Assessment of the Collapse Potential of Reinforced Masonry Structures using Finite Element Models

Andreas Koutras and P. Benson Shing

Department of Structural Engineering University of California, San Diego

> PEER 2019 Annual Meeting January 17-18, 2019, UCLA

Reinforced Masonry (RM) Structures

Reinforced masonry (RM) is commonly used for low-rise construction in North America.

Commercial buildings

Residential buildings

Office buildings

The photos are courtesy of Dr. G. Kingsley

Warehouse buildings

> Walls are the primary load resisting members.

Reinforced Masonry Construction

Reinforced masonry walls consist of:

- Hollow concrete masonry blocks
- Mortar joints
- Grout (full or partial grouting)
- Steel reinforcing bars

Similar to RC walls but:

- More heterogeneous
- More complex seismic behavior
- Restricted spacing of reinforcement – bars cannot be placed less than 8 in. apart.
- No confinement reinforcement

RM wall layout

RM wall grouting

Damage and Failure of RM Structures

Courtesy of J. Ingham

Courtesy of J. Sherman

Courtesy of M. Mavros

RM damage after the 2011 Christchurch Earthquake

Partially Grouted Masonry Building Test

Koutras and Shing, 2014

1940 El Centro Earthquake at 117% MCE

Motion Name: EC1940_AT255_A, Test Date: 4/22/2014

North-East Inside View [1=40.575s]

Seismic Performance of RM Buildings

Previous numerical study under ATC 76 following the FEMA P-695 Methodology:

Low-rise RM structures did not satisfy the design code safety threshold of 10% probability of collapse during an MCE event (2500-year return period)!

- However, the models used for that study were overly simplified and too conservative.
- The development of numerical models that can reliably assess the collapse potential of RM building systems is of utmost importance.

Modeling Approach

- Although a number of approaches with various degrees of complexities have been proposed, **nonlinear finite element** (FE) analysis is still the most powerful tool.
- Concrete shell elements are combined with cohesive crack interface elements (extension of Mavros 2015).

Concrete/Masonry Model

> A simple orthotropic material model was developed.

Cohesive Crack Interface Model

The model can capture crack opening and closing, reