.9. Based on this comparison, there is no evidence in Figure 5.10 that
suggests that the response-spectrum-based procedure developed in Chapter 3 cannot be used with
ground motions of this type. Of the ten time histories plotted in Figure 5.10, only time history #5
exhibits a pronounced difference between the apparent orientation of the response trajectory and
that predicted by the response-spectrum-based envelopes. However, we note that the disagree-
ment is no worse than what was observed in Figure 5.8 for time histories # 2 and #16.

The time-history results obtained for the recorded near-fault motions and the ensemble of
ground motions compiled for Seattle, Washington, are plotted in Figures 5.11 and 5.12, respec-
tively. Unlike what was observed in Figures 5.8, 5.9 and 5.10, the magnitude of the response
vectors and envelopes cataloged in Figures 5.11 and 5.12 vary significantly between events.
Thus, these figures suggest that neither of these ensembles are composed of ground motions that
are realizations of a common underlying stochastic process. As we pointed out in Chapter 4,
these ensembles are not suitable for testing the response spectrum procedure developed in Chap-
ter 3. For this reason, we have not plotted the elliptical envelopes computed using the mean and
mean-plus-one-standard-deviation response spectra of these ensembles. Nevertheless, we can

examine the qualitative relationship between the response vector trajectories and elliptical enve-
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lopes based on the actual response spectra obtained for these ground motions and make compari-
sons with similar results presented in Figures 5.8 and 5.9.

For all records plotted in Figures 5.11 and 5.12, the magnitudes of the individual compo-
nents of the response vectors appear to be well predicted by the response-spectrum-based enve-
lopes. Among the near-fault records plotted in Figure 5.11, only two (#2 and #5) exhibit
significant differences between the trajectory of the response vector and the elliptical envelope
computed using the actual response spectra of the input ground motions. These differences, how-
ever, are similar to those observed in Figure 5.8 for time histories #2, #13 and #16. For the Seat-
tle ensemble plotted in Figure 5.12, only trajectories #7 and #8 appear to be correlated differently
from what is predicted by the response-spectrum-based elliptical envelopes associated with these
records. Also of interest in this ensemble is time history #9, which exhibits two distinct phases
during which the correlation of the response vector is different. This result is comparable to that
observed for time history #5 in Figure 5.9. Overall, the qualitative nature of the results presented
in Figures 5.11 and 5.12 is comparable to what was observed in Figures 5.8 and 5.9 for the artifi-
cial ground motions. There are no trends apparent in these results for recorded ground motions
that suggest that the response-spectrum-based envelope developed in Chapter 3 cannot be used

with ground motions of this type.
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Table 5.1. Mean one-sided displacement response spectrum ordinates of the serviceability level
event corresponding to the modes of the example building.

Mode Period (sec) Damping ratio D; (mm)
1 0.6755 0.03102 18.329
2 0.6706 0.03086 18.309
3 0.3785 0.02246 11.632
4 0.2196 0.02192 6.205
5 0.2180 0.02195 6.129
6 0.1231 0.02841 2.098
7 0.1193 0.03044 1.881
8 0.1185 0.03059 1.854
9 0.0669 0.04851 0.421

Table 5.2. Mean one-sided displacement response spectrum ordinates of the serviceability level
event corresponding to the modes of the example bridge.

Mode Period (sec) Damping ratio D; (mm)
1 0.2593 0.02243 7.981
2 0.2386 0.02266 6.822
3 0.2118 0.02326 5.746
4 0.2115 0.02327 5.732
5 0.2079 0.02338 5.562
6 0.1997 0.02368 5.184
7 0.1691 0.02531 4.000
8 0.1689 0.02532 3.994
9 0.1679 0.02539 3.959
10 0.0665 0.04991 0.409
11 0.0321 0.09910 0.057
12 0.0321 0.09912 0.057
13 0.0314 0.10136 0.056
14 0.0314 0.10136 0.056
15 0.0311 0.10241 0.055
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Table 5.3. Modal contributions to roof displacements of the example building.

Direction of loading Mode(s) 4; 4

6! (radians) (mm) (mm)
1 13.1 13.1
0 2 11.6 11.6
land 2 24.6 2.5
all 24.7 2.7
1 7.1 7.1
2 15.2 15.2

n/8
land 2 22.2 8.3
all 22.3 8.4
1 0.0 0.0
2 16.5 16.5

n/4
land 2 16.5 16.5
all 16.5 16.5
1 7.1 7.1
2 15.2 15.2

3n/8
1 and 2 8.3 22.2
all 8.4 223
1 13.1 13.1
2 11.6 11.6

/2
land 2 2.5 24.6
all 2.7 24.7

! Refer to Figure 2.1
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Table 5.4. Modal contributions to response of column B1 of the example bridge.

