PEER Projects Overview

Amarnath Kasalanati Khalid Mosalam

PEER Researchers' Workshop, August 15, 16, 2024

TSRP Awards 2016 – 2023

Year	Proposals	Funded	Percent	Solicited	Funded	Percent
2016 NoRFP	7	7	-	\$577,572	\$577,572	-
2017 PreRFP	4	4	-	\$444,703	\$444,703	-
2017 RFP	47	17	36%	\$ 4,801,433	\$1,498,723	31%
2018 RFP	47	11	23%	\$ 5,279,057	\$1,471,309	28%
2019 RFP	44	14	32%	\$ 4,953,596	\$1,210,466	24%
2020 RFP	34	12	35%	\$ 1,722,841	\$ 594,449	35%
2021 RFP	19	9	47%	\$ 1,434,058	\$ 488,391	34%
2022 RFP	28	10	36%	\$ 2,261,555	\$ 750,949	33%
Total	228	84	37%	\$21,474,815	\$7,036,562	33%

64 Unique PI's

Avg per Project: \$84K

Avg per Year: \$880K

Title: A3: Fire Performance of Steel-Frame Buildings using OpenSees PI: Erica Fisher, OSU

Title: A3: Leveraging Leading Indicators for Wildfire Risk Reduction PI: Rune Storesund, UC Berkeley Co-PIs: Karlene Roberts, UC Berkeley

Title: M1: Probabilistic Simulation-Based Evaluation of the Effect of Near-Field Spatially Varying Ground Motions on Distributed Infrastructure Systems PI: Floriana Petrone, UNR, Co-Pls: Norm Abrahamson, UC Berkeley; David McCallen, UNR

Title: M2: A Pacific Rim Forum on Regional-Scale Simulations of Earthquake Ground Motions and Infrastructure Response for PBEE of Transportation Systems, PI: David McCallen, UNR, Co-Pls: Norm Abrahamson, UC Berkeley; Floriana Petrone, UNR

Title: S1, T2, T5: Fracture of Deficient Steel Details in Pre-Northridge Transportation Infrastructure Structures PI: Amit Kanvinde, UC Davis Collaborators: James Malley and Robert Pekelnicky, Degenkolb

Improvement-Based Protection of Transportation Infrastructure: Validation of PBE via Centrifuge and Numerical Modeling PI: Tara Hutchinson, UC San Diego, Co-PI: John McCartney, UC San Diego

Title: S3: Performance Based Economic Loss Assessment Due to a Hypothetical Large Southern Earthquake based on the Disruption and Recovery of Port of Los Angeles Freight Traffic PI: Ertugrul Taciroglu, UC Los Angeles, Co-PI: Kenichi Soga, UC Berkeley

Title: T1, T2: Workshop of Preand Post-processing Tools for OpenSees PI: Frank McKenna, UC Berkeley Co-Pls: Filip Filippou, UC Berkeley: loel Conte, UC San Diego

Title: T1: A Comprehensive Database of RC Column Tests PI: John Wallace, UC Los Angeles

Title: T1: Text Analytics on Social Media for Resilience-Enabled Extreme Events Reconnaissance PI: Laurent El Ghaoui, UC Berkeley

Title: T2: Reduced-Order Models for Dynamic Soil-Structure Interaction Analyses of Buried Structures PI: Domniki Asimaki, Caltech Co-PI: Elnaz Seylabi, UNR

Title: T2: Meshfree Large-Strain Framework for Seismic Response of Ground-Structural Systems: Development and Open Source Tool PI: Ahmed Elgamal, UC San Diego Co-PI: Jiun-Shyan Chen, UC San Diego

Title: T4: Identification of Transportation Network Corridors, for Enhancing Network Resilience PI: lack Baker, Stanford

Title: T2: OpenSees Implementation of 3D Embedded Pile Element for Enhance Soil-Pile Interaction Analysis of Bridge Systems Subject to Liquefaction and Lateral Spreading PI: Pedro Arduino, UW

Title: G1: Liquefaction Evaluation of Gravelly Soils: An Integrated Laboratory Testing and Numerical Modeling Approach

PI: Adda Athanasopoulos-Zekkos, UC Berkeley

Title: G2: Prediction of Seismic Compression of Unsaturated Backfills

PI: John McCartney, UC San Diego

Title: M6: Autonomous Drones for Inspection-Driven Exploration of Structures

PI: Raja Sengupta, UC Berkeley. Co-PI: ZhiQiang Chen

Title: T2: Calibration and Verification of OpenSees Models for Simulating the Response through Collapse of Nonplanar RC Walls PI: Laura Lowes, University of Washington

