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PEER Report 2017-03 Addendum. 
 
The authors recommend the replacement of Section 3.5.1 and Table 3.15 with the content of 
this Addendum. Consequently, the recommendation is to replace the 13 models and their 
weights with the 17 models provided in electronic appendix AppendixA_17GMMs. 
The development of weights (Table 3.15) follows the same procedure that was described in the 
original Section 3.7 of the report, with the final numbers updated for the 17 models as provided 
in electronic appendix AppendixA_17GMMs.  
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Addendum - Updated Sections 3.5 and 3.6 

 Discretization of Ground-Motion Space 

3.5.1 Definition of Range in Ground-Motion Space 

In the previous section, the visualization of the sampled models from the continuous ground-
motion distribution P(Y) was presented. This results in Sammon’s maps, one for each 
frequency, which are a representation of the high-dimensional ground-motion model space – 
each map is an approximation of P(Y). Since P(Y) describes epistemic uncertainty, and the map 
is an approximation of P(Y), then the center, body and range (CBR) on the map is an 
approximation to CBR of P(Y). Thus, defining the CBR of the models in the two-dimensional 
space (on the map) is an approximation to the center, body and range of P(Y). The definition of 
the range is done similar to a one-dimensional distribution; in that case, often a range of ±2σ is 
chosen (in the case of a normal distribution). Such a range covers 95.45% of the total 
probability of a normal distribution: 

  (3–17) 

However, the Sammon’s maps represent a two-dimensional distribution. Based on the definition 
of a two-dimensional normal distribution and the distribution of the sampled models (gray points 
in Figure 3–49), an ellipse was selected to represent the range on the map. The half-axes of the 
ellipses are determined by the standard deviations of the distribution of points in x- and y-
direction. These are calculated and then scaled by a factor α such that the resulting ellipse 
covers 95% of the total probability of a two-dimensional normal distribution. The factor α is 
calculated in the following way: The probability density function of the two-dimensional normal 
distribution is converted to polar coordinates r, q, and the angle q is marginalized out. This 
results in a Rayleigh distribution, and the scaling factor α can be calculated from 

  (3–18) 

where F is the cumulative distribution of the Rayleigh distribution, and p is the amount of 
probability that should be enclosed by the ellipse (p = 0.95). The resulting scale factor is α = 
2.45. This is equivalent to use a second order chi-squared distribution at the 0.95 bilateral level. 

The ellipse is centered on the point {0,0}, which corresponds to the mean of the seed GMMs 
(see Section 8.3). Figure 3–51 shows the ellipse defining the range for two frequencies. This 
range covers large portion of the map, and thus also in the ground-motion model space. 
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Figure 3–51 Sammon’s maps for two different frequencies and 10,000 sampled models 
(gray points). The range defined by the TI team is a black ellipse.  

 
 

3.5.2 Discretization of the Ground-Motion Space into Cells 

With the range as defined in the previous section, the ellipse encloses the subset of ground-
motion model space (Figure 3–51) that the TI team intends to capture. As described above, this 
range covers 95% of the total probability on the map. The range needs to be discretized into a 
manageable number of GMMs. Therefore, the ellipse defining the range is partitioned into 
several cells, and a representative model for each cell is developed. 

The space inside the ellipse is further partitioned via two ellipses (forming rings), with different 
(smaller) scale factors. Thus, the considered range is partitioned into a central ellipse and two 
outer rings. These rings are further partitioned into eight cells, based on equal angular distances 
(45°), to capture epistemic uncertainty in magnitude and distance scaling. Thus, in total there 
are 17 cells-one central cell (ellipse), and eight cells each on the central and outer ring. 

The scale factors to calculate the semi-axes of the inner ellipses are again based on a two-
dimensional Gaussian distribution. The center cell represents the center, the middle ring the 
body, and the outer ring the range of the distribution. Based on a two-dimensional normal 
distribution, the center should correspond to 10% of the density, the body should capture 75% 
(including the center), and the full range should capture 95% of the distribution, as stated in the 
previous section. Thus, the body corresponds to 65% (75–10), and the range corresponds to 
20%. Hence, the scale factors for the inner ellipses are calculated such that the cumulative 
distribution function of a two-dimensional normal distribution equals 0.1 and 0.75. The scale 
factors are calculated from the cumulative distribution function of the Rayleigh distribution, 
according to Equation (3–18). The resulting scale factors are α = 0.46, 1.65 for p = 0.1,0.75. 