Direction of
. P M; M;
loading Mode(s)
6! (radians) (kN) (kN'm) (N'm)

1 306 1302 1533
0 2 396 1175 1076
land 2 442 1543 2063
all 441 1543 2063
1 388 1652 1954
2 198 588 539

nn/8
land 2 394 1623 2133
all 394 1623 2132
1 411 1751 2061
2 30 88 81

n/4
1 and 2 419 1773 2044
all 418 1773 2043
1 372 1583 1863
2 253 751 688

3n/8
1 and 2 495 1899 1834
all 493 1899 1834
1 276 1174 1381
2 438 1299 1190

n/2
1 and 2 568 1939 1606
all 564 1938 1607

! Refer to Figure 2.1
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---- Simulated mean envelope
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— Elliptical envelope based on mean-plus-one-standard-deviation response spectrum

-~~~ Simulated mean-plus-one-standard-deviation envelope

Displacements in mm

Scale for all plots as shown for @ = 37/8 radians.

Figure 5.1. Comparison of simulated and predicted envelopes for building roof
displacements due to the serviceability level event.
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Figure 5.2. Comparison of simulated and predicted envelopes for bridge column
responses due to the serviceability level event.
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Figure 5.3. Elliptical envelopes for bridge column responses when S,/8,=0.
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Figure 5.4. Comparison of simulated and predicted envelopes for building roof
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Figure 5.5. Comparison of simulated and predicted envelopes for bridge column
responses due to the ultimate level event.
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Figure 5.6. Comparison of simulated and predicted envelopes for building roof
displacements due to the synthetic near-fault ensembles.
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Figure 5.7. Comparison of simulated and predicted envelopes for bridge column
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Figure 5.8. Response trajectories for the building roof displacements due to the
serviceability level events.
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Figure 5.9. Response trajectories for the building roof displacements due to the
ultimate level events.
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Figure 5.10. Response trajectories for the building roof displacements due to the
synthetic near-fault ground motions.
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Figure 5.11. Response trajectories for the building roof displacements due to the
recorded near-fault ground motions.
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Figure 5.12. Response trajectories for the building roof displacements due to the

Seattle ground motions.
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6 Use of the Response Envelopes for Analysis
and Design

6.1 INTRODUCTION

Having established the accuracy of the response-spectrum-based envelope, we now turn our at-
tention to the question of how to use the envelope in the practice of seismic analysis and design.
In particular, in this chapter we examine the ways in which the envelope can be used in conjunc-
tion with a capacity surface (commonly known as an interaction diagram) to either determine the
adequacy of a design or to determine the required value of a design parameter. In the first case,
the analyst must determine whether the envelope bounding the response vector lies entirely
within a prescribed capacity surface. In the second case, the value of a design parameter, which
controls the position of the capacity surface in the response space, must be determined such that
the capacity surface completely encompasses the envelope. We examine both of these problems
in this chapter and provide generic algorithms for their solution. The algorithms are developed

for the supreme envelope because we maintain that, due to the uncertainty in the orientation of

the principal directions of ground motion &, this is the appropriate envelope to use for the pur-
pose of assessing the adequacy of a design. However, due to the similarity between the expres-
sions (3.38) and (3.39) used to define points on the supreme and elliptical envelopes,
respectively, the same algorithms are applicable to the elliptical envelope.

Before proceeding to the discussion and development of the algorithms described above,
we review the classical structural reliability approach to this problem and its relationship to the

response envelopes developed in this study.



6.2 THE VECTOR OUT-CROSSING PROBLEM

Consider a capacity surface associated with a set of responses that is fixed in the response space.
To determine the adequacy of a design with respect to the type of failure associated with this ca-
pacity surface, it is necessary to determine whether the response vector, as it evolves in time,
out-crosses the capacity surface. If it does, then the system is said to have “failed”; otherwise, the
system is said to be “safe.”

Due to the probabilistic nature of seismic excitation and response, there is almost always
a finite probability that a system will fail. Recognizing this fact, in a reliability-based approach, a
design is considered adequate if the associated probability of failure does not exceed a prescribed
threshold. The determination of the probability of the failure event described above is the well-
known vector out-crossing problem in the field of structural reliability. This problem unfortu-
nately does not have an exact solution. However, an upper bound on the probability can be ob-
tained as described below.