Cyclic Softening Assessments of Silts and Clays PI: Armin Stuedlein, Oregon State

Title: M1: Correlation of Ground Motion Duration with Spectral Acceleration and Implications for Expected Bridge Performance

PI: Tracy Becker, UC Berkeley. Co-

Title: M7: Seismic Performance of Isolated Bridges under Extreme Shaking

PI: Gilberto Mosqueda, UC San Diego

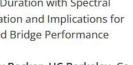
Title: T2: Implementation of Frequency-Dependent Impedance Function in OpenSees

PI: Jian Zhang, UC Los Angeles

Title: G2: A System-Level Study to Evaluate the Role of Soil Gradation on Seismically Induced Embankment Deformations PI: Jason DeJong, UCD. Co-PIs: Mike Beaty (Beaty Engineering) Thomas Westover (Cornforth Consultants)

Title: M3: Deep Learning Based Surrogate Modeling for Uncertainty **Ouantification in Soil-Structure** Interaction Problems

PI: Elnaz Seylabi, University of Nevada, Reno


Title: S3: A Critical Examination of Material Strain Limits for Performance-based Seismic Design of Modern Pier and Wharf Structures PI: Machel Morrison, UC San Diego. Co-PI: Jose Restrepo

Title: T4: Machine Learning for Analysis and Risk Management of Complex Infrastructure Systems

PI: Jennie Watson-Lamprey

A3 - Development of PBE for other Natural Hazards Workshop Title: Behavior of Steel Structures in Fire: A Workshop on Fundamentals and Simulation Tools

PI: Erica Fischer, Oregon State University; Co-PIs / Collaborators: Negar Elhami -Khorasani, Thomas Gernay, Ali Ashrafi

R1 - Regional-scale Simulation of Networks Project Title: PEER Online Tool for Access to Simulated Ground Motions from Large Magnitude Events PI: Norman Abrahamson, UC

Berkeley

R1 - Regional-scale Simulation of Networks Project Title: Development of the PEER Simulated Ground-Motion Database (PEER-SGD) for PBEE of Transportation Systems PI: David McCallen, University of Co-PL/ Collaborator: Florina

Nevada, Reno; Co-Pl / Collaborator: Florina Petrone

Evans

G1 - Liquefaction Triggering Criteria Workshop Title: Workshop Towards Consensus on Liquefaction Susceptibility PI: Armin Stuedlein, Oregon State University; Co-PIs / Collaborators: Jonathan P. Stewart, T. Matthew

M3 - Uncertainty Quantification Workshop Title: PBSD of Bridges: Current Practice and Future Developments PI: Jose Restrepo, UC San Diego Co-PIs / Collaborators: Joel P. Conte, Sashi Kunnath, Ian Buckle,

Norm Abrahamson

R1 - Regional-scale Simulation of Networks Project Title: Surrogate Models of Highway Bridges for Regional-scale Earthquake Simulations of Transportation Networks

PI: Greg Deierlein, Stanford

University

R1 - Regional-scale Simulation of Networks Project Title: Identification of Critical Ground-Motion and Bridge Features for Performance Assessment of Regional Transportation Networks

PI: Marc Eberhard, University of Washington; Co-PIs / Collaborators: Jeffrey Berman, Nasser Marafi, Chris Motter

Topic 2 - Forward uncertainty quantification; Project Title: Probabilistic Regional Seismic Risk Assessment of a Los Angeles Bridge Network using a New Generation of Fragility Functions PI: Henry Burton, UCLA; Co-PIs /

Collaborators: Yazhou Xie, McGill University, Ibbi Almufti, ARUP, Jamie Padgett, Rice University

Topic 2 - Forward uncertainty quantification; Project Title: Stochastic Simulator-based Uncertainty Quantification for Seismic Responses of Bridges PI: Ziqi Wang, UC Berkeley Co-PIs / Collaborators: Marco

Broccardo, University of Trento

Topic 3 - Cost effective instrumentation and data collection; Project Title: Next Generation Liquefaction Susceptibility Database and Modelling: PI: Jonathan P. Stewart, UCLA; Co-PIs / Collaborators: Scott

J. Brandenberg, UCLA

Topic 6 - Going beyond earthquakes; Project Title: Cascading Seismic and Tsunami Loads for the Design of Open Wharves; PI: Andre Barbosa, Oregon State University; Co-PIs / Collaborators: Claudia Reis, Oregon