The TI team tested a different discretization, using the same outer ellipse and three rings to 
define a total of 13 and 29 models. The 29 models scheme was the original approach presented 
at the SSHAC workshops. The TI team concluded that there is not enough information to defend 
a more complex discretization, and that the 17 models scheme was appropriate (and practical) 
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to capture a range of ground-motion values. The number of models is sufficient to capture 
alternate magnitude and distance scaling behaviors represented in the space away from the 
center.  

An example of the discretized ground-motion space is shown in Figure 3–52, for all frequencies. 
Figure 3–53 shows the fraction of areas of the different cells with respect to the cell in the 
center. 

 

Figure 3–52 Sammon’s maps for two different frequencies and 10,000 sampled models 
(gray points). The partition of the ground-motion space is shown as black cells.  

 
Figure 3–53 Model indices of different cells (left) and fraction of area of different cells 

with respect to the center cell (right). 
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3.5.3 Selection of Representative GMM for Each Cell 

Each of the 17cells defined above covers a fraction of the area on the map, which is the full 
representation of P(Y). The next step is to define a representative GMM for each cell. Various 
candidate representative models were considered by the TI team, with preference given to an 
approximation to the expectation of Y over each cell. Since P(Y) is a distribution over vectors of 
ground-motion estimates (an approximation of a continuous GMM), this results in a valid GMM. 
The approximation to the expectation is calculated by averaging over all models inside one cell: 

  (3–19) 

where k indexes the cell, and  is the number of samples inside a cell. This is an 

approximation of: 

  (3–20) 

The representative model for each cell is therefore an average of samples from P(Y), which 
allows the representation of the systematic trends in that cell. For example, if the representative 
model was randomly selected from any model in the cell, it could lead to extreme model 
realizations and larger variations from frequency to frequency (and very jagged spectra). 
Because the maps are all oriented the same way, the average metric has the advantage of 
producing smoother spectra. 

All the samples passed the criteria of physicality established by the TI team, ensuring that the 
selected models also pass the physicality constraints. Figure 3–54 shows the scaling of the 17 
selected models against magnitude and distance. 

Figure 3–54 Distance and magnitude scaling of selected models for f = 1 Hz. 

 
 

The spectra of the selected models are shown in Figure 3–55, for a single (M, RRUP) values. For 
each frequency, the models with the same model index (see right-hand panel of Figure 3–53) 
are combined into one GMM. Considering that the process is performed for each frequency 
independently, the spectra are reasonably smooth. The smoothness is ensured by the fact that 
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the Sammon’s maps, on which the selected models are based, are all rotated and flipped in the 
same way. Figure 3–56 shows an example 3D plot for two different frequencies. The three axes 
correspond to ground motions from three different (M, RRUP) scenarios. The seeds and samples 
align into plane-like cloud structures, one for each frequency. These two planes cover different 
ground-motion values, but the location of the seeds and samples remain in similar positions 
relative to each plane. This is especially true for close-by frequencies and can explain the 
relative smoothness of the spectra. Once the high-dimensional space is mapped in two 
dimensions, the structure is preserved across frequencies by the rotation and reflection of the 
Sammon’s maps in a consistent way. Hence, the regions on the Sammon’s maps for the 
different frequencies correspond roughly to the same scaling properties. However, smoother 
individual models may be desired for specific applications. The smoothing of the 17 models is 
described in the next section. 

 

Figure 3–55 Spectra of 17 selected models for a single (M, R) scenario. 
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Figure 3–56 Three-dimensional ground-motion space for seeds and samples at two 
frequencies (1 and 10 Hz).  

  
 
 
 

 

 Final Models and Smoothing Process 

Figure 3–55 shows that although the spectra are relatively smooth, they may be too jagged for 
certain applications. This is especially true for models near the tail ends of the distributions (the 
outer cells in ellipse), which are averaged over a smaller number of models in each cell. 
Therefore, the TI team decided to smooth the 17 selected models to ensure a reasonable 
expected shape of all spectra for all (M, RRUP) scenarios. 
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Figure 3–57 Example of spectrum smoothing (blue is raw, red is smoothed) for an 
individual model and a single (M, R) scenario.  

 
 

. 

The smoothing is done by fitting each of the 17 models to a function that depends on frequency, 
magnitude and distance. 