Referring to Figure 6.1, an upper bound on the probability p ¢ that the response vector

x(z) out-crosses the capacity surface dS in time interval 0<t<T is given by (Shinozuka,

1964)
T

ps < ps0)+[v(3s,1)dr, 6.1)
0

where p,(0) is the probability that the response vector originates in the failure domain (usu-
ally p;(0) =0 for applications of seismic design) and v(3S,?) is the mean rate at which x(1)

out-crosses dS per unit time. In general, the solution of v(3S,?)is difficult, as it involves the
joint distribution of the response vector and its time derivative and an integration over the capac-
ity surface (Belyaev, 1968). Consequently, there are only a few closed-form solutions available
for the mean out-crossing rate for restricted classes of processes and capacity surfaces (e.g.,
Veneziano, et al., 1977). It should be noted that the above approach effectively couples the com-
putation of the response vector statistics and the capacity surface, which is not convenient for
practical design.

The response-spectrum-based envelope developed in this study provides an alternative

means of addressing the question of whether a given design is adequate. In particular, we con-
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sider a design adequate when the envelope bounding the response vector under consideration is
completely encompassed by the capacity surface. This is in fact the traditional approach taken in
structural engineering, namely to predict the critical combination of responses acting in a struc-
tural element and to compare this combination to the capacity of the element. An important ad-
vantage of this approach, over that based on the out-crossing formula (6.1), is that the demand
and capacity evaluations are effectively uncoupled, i.e., one simply computes the response enve-
lope and capacity surface and compares them. Naturally, an important consideration when mak-
ing such a comparison is the probability level associated with the envelope (e.g., mean, mean-
plus-one-standard-deviation, etc.). Usually, however, this aspect is implicitly controlled by build-
ing codes through prescribed design response spectra and load factors. For the remainder of this
chapter and the next, the mean bounding envelope is assumed. However, we stress that the algo-
rithms developed in this chapter and the qualitative nature of the results and conclusions pre-
sented here and in the Chapter 7 are not affected by this choice.

When there are only two response quantities, the adequacy of the system can be deter-
mined by simply plotting the response envelope and the capacity curve and visually confirming
that the capacity curve completely encompasses the envelope. This approach can be extended to
analyses involving three response quantities by plotting cross sections of the response envelope
and capacity surface at several values of one response. However, this approach clearly becomes
cumbersome for problems that involve more than three responses. For such cases, a numerical
algorithm for determining whether the capacity surface completely encompasses the m-
dimensional response envelope is necessary. The remainder of this chapter focuses on the devel-

opment of such algorithms.

6.3 COMPARISON WITH A PRESCRIBED CAPACITY SURFACE

Consider Figure 6.2, in which we show the cross section of the supreme envelope bounding re-

sponse vector x(¢) centered at X, a unit vector &, which defines a hyperplane that is tangent to
the envelope at X, , and the corresponding unit vector 8 = (x, —X,)/||X, =X || in the plane
defined by & and B . Also indicated in this figure is the cross section of the capacity surface in

this plane, which is defined by the limit state function g(x) =0, and the distance R4 from x, to

the capacity surface along the direction [. Let S p denote the distance to the envelope in the
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same direction. It is assumed that g(x)>0 on the safe side of the capacity surface. The follow-

ing development is restricted to concave safe domains, such as that shown in Figure 6.2. Fur-
thermore, we assume the safe domain is closed (i.e., it does not extend to infinity in any
direction) and does not contain any failure subregions. Capacity surfaces commonly encountered
in structural engineering applications have these properties. Clearly, the capacity surface com-

pletely encompasses the response envelope when R 8 / S 21 for all directions S . Thus, our ob-
jective is to determine the minimum value of A =R 5 /S forall B, which we denote as A", and

check whether A" >1. If this inequality is satisfied, then the system is said to be safe. We note

that the ratio A" is commonly called a “safety factor” in engineering practice. In the present case,
it can be interpreted as the factor by which the response spectra of the components of ground

motion must be scaled so that the response envelope touches, but does not cross, the capacity

surface. Thus, A" is a measure of the safety of the design.

Ideally, we would like to work only with B and avoid involving @ in the minimization
procedure. This is possible for the elliptical envelope through use of (3.11), but not for the su-

preme envelope because the matrix X defined in (3.34), which is central to the definition of the

supreme envelope, is a complicated function of & . Thus, we must resort to expressing S p and

B in terms of & and find &" corresponding to A*. The required criteria for A to be a mini-

mum are
Vi = -ai ={0} 6.2)
a a=a*
det|V22 <0 6.3)
where {0} is an m-vector of zeros and
2 ax 8/12 ..
V= i,j=12,...,m (6.4)
dojoa; |
a=a

is the mxm Hessian matrix. Recognizing machine precision limits, the convergence criterion

(6.2) is considered satisfied when

||V,1*

<€ (6.5)
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where ¢ is a suitably small tolerance. We note that the evaluation of (6.2) and (6.4) require that

the limit state surface g(x) =0 be differentiable, which may not be the case, e.g., at points ‘a’,