- Topic 2 Forward uncertainty quantification
- Project Title: Bayesian Inference for Mechanics-based Digital Twinning of Bridges PI: Hamed Ebrahimian, University of Nevada, Reno

Topic 3 - Cost effective instrumentation and data collection; Project Title: Performance Monitoring of Centennial Bridge PI: Matthew DeJong, UC Berkeley Co-PIs / Collaborators: Laura

Lowes, University of Washington

Topic 3 - Cost effective instrumentation and data collection; Project Title: Next Generation Liquefaction Susceptibility Database: Expansion of the Laboratory Component to Leverage Pacific Northwest Soils;

PI: Armin Stuedlein, Oregon State University

Topic 2 - Forward uncertainty quantification; Project Title: Regional Scale Simulation of Uncertain Responses of Transportation Infrastructure Soil-Structure Systms PI: Boris Jeremic, UC Davis; Co-PIs / Collaborators:

Norm Abrahamson, UC Berkeley

Topic 3 - Cost effective instrumentation and data collection; Project Title: Informing Predictions from Above with Community Data from Below: A Hierarchical Al Ground Failure Model for Rapid Response and

Simulation; PI: Brett Maurer, University of Washington

Topic 5 - Social vulnerability and disparities in seismic risk and impacts; Project Title: Community Sentiment Analysis for Identifying Social Vulnerability Following Earthquakes; PI: Sifat Muin, USC; Co-PI / Collaborator: Kristina

Lerman, USC

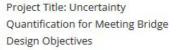
State University

PEER-Bridge Program (15 Projects)

An Updated LRFD-Based Design Procedure for Bridge Decks

PI: Liiuan "Dawn" Cheng. UC Davis

Co-PI: Thomas Murphy



Statistical Variation of Seismic Damage Index (DI) of California Bridges

PI: Farzin Zareian, UC Irvine

Co-PIs: Norm Abrahamson. Saiid Saiidi

PI: Tracy Becker, UC Berkeley

PI: Michele Barbato, UC Davis

co-PI: Alexander Forrest, UC Davis

Project Title: Development of Performance-Based Multi-hazard Engineering (PBME) Framework

with Inclusion of Climate Change and Bridge Vulnerability

15 Projects: \$4.375 Million

Advanced Guidelines for Stability Design of Slender Reinforced Concrete Bridge Columns

PI: Michael Scott, Oregon State University

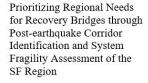
of Box Beam Overhead

Sign Structures

Co-PI: Mark Denavit

Hazard-Based Risk and Cost-Benefit Assessment of Temporary Bridges in California

PI: Floriana Petrone, UNR



Liquefaction-Induced Ground Settlement Procedure

PI: Jonathan Brav, UC Berkelev

Remaining fatigue life assessment of bridge decks based upon a

PI: Kenichi Soga, UCB

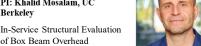
PI: Scott J. Brandenberg, UCLA co-PI: Jonathan P. Stewart, UCLA

Manifestation of Liquefaction

Average per Project: **\$292K - Overhead**

PI: Farzin Zareian, UC Irvine

Project Title: Caltrans Risk Based Seismic Design (CT-RBSD) for Bridges



PI: Raja Sengupta, UC Berkeley co-PI: Mark Mueller, UC Berkeley

Project Title: Development of Autonomous Drone Inspection for Bridge Maintenance

Bridge Rapid Assessment Center for Extreme Events (BRACE2) PI: Khalid Mosalam, UC Berkelev

PI: Yousef Bozorgnia, UCLA

Project Title: New Near-Fault

Seismic Design Criteria (SDC)

Adjustment Factors for Caltrans

numerical-experimental SYSCOM SYStem-COmponent-Materialbased approach

PI: Alessandro Palermo, UCSD

Fiscal Year 25/26 Research Proposal Timeline

◎ 7/15/2024	Initiate Research Cycle
	TSC/SPB/SAB review
9/20/2024	Research Proposal Due to OEEAR
	Structure Policy Board Briefing Technical Steering Committee Briefing Finalize Research Request Form and ranking
11/1/2024	Research Request Due to DRISI
	PSC review and ranking Scorer's meeting
3/6/2025Prioritized	List Due to RDAC
	Executive review
3/19/2025	RDAC meeting. Approved research slate distributed.
8/31/2025 2024 PEER Annual Meeting	Approved Research Contract Packages Due