  (3–21) 

where Y is the logarithmic PSA value at one of the 24 NGA East frequencies (f = 0.1 to 100 Hz 
plus PGA as described above), and k indexes the 17 models. The function g(f, M, RRUP) has the 
following form (modified from McGuire et al. (2001): 

  (3–22) 

where some of the coefficients a* depend on magnitude and distance. The dependence of the 
coefficients on M and RRUP is as follows 
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where the coefficients c* are estimated. The other coefficients (a1, a2, a3, a5) are held constant 
across all magnitudes and distances. The coefficient a0 corresponds to the PGA value. It is 
different for each of the 374 M-RRUP scenarios. 

All coefficients (a*,c*) are estimated via Bayesian inference using the program Stan (Carpenter 
et al., 2017; Stan Development Team, 2017). The prior distributions for the coefficients q (save 
a0) are set to be weakly informative--they are normal distributions with mean zero and standard 
deviation 10, or q ~ N(0,10). 

The prior distribution for a0 is a normal distribution whose mean is the PGA value of the 
unsmoothed model, with a standard deviation of 0.1. This ensures that the estimated coefficient 
a0 is similar to the unsmoothed PGA value. 

The parameters are estimated by maximum-a-posteriori (MAP) optimization. Since the inference 
is sensitive to the starting values, four different starting values are used, and the final model with 
the highest log-probability is used. 

Figure 3–57 shows the fit of one particular spectrum, and Figure 3–57 shows the smoothed 
version of the spectra from Figure 3–55. Figure 3–59 shows comparisons of the hazard curve 
distribution for f = 1 Hz, calculated the smoothed and unsmoothed models. Figure 3–60 shows a 
sample uniform hazard spectrum (UHS), calculated for both the smoothed and unsmoothed 
models. Although there are some differences at some frequencies, there is no defensible 
argument to maintain the “kinks,” which are relatively small. The benefit of smooth spectra was 
deemed to outweigh benefits of preserving the actual spectral shapes.  
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Figure 3–58 Smoothed spectra of 17 selected models for a single (M, R) scenario (same 
models as in Figure 3–43). 
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Figure 3–59 Sample 1 Hz hazard curves comparing results from the as-is and smoothed 
spectra, Manchester site. 
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Figure 3–60 UHRS comparing results from the as-is and smoothed spectra for various 
hazard levels, Manchester site. 
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Table 3.15 Total weights for the 17 models, for all the GMIMs (oscillator frequencies, f, in Hertz). 

 