‘b’ and ‘c’ in Figure 6.2. A practical approach to avoiding this problem is to locally smoothen

the limit state surface at those points where g(x)=0 is not differentiable. In engineering appli-

cations, this can usually be done with negligible loss in the accuracy of the limit state surface.
Due to the obvious nonlinear nature of this optimization problem, its solution must be

found by iteration. However, before starting the iterative portion of the solution scheme, it is

computationally advantageous to check that g(x,) > 0. Obviously, if the center of the envelope
is not in the safe domain, then the capacity surface does not encompass the response envelope
and there is no reason to proceed to the iterative portion of the algorithm. In fact, if g(x,) <0,
then the system is unsafe under the static loads acting on it. Let a® , B @ xg) R Rg) " Sg) and
A9 denote the values of o, B, X,, Rﬂ, S 8 and A at iteration i, respectively. To start the al-
gorithm, an initial direction vector a@ is specified. The ith iteration of the algorithm involves
the following computational steps.

1) Compute the point xg) on the response envelope for o' using (3.38) or (3.39), depend-

ing on the envelope considered.

(2)  Compute Sg) and B® from
s§ =[x —x| 6.6)

and

@ _
BY B -x0) 6.7)

@)
Sg

(3)  Determine the distance R’ from X, to the capacity surface in direction S . Referring

to Figure 6.2, this distance is the positive value of Rg) that satisfies g(Rg) BY +x4)=0.

A hypothetical plot of g(Rg) BY +X,) as a function of Rg) , Which corresponds|to the

situation illustrated in Figure 6.2, is shown in Figure 6.3. Note that, because the safe do-

main is closed and we checked that g(x,) >0 before entering the iterative portion| of the
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“4)
©))

algorithm, a unique positive value of Rg) that satisfies g(Rg) BY +X,) =0 must exist.
This root can be found most efficiently by means of the Newton-Raphson algorithm. We
denote the value of Rg) at the jth iteration of this root-finding algorithm as Rg)(j ) and
note that the initial value RI(;XO) must be chosen so that the procedure converges to the

desired positive root. It can be seen from Figure 6.3 that this corresponds to the case

when

dg(RY B +x,)

drRY N
(i) _ p()(0)
£ e

<0. (6.8)

Compute the gradient vector VA® and the Hessian matrix V>A® by finite differences.

Check the convergence criterion

VAOl<e. (6.9)
V2]

If (6.9) is satisfied, the sign of det[V2A®] is checked to determine whether A” repre-

sents a maximum or a minimum; otherwise, the direction vector is updated using the

Newton-Raphson rule

o) = @ 4 Ag® (6.10)

where the step size is
. 2 I _1 .
20D =— [V2 0] w10 6.11)

and the next iteration of the algorithm is started.

As for any nonlinear optimization routine, there is no guarantee that the above algorithm

will converge. For convergence, one may have to reduce the step size in (6.10) by multiplying

40 by a factor that is less than unity. This was not necessary though for any of the numerical

analyses performed in Chapter 7 using this algorithm. However, we caution that if the conver-

gence criterion (6.9) is satisfied and det[VZ1?]<0, then A? is a minimum but not necessarily

A", since the algorithm cannot distinguish between global and local minima. This is also a well-

known shortcoming of all nonlinear optimization routines. One way to address this problem is to

96



restart the above algorithm with several different initial vectors a® in an effort to sample all
regions of the response space surrounding the envelope. Initial vectors directed along each re-

sponse axis in both the positive and negative directions are reasonable choices for this purpose.

64 COMPARISON WITH A PARAMETERIZED CAPACITY SURFACE

The algorithm developed in the previous section assumed that the capacity surface was fixed in
the response space. This condition usually reflects an analysis situation in which the adequacy of
a structure is being assessed. In this section, we consider a related problem that arises primarily

in design situations, in which the position of the capacity surface in the response space is vari-
able, but uniquely determined by k design parameters y =[y, y5,.--» yk]T; i.e., the limit state
function that defines the safe domain is of the form g(x,y)=0. To ensure the safety of the sys-

tem, the engineer must select the parameters such that no point on the response envelope under
consideration exceeds the resulting capacity surface. Obviously, when there is more than one de-
sign parameter, an objective function is necessary to guide the choice. A common approach used
in practice, however, is to prescribe all but one parameter, which is then determined such that the
capacity surface completely encompasses the response envelope. If required, the prescribed pa-
rameters can then be varied and the free parameter re-evaluated to find the most suitable design.
To illustrate this approach, we present in this section an algorithm for finding the required rein-
forcement ratio of a reinforced concrete column that has a prescribed size and steel and concrete
strengths. The algorithm is used for the bridge design examples presented in Chapter 7. While
the details of the procedure presented in this section are particular to our needs in Chapter 7, the
algorithm can be easily modified for use with any response interaction problem involving any
number of responses and a single design parameter.