PE

TSRP: Allocation

Type of Extreme Event	No. of Projects	Amount	
Earthquake	74	\$6,240,608	
Tsunami	5	\$ 519,398	
Fire Following EQ	5	\$ 276,556	
Total	84	\$7,036,562	

Type of Research	No. of Projects	Amount	
Theoretical	5	\$ 367,941	
Computational	48	\$ 3,696,153	
Experimental	17	\$ 2,023,984	
Database, Field Data, AI, ML	13	\$ 873,484	
Social and Community	1	\$ 75,000	
Total	84	\$ 7,036,562	

PBEE Phase	No. of Projects	Amount
Hazard	19	\$ 1,470,336
Analysis	39	\$ 3,506,616
Damage	13	\$ 1,040,736
Loss	10	\$ 799,688
Total	81*	\$ 6,817,376

* Some projects (e.g., PBE for Tsunamis) includes all phases

Ç PEER

TSRP Projects – Reports

Year	Number of Projects	Completed	Currently Active	Reports
2016 PreRFP	7	7	0	2
2017 PreRFP	4	4	0	2
2017 RFP	17	16	1	10
2018 RFP	11	10	1	6
2019 RFP	14	8	6	5
2020 RFP	12	6	6	6
2021 RFP	9	2	7	2
2022 RFP	10	0	10	
Total	84	53	31	33

20 Missing Reports & 14 Incomplete Projects

3 Requirements

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

Research Project Highlight

Implementation of Frequency-Dependent Impedance Functions in OpenSees

discrete-time filters. An example of such time-domain approximation is shown in *Figure 2* for the rocking IF of a rigid disk on elastic half-space. While the implementation of this solution in OpenSees looks simple, the stability of the entire system is not guaranteed even if the IF filter is itself stable. In this project, we propose to implement any analytically or numerically calculated frequency-dependent IF through recursive filters in OpenSees and such that the dynamic analysis of the entire structural system with SSI can be stable.

Deliverables

A PEER report and several conference and journal papers describing the methodology and verification examples along with the OpenSees module for frequency-dependent IF implementation.

Research Impact

The dynamic nonlinear time-history analysis plays a critical role in PEER Performance-Based Engineering (PBE). While nonlinear behavior of the structures can be modeled with relatively good accuracy, the soil-foundation subsystem is still highly uncertain. One of the sources of the uncertainties is the frequency-dependent behavior of the soil-foundation impedance function. Current FE modeling softwares are not capable of including frequency-dependency in the time domain unless IF is modeled through physical lumped parameter models. However, there is no unique and general way to develop such lumped models for any IF. Also, there is no solution to guarantee the stability of the entire system. This project will provide engineers and researchers with an extended version of the OpenSees by which they can carry out more accurate nonlinear time-history analysis while frequency-dependent soilstructure interaction effects are taken into account.

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

Research Project Highlight

Implementation of Frequency-Dependent Impedance Functions in OpenSees

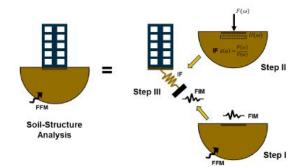


Figure 1. Substructure method

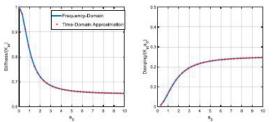


Figure 2. Exact and time-domain approximation of frequency-dependent stiffness and damping terms of impedance function versus dimensionless frequency.

Page 2 of 3
PEER Center – 325 Davis Hall, UC Berkeley, CA 94720 | peer_center@berkeley.edu

Page 3 of 3

PEER Center - 325 Davis Hall, UC Berkeley, CA 94720 | peer_center@berkeley.edu

3 Requ

Propose starts

Implementation and OpenSees

Towards Multi-Tier N Impacts on Transpor

Influence of Vertical Design of Bridges Iso Pendulum Bearings

High-Performance C Distributed Multi-Lay Transportation Netw

Fluid-Structure Inter Scripting Capabilities

PEER 2024/05 June 2024

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

A Granular Framework for Modeling the Capacity Loss and Recovery of Regional Transportation Networks under Seismic Hazards: A Case Study on the Port of Los Angeles

> Michael Benedict Virtucio¹ Barbaros Cetiner² Bingyu Zhao^{1,3} Kenichi Soga¹ Ertugrul Taciroglu⁴

 ¹Department of Civil and Environmental Engineering University of California, Berkeley, USA
 ²NHERI SimCenter University of California, Berkeley, USA
 ³TU Wien, Austria
 ⁴Department of Civil and Environmental Engineering University of California, Los Angeles, USA