 f=0.1 f=0.133 f=0.2 f=0.25 f=0.333 f=0.5 f=0.667 f=1. f=1.333 f=2. f=2.5 f=3.333 

Model 1 0.0955 0.0941 0.103 0.0994 0.0941 0.0945 0.1032 0.0998 0.1116 0.1044 0.1009 0.1013 
Model 2 0.0833 0.093 0.0846 0.0904 0.0617 0.0897 0.0706 0.0749 0.0721 0.0852 0.0841 0.0683 
Model 3 0.0837 0.079 0.0914 0.0935 0.0709 0.0783 0.0683 0.0684 0.0568 0.0844 0.0675 0.0732 
Model 4 0.0904 0.0787 0.1071 0.1056 0.1037 0.0978 0.097 0.0922 0.086 0.0639 0.0785 0.0824 
Model 5 0.0666 0.0617 0.0638 0.0673 0.0701 0.0679 0.0903 0.0917 0.0947 0.0953 0.0885 0.0733 
Model 6 0.0914 0.0898 0.0658 0.065 0.0847 0.0717 0.0884 0.0885 0.0889 0.082 0.077 0.0692 
Model 7 0.0969 0.0993 0.0828 0.0776 0.099 0.0842 0.0941 0.0878 0.0893 0.0787 0.0889 0.1082 
Model 8 0.0778 0.0822 0.0873 0.0844 0.0878 0.0922 0.0869 0.0794 0.0956 0.0849 0.0839 0.1023 
Model 9 0.0924 0.0991 0.1056 0.1114 0.09 0.1017 0.0743 0.0841 0.0808 0.0827 0.0918 0.0899 
Model 10 0.0204 0.0111 0.0047 0.0087 0.004 0.0127 0.0121 0.0116 0.0189 0.0384 0.0225 0.0171 
Model 11 0.0086 0.0072 0.0075 0.0077 0.0052 0.0058 0.0077 0.0096 0.012 0.0155 0.0155 0.0212 
Model 12 0.0233 0.0224 0.0438 0.0375 0.0347 0.0233 0.0223 0.0278 0.0242 0.0201 0.0199 0.0359 
Model 13 0.0196 0.0181 0.0183 0.0185 0.0245 0.0153 0.0287 0.0392 0.0243 0.0241 0.023 0.0182 
Model 14 0.0516 0.0562 0.0395 0.036 0.053 0.0478 0.047 0.0416 0.0435 0.0411 0.0372 0.0214 
Model 15 0.0464 0.0514 0.0416 0.043 0.0577 0.0548 0.0545 0.0463 0.0469 0.045 0.0518 0.0355 
Model 16 0.0202 0.0267 0.0263 0.0239 0.0352 0.0328 0.0318 0.028 0.0255 0.0239 0.0353 0.0532 
Model 17 0.0319 0.03 0.0269 0.0301 0.0237 0.0295 0.0228 0.0291 0.0289 0.0304 0.0337 0.0294 
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 f=4. f=5. f=6.667 f=10. f=13.333 f=20 f=25. f=33.333 f=40 f=50. f=100 PGA PGV 
Model 1 0.0921 0.0737 0.0683 0.1047 0.1068 0.0998 0.1069 0.1078 0.0987 0.0949 0.0935 0.1009 0.0976 
Model 2 0.0585 0.0994 0.153 0.1175 0.1311 0.1315 0.1256 0.1316 0.1453 0.1176 0.1462 0.1606 0.0678 
Model 3 0.0632 0.0892 0.0863 0.0723 0.0697 0.0965 0.088 0.0883 0.0996 0.0985 0.123 0.1151 0.0738 
Model 4 0.0739 0.0691 0.0834 0.0676 0.0651 0.0686 0.068 0.0673 0.0653 0.0704 0.0981 0.097 0.0756 
Model 5 0.0731 0.0456 0.0342 0.0677 0.0735 0.054 0.0579 0.0512 0.0396 0.0407 0.0472 0.0548 0.0702 
Model 6 0.0965 0.1095 0.096 0.0553 0.0519 0.0559 0.06 0.0509 0.062 0.0666 0.033 0.0376 0.0916 
Model 7 0.1198 0.102 0.0894 0.0725 0.0917 0.0649 0.0586 0.0627 0.0609 0.0643 0.0522 0.0507 0.098 
Model 8 0.1123 0.0876 0.055 0.0642 0.0506 0.0743 0.0784 0.0727 0.0838 0.0984 0.0629 0.0497 0.1054 
Model 9 0.0774 0.0859 0.086 0.1075 0.0938 0.1136 0.1221 0.1205 0.1057 0.1064 0.1092 0.0986 0.0956 
Model 10 0.0123 0.0281 0.0212 0.0254 0.019 0.0374 0.0298 0.0245 0.0278 0.0246 0.0372 0.0372 0.0108 
Model 11 0.0185 0.0214 0.0056 0.0088 0.0008 0.0191 0.0087 0.0016 0.003 0.0147 0.0123 0.01 0.0197 
Model 12 0.0344 0.0293 0.0139 0.0175 0.0048 0.0178 0.0139 0.0055 0.0059 0.0174 0.0271 0.0167 0.0274 
Model 13 0.0191 0.0176 0.0109 0.0158 0.0126 0.0117 0.0082 0.0057 0.0045 0.0098 0.0076 0.0119 0.0117 
Model 14 0.0208 0.0366 0.063 0.082 0.098 0.0406 0.0473 0.0703 0.0648 0.0512 0.0368 0.0436 0.0257 
Model 15 0.0418 0.0368 0.0688 0.0649 0.08 0.043 0.0549 0.0758 0.0626 0.0466 0.0418 0.0504 0.0365 
Model 16 0.0606 0.0328 0.0196 0.0179 0.0226 0.0268 0.0272 0.0236 0.0345 0.0419 0.0266 0.0282 0.0567 
Model 17 0.0257 0.0354 0.0454 0.0384 0.028 0.0445 0.0445 0.04 0.036 0.036 0.0453 0.037 0.0359 
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Appendix A for Updated Median Models 
The 17 smoothed median GMMs are provided in tables as an electronic appendix to this report 
(AppendixA_17GMMs). 
 