Suppose for the example bridge in Figure 4.2, the column sizes and material strengths are
fixed at the values listed in the figure. The column reinforcement is assumed to be uniformly dis-
tributed around the perimeter of the section with the centerline of the reinforcing steel located 75
mm from the column face. Under these conditions, the only variable controlling the capacity of

the column in the design examples presented in Chapter 7 is the reinforcement ratio o;. Thus,
the limit state function can be expressed in the form g(x,0,)=0. This assumes that the limit

state function monotonically increases with p,, which is correct for realistic values of p,. It is
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assumed that p; can be determined for any point x=[P,M,,M 2]T on the capacity surface,
where P is the axial load in the column and M, and M, are the bending moments about the z,
and z, axes shown in Figure 4.2, respectively. Each value of p, corresponds to a bending mo-

ment / axial force capacity surface in the response space. For this study, the capacity surface is
based on the provisions of ACI 318-95 (ACI, 1995). Capacity surfaces for the circular columns
considered in this study are rotationally symmetric about the axial force axis. Cross sections of

the capacity surfaces corresponding to selected values of p; are shown in Figure 6.4. For a given

response envelope (rectangular, elliptical or supreme), the required reinforcement ratio, p; , cor-
responds to a capacity surface that completely encompasses the response envelope and touches it

at a point that we denote as x".

For the rectangular envelope, owing to the convexity of the capacity surfaces plotted in

Figure 6.4, X" always coincides with one of the corners of the rectangle. However, x* is not as

obvious for the elliptical and supreme envelopes. When there are only two response quantities,
e.g., axial force and a bending moment about one axis, x* can be found by simply plotting the
response envelope on a set of capacity curves corresponding to a range of p, and selecting that
p; for which the capacity surface completely encompasses the response envelope. This ap-

proach can be extended to analyses involving three response quantities (the present case) by plot-
ting cross sections of the response envelope and capacity surfaces at several values of one

response, €.g., the axial load. The maximum required reinforcement ratio found from this ensem-
ble of cross sections is approximately o, . Naturally, the accuracy of this estimate is dependent

upon the number of cross sections considered. While this approach is sound, it can be cumber-

some. Furthermore, it is not practical for problems that involve more than three responses. In
such cases, a numerical algorithm for determining x* is required.

For the elliptical and supreme envelopes, the capacity surface defined by p, must be

tangent to the envelope at x*. Hence, the gradient vector,

L 6.12)
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which is normal to the capacity surface, must be parallel to the normal vector ¢ that defines the

bounding hyperplane tangent to the envelope at x*; i.e.,

Vp!<a” (6.13)

A point on the envelope at which (6.13) is satisfied can be found by iteration. Let a®,

x? and Vo denote the values of &, x and Vp, at the ith step and start the algorithm with an

initial direction vector &% . The ith iteration of the algorithm proceeds as follows.

Y]

2

3)

“4)

Compute x> on the response envelope corresponding to o using (3.38) or (3.39),

depending on the type of envelope used.

Compute Vo of the capacity surface at x” by finite differences. Note that the evalua-

tion of Vo) requires that the capacity surface be differentiable at x, which cannot be

guaranteed; e.g., see Figure 6.4. As suggested in Section 6.3, a practical solution to this
problem is to locally smoothen the capacity surface at those points where it is not differ-

entiable.
Update the direction vector using the recursive formula
o' =vp®. (6.14)

Recall that when using (3.38) or (3.39), @ need not be a unit vector. A slight computa-

tional advantage is gained from this property by not normalizing the vector a*? ob-

tained from (6.14).
Check the convergence criterion

o) _ g ®

=]

where € is a suitably small tolerance. If (6.15) is satisfied, the algorithm is terminated,

<& (6.15)

otherwise the next iteration is started. As we discussed in the previous section, due to the
nonlinear nature of the preceding algorithm, we cannot guarantee that it will converge to
a solution that satisfies (6.15). Nevertheless, for all numerical cases investigated in Chap-

ter 7 using this algorithm, rapid convergence was achieved.
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Upon convergence of the algorithm, the corresponding values of x and p, are recorded.