PEER Report No. 2024/05 Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley June 2024

unding

PEER Report: 2021/02

PEER Report: 2021/04

PEER Report: 2019/08

PEER Report:2021/05

PEER Report: 2019/06

Reports

Projects Beginning in 2023:

Title of Project	PINeme	Affiliation	Report/ Publication
Cascading Seismic and Tsonami Loads for the Design of Open Wharves	Andro Barboia	Dregori Statie University	
Probabilistic Itegional Seismic Risk Assessment of a Los Angeles Bridge Network using a New Generation of Fragility Functions	Henry Burtan	UC Los Angeles	
Performance Monitoring of Centermial Bridge	Matthew Depong	UC Berkeley	
Brycsien Inference for Mechanics-based Digital Teirming of Bricken	Harred Ebrahimian	University of Newada, Reno	
Regional Scale Simulation of Discritain Responses of Transportation Infrastructure Sol-Structure Systems	Boris Jaremic	UC Direnty	
Informing Predictions from Above with Community Data from Below, A Henarchical Al Ground Tailune Model for Rapid <u>Response and Simulation</u>	Drutt. Maurier	University of Washington	
Community Sentiment Analysis for Identifying Social Winerability Tollowing Earthquakes	Sifet Man	USC	
Next Generation Lepsefaction Susceptibility Database and Modelling	Jonathan P. Stewart	UC Los Angelos	
Next Generation Laperfaction Susceptibility Database: Expansion of the Laboratory Correspond to Loverage Pacific Northwest Sols	Armin Stuedken	Oregon Static University	
Stochastic Sendator-based Uncertainty Quantification for Sesenic Responses of Bridges	Ziqi Wlang	UC Berkeley	

Projects / Workshops Beginning in 2022:

Title of Project	PI Name	Affiliation	Report/ Publication
PEBR Online Tool for Access to Simulated Ground Motions from Large Magnitude Events	Norman Abrahamson	UC Berkeley	
Sarrogate Models of Highway Bridges for Regional-scale Earthquake Seculations of Transportation Networks	Greg Deterlets	Stanford University	
Identification of Critical Ground-Motion and Bridge Features for Performance Assessment of Regional Transportation Networks	Marc therhard	University of Weshington	
Warkshop: Bahavior of Stael Structures in Fine: A Workshop on Fundamentals and Simulation Tools	trice incher	Oregon State University	
Development of the PEER Simulated Ground-Motion Database PEERSGDI for PREE of Transportation Systems	David McCallen	University of Newada, Reno	
Workshop: PBSD of Bridges: Current Practice and Future Developments	jose Histrepo	UC San Divigo	
Workshop, Towerds Consensus on Leperfaction Susceptibility	Arrein Stuedkein	Origon State University	PEER Report 2023-02

Projects Beginning in 2021:

Title of Project	PI Name	Affiliation	Report/ Publication
Laparfaction Evaluation of Gravelly Solis: An Integrated Laboratory Testing and Numerical Modeling Approach	Adda Athanasopoulos- Zvikkos	UC Barkalay	
Machine Learning for Analysis and Itisk Management of Complex Infrastructure Systems	Jack Baket	Stanford	
Constation of Ground Motion Duration with Spectral Acceleration and Implications for Espectral Bridge Performance	Tracy Backer	UC Berkeley	
A System-Level Study to Exeluate the Itole of Soil Gradation on Seismically Induced Embankment Deformations	Jason Dejong	UC Davis	
Calibration and Verification of OpenSees Models for Semulating the Bioponise through Collepse of Norplanar IIC Walls	Laura Loveci	University of Westington	
Prediction of Seismic Compression of Unsaturated Backfills	John McCartney	UC San Diego	PEER Report 2022-05
A Critical Examination of Material Strain Limits for Performance- based Seismic Design of Modern Pier and Wherf Structures	Machel Morrison	UC San Diego	
Seismic Performance of Isolated Bridges under Extreme Shaking	Giberto Mosqueda	UC San Diego	
Autonomous Drones for inspection-driven Exploration of Structures	Raja Sengupta	UC Berkeley	
Deep Learning Based Sumpare Modeling for Uncertainty Quantification in Sol-Structure Interaction Problems	Elmar Seyfabi	University of Nevada, Reno	
Advancing the Phactice of Cyclic Softening Assessments of Sits and Clays	Armin Stardkin	Oregon Static University	PEER Papert 2023-01
Implementation of Trequency-Dependent Impedance Function in OpenSees	Jian Jhang	UC Los Angeles	