These values, however, are not necessarily x* and p;, since the algorithm cannot distinguish
between global and local maxima or minima. To address this problem, the algorithm can be re-

started with several different initial directions ¥ . For the analyses presented in Chapter 7, o'©

was taken to be a unit vector directed along one of the three response axes in either the positive
or negative directions. Hence, six realizations of a® were used. From the six trials, the maxi-
mum value of p; was considered to be the required reinforcement ratio, p; . For the present in-

vestigation, the accuracy of the reported results was confirmed by studying three-dimensional

plots of the envelope and capacity surface in the response space. In all cases, at least one of the

six trials converged to the true critical point x™ and corresponding p; . This was visually verified
by observing that the capacity surface defined by p; encompassed the response envelope and

was tangent to it at X" .
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Figure 6.2. The geometry of the response envelope in relation to the capacity surface.
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7 Analysis and Design Applications

7.1 INTRODUCTION

The results presented in Chapter 5 demonstrate that for a prescribed value of @, the proposed
elliptical envelope accurately bounds the vector response process as it evolves in time. This re-
sult also carries over to the supreme envelope, as the latter is the union of the elliptical envelopes
for all values of . In this chapter, we address the question of whether the use of the elliptical
and/or supreme envelope, rather than the rectangular envelope commonly used in the current
practice, has any significant effect on the analysis or design of structural elements subjected to
seismic loads.

To answer this question, we consider selected columns of the reinforced concrete bridge
shown in Figure 4.3, which must resist the axial forces and bending moments that act concur-
rently in them. The chapter is divided into three sections. In Sections 7.2 and 7.3, comparisons
are made between the results obtained using the elliptical and rectangular envelopes for a speci-
fied orientation of the principal components of ground motion. This corresponds to the case in
which the principal directions of the earthquake are known in advance, which could occur when
there is a single, well-defined potential source for the earthquake. In Section 7.2, a situation
commonly encountered in the analysis of existing structures is considered; specifically, the di-
mensions, material properties and reinforcement ratios of the columns are prescribed and their
adequacy to resist the seismic loads imposed on them is evaluated. The algorithm developed in
Section 6.3 is used for this purpose. In Section 7.3, only the dimensions and material properties
of the columns are specified and the algorithm developed in Section 6.4 is used to determine the
required reinforcement ratios. The calculations performed in Section 7.3 are typical of those rou-
tinely done in the design of new structures. Finally, in Section 7.4, the assumption that the prin-
cipal directions of ground motion are known is relaxed and the required column reinforcement

ratios that correspond to the elliptical and rectangular envelopes for all possible values of 8 are



computed. These results are compared to those obtained using the supreme envelope in order to
understand its significance on the seismic design of structures. The comparisons made in this
chapter reveal the benefits that can be derived by using the elliptical or supreme envelope, rather

than the conventional rectangular envelope used in the current practice.

7.2 SIGNIFICANCE OF THE ELLIPTICAL ENVELOPE ON THE EVALUATION
OF EXISTING STRUCTURES

Consider columns B1, B2, D1 and D2 of the reinforced concrete bridge shown in Figure 4.3.
During an earthquake, each of these columns must resist the axial force P(z) and bending mo-
ments M,(¢) and M,(zr) about the z; and z, axes, respectively, that act at their bases. For the
following analyses, the dimensions and material properties of these columns are as specified in
Figure 4.3 and each column has a reinforcement ratio p, =0.015. Hence, the capacity surfaces
for the columns are completely defined, as might be the case for an existing structure. In this sec-
tion, we demonstrate the significance of using the elliptical envelope, instead of the conventional
rectangular envelope, in the evaluation of the adequacy of these columns to resist the demands
imposed on them by an earthquake.

The analyses are performed for the three load cases listed in Table 7.1. The displacement
response spectrum of the major principal component of the ground motion, denoted D, in Table
7.1, corresponds to the mean pseudo-acceleration response spectrum of the ensemble of service-
ability level earthquakes shown in Figure 4.8. This component is directed along the z; axis of the
bridge shown in Figure 4.3, i.e., # =0. As is common in practice, the response spectra associ-
ated with the intermediate and minor principal components of ground motion are assumed to be
proportional to D, as indicated in Table 7.1. The scale factors applied to these components are
based on the observations made by Penzien and Watabe (1975). Strictly speaking, it is not cor-
rect to refer to the principal components of ground motion for load case 1, as there is only one
component of ground motion acting on the structure. However, no confusion should arise from
denoting this single component of ground motion as the major principal component. The contri-
butions of the static forces arising from dead loads are included in the analyses. The static com-

ponents of the axial forces and bending moments acting at the bases of the columns considered
are listed in Table 4.8.
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Using the moment-axial capacity surfaces in Figure 6.4, which are in accordance with the

provisions of ACI 318-95 (ACI, 1995), the adequacy of each column is evaluated using the algo-

rithm described in Section 6.3. Recall that this algorithm computes a factor A" that is a measure

of how much the response spectra must be scaled so that the response envelope touches, but does
not exceed, the prescribed capacity surface. When A" 21, the capacity surface completely en-

compasses the response envelope and the system is said to be “safe.” Conversely, when 4" <1,

there are points on the response envelope that exceed the capacity surface and the system is said

to be “unsafe.” The value of A" obtained using the elliptical envelope is compared to that ob-

tained when the rectangular envelope is assumed. Due to the convexity of the column capacity

surface, A* for the rectangular envelope can be determined by computing the required scale fac-
tor at each comer of the envelope and selecting the minimum value. However, such a compari-
son could be unfair. Often the behavior of a structure under lateral loads is simple enough that an
experienced engineer can rule out improbable combinations of responses predicted by the rec-
tangular envelope. In effect, the engineer would be making a subjective prediction about the cor-
relation structure of the response vector. However, it would not be prudent of the engineer to
assume a response combination that did not lie on a corner of the rectangular envelope. To ap-

proximately account for this effect, in addition to computing the minimum scale factor for the

*

rectangular envelope, A, , by considering all corners of the envelope, the scale factor, A,

nearest

of that corner that lies nearest to the critical point on the elliptical envelope (corresponding to

A") is also computed. Presumably, if the engineer’s judgment is sound, this is the corner of the
rectangular envelope that he or she would use in the assessment.
The scale factors obtained for each column, load case and type of envelope are summa-

rized in Table 7.2. Also listed in this table are the critical combinations of axial force and bend-
ing moments [P*,M,M;]" for each case. The results summarized in Table 7.2 indicate that
the use of the elliptical envelope, rather than the rectangular envelope, can have a significant ef-

fect on the seismic evaluation of an existing structure. As expected, the scale factors A, and

worst
Aveares: ODtained using the rectangular envelope are smaller than A" obtained using the elliptical

envelope in all cases. Thus, by adopting the rectangular envelope, one obtains a conservative es-
timate of the adequacy of the bridge columns. However, the results in Table 7.2 suggest that the

rectangular envelope can be overly conservative. For all columns and load cases listed in Table
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7.2, A >1 for the elliptical envelope. This suggests that the columns are safe and do not need to
be improved. In contrast, the results obtained using the rectangular envelope indicate that the
columns are safe only for load case #1, in which the bridge is subjected to a single component of

ground motion. For the more realistic load cases #2 and #3, the scale factors obtained using the
rectangular envelope lie in the ranges 0.75< A{,, <0.88 and 0.77< A .. <0.88 for the

“worst” and “nearest” corners, respectively. Based on these values of the scale factor, one would
conclude that the columns are inadequate and should be improved. For an existing structure, such
improvements can be expensive. Thus, this example demonstrates the economic benefit that may
be derived from use of the elliptical envelope rather than the rectangular envelope in such analy-
ses. Namely, unnecessary and potentially expensive renovations might be avoided by using the
elliptical envelope.

The substantial difference between the scale factors recorded for the elliptical and rectan-
gular envelopes in Table 7.2 is primarily due to the weak correlation that exists between the

bending moments M, and M, (e.g., see Figure 5.2 for column B1). Consequently, as can be

seen in Table 7.2, the critical point on the elliptical envelope corresponding to A" lies away from
the corners of the rectangular envelope. Due to the convexity of the capacity surface, the corners
of the rectangular envelope can therefore lie much closer to the capacity surface than the critical
point on the elliptical envelope, leading to the observed differences between the scale factors.

The weak correlation between M, and M, is also responsible for the small difference between

Arworst @d Age,, Tecorded for each load case, since the nearest corner of the rectangular enve-

lope tends to be only marginally closer to the critical point on the elliptical envelope than the
worst corner. In fact, for column D2, the worst and nearest cormners of the rectangular envelope
are the same. We note that if the critical point on the elliptical envelope were located near one of

the corners of the rectangular envelope (e.g., see the envelope corresponding to 6 = 7/4 radians

*

in Figure 5.3), then the scale factors A" and A, would be comparable. Moreover, A, in

this case could be significantly larger than A" and A, .., depending on the location of the re-

sponse envelope relative to the capacity surface.