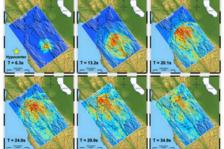
Projects Beginning in 2020:

Title of Project	PI Name	Affiliation	Report/ Publication
Openfines implementation of 30 Embedded Pile Element for Enhance Soli-Pile Interaction Analysis of Bridge Systems Soliyed to Liquafaction and Lateral Spreading	Pedro Arduno	University of Weshington	
Neduced-Order Models for Dynamic Solf-Structure Interaction Analysis of Buried Structures	Domniki Asimuki	Cellech	
Identification of Transportation Network Comdons, for Enhancing Network Insidence	jack Sakat	Stanford	PEER Report 2021-09
Mishfree Large-Strain Transwork for Seismic Response of Ground-Structural Systems: Development and Open Source Tool	Alerned tilgarnal	UC San Diego	
Text Analytics on Social Media for Besilience-Enabled Extreme Events: Recommissionse	Laurent El Ghaoui	UC Berkeley	
Tere Performance of Sevel-Frame Buildings using OpenSees	frica fischer	Oregon State University	
Ground Improvement-Based Protection of Transportation Infrustructure: Velidation of PBE via Centrifuge and Numerical Modeling	Tata Hutchinson	UC San Diego	
Fracture of Deficient Steel Details in Pre-Northridge Transportation infrastructure Structures	Arrit Kanverde	UC Davis	
A Pacific Him Lorum on Roylensi-Scale Sensitations of Earthquake Ground Motions and infrastructure Response for PBEE of Transportation Systems	David McCallen	University of Newada, Reno	PEER Report

PEER

Collaboration

The following projects have collaboration potential with my project. Review PEER website for project info here: <u>TSRP</u>, <u>PEER-Bridge</u> & <u>Lifelines</u>.

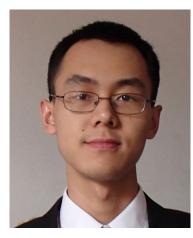




Upcoming Events & Activities

- The 21st IFIP Working Conf. on Reliability & Optimization of Structural Systems (*Aug 18-21, 2024*)
- PEER Annual Meeting (*Tentatively January 16-17, 2025*)
- 2024 Blind Prediction Contest (*Details in presentation by Jose Restrepo*)
- Request For Proposal (RFP) (Oct 2024, focused on Experimental Work)
- PEER-LBNL Workshop (Spring 2025)
- AI & Fire Workshop (Collaboration with NFPA & SFPE) (May 2025)
- Workshop on PBSD for Bridges (2025)
- 19WCSI (*Sept 15-19, 2025*)

Team


Zulema Lara

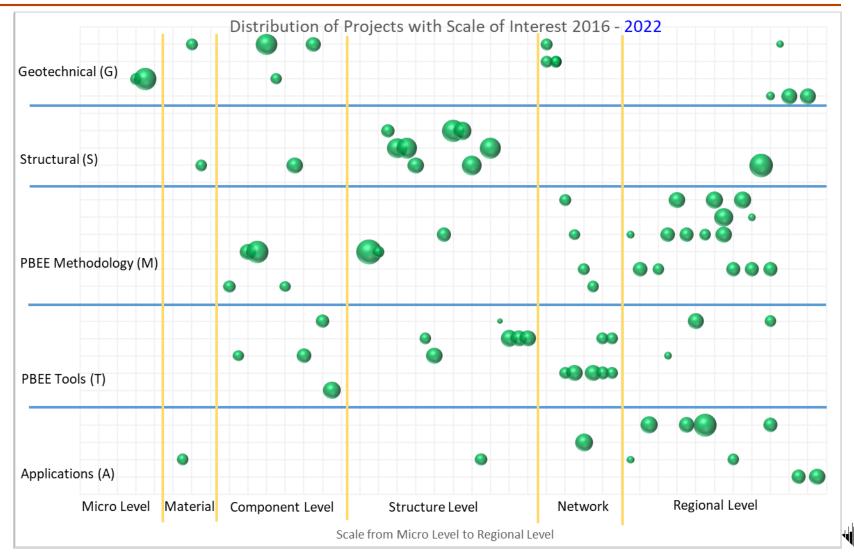

Gabriel Vargas

Erika Donald

Jiawei Chen

Christina Bodnar-Anderson

Selim Günay



Thank You !

TSRP Fund Allocation Over the Years

PEER