The results presented in Table 7.2 indicate that the scale factors computed using load
cases #2 and #3 differ only slightly, if at all. To understand this observation, consider Table 7.3,
which lists the peak seismic axial forces and bending moments due to load cases #2 and #3 along
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with the difference between these values. The differences, which are due to the vertical compo-
nent of ground motion, indicate that the vertical ground accelerations significantly increase the
seismic axial forces but not the bending moments acting in the bridge columns, as we might ex-
pect. However, for each column, the increase in the axial load due to vertical ground motions
listed in Table 7.3 is small relative to the scale of the capacity surface plotted in Figure 6.4.
Hence, large differences between the scale factors obtained for load cases #2 and #3 are not ex-
pected. In general, for a given envelope, the scale factor decreases or does not change upon the
introduction of the vertical component of ground motion. One exception, however, is column B2.
For this column, the scale factor computed using the nearest corner of the rectangular envelope
increases, i.e., the adequacy of the column improves, when the vertical accelerations are included
in the analyses. This counterintuitive result occurs because (1) the axial load associated with the
nearest corner of the rectangular envelope for this column increases when vertical ground mo-
tions are included (see Table 7.2) and (2) the envelope lies in a region of the response space
where an increase in the axial load increases the capacity of the column; i.e., the column capacity
is controlled by the yield strength of the reinforcing steel rather than the compressive strength of

the concrete.

7.3  SIGNIFICANCE OF THE ELLIPTICAL ENVELOPE ON THE SEISMIC
DESIGN OF NEW STRUCTURES

To evaluate the potential significance of using the elliptical envelope rather than the conven-
tional rectangular envelope in design calculations, bridge columns B1, B2, D1 and D2 shown in
Figure 4.3 are designed for the axial force and bending moments that act at their bases. In par-
ticular, we assume that the column sizes and material properties are fixed at the values listed in
Figure 4.3 and we compute the required reinforcement ratios of these columns using the algo-
rithm formulated in Section 6.4 of the previous chapter. The design calculations are performed
for the three load cases listed in Table 7.1, with the contributions of the static forces arising from
dead loads included in the analyses.

Assuming the elliptical envelope and using the moment-axial capacity surfaces in Figure
6.4, the required reinforcement ratio, o, , and corresponding point x* on the envelope are com-

puted. The reinforcement ratio is compared to the maximum reinforcement ratio required when
the rectangular envelope is used to design the column. This approach, namely to apply the
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ground motions along the assumed structure axes and to use the most critical combination of re-
sponses obtained for design, is common in the current practice. It essentially requires checking
the eight corners of the rectangular envelope and determining the maximum reinforcement ratio.
However, as we discussed in Section 7.2, such a comparison could be unfair as the behavior of a
structure under lateral loads is often simple enough that an experienced engineer can rule out im-

probable combinations of responses predicted by the rectangular envelope. Thus, in addition to

computing the maximum required reinforcement ratio, p; . , by considering all corners of the
rectangular envelope, we compute the required reinforcement ratio, 0O, ... » Of that corner that

lies nearest to x".
The required reinforcement ratios for each column and load case assuming the different
envelopes and load conditions described above are summarized in Table 7.4. The amount of ad-

ditional reinforcement required when the rectangular envelope is used is expressed as the per-

centage
e = 22t~ Ps 100 g (1.1)
Ps
or
e = 2225 L5 100 12)

Ps

for the worst and nearest comners of the rectangular envelopes, respectively. These percentages
can be interpreted as the amount of over-design incurred when the rectangular envelope is used
to compute the required reinforcement ratio.

The results presented in Table 7.4 are similar to those presented in Table 7.2 in many re-
spects. As can be seen in Table 7.4, use of the elliptical envelope can lead to significant reduc-
tions in the required reinforcement ratios for all load cases considered. With one exception,
columns B1, B2 and D1 require approximately 50% to 60% more reinforcement when designed
using the “nearest” corner of the rectangular envelope rather than the elliptical envelope. The
effect is even more pronounced in column D2 where use of the rectangular envelope results in
approximately 80% to 90% more reinforcement than that found using the elliptical envelope. As

discussed in Section 7.2, these results stem from the fact that there is weak correlation between
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the bending moments M, and M ,. Consequently, the critical design point x" is far from the

corners of the rectangular envelope, leading to the observed differences between the required re-

inforcement ratios. We also note that, while we expect the corner of the rectangular envelope

nearest X to yield a smaller value for the required reinforcement ratio than the worst corner, the
difference between the values obtained using these different corners is small compared to the dif-
ference between the elliptical and rectangular envelope results. Again, this observation is similar
to that made in Section 7.2 with respect to the scale factors computed using the worst and nearest
corners of the rectangular envelope.

The results in Table 7.4 obtained upon introducing the third component of ground mo-

tion directed vertically along the z; axis (load case 3) differ only marginally from the results ob-

tained for load case 2. This is because the vertical component of ground motion does not
contribute substantially to the response of the bridge. This observation agrees with the recom-
mendations contained in most building codes that stipulate that vertical accelerations need not be
considered in the design of conventional structures. It is interesting to note, however, that the re-
quired column reinforcement ratio for column B2 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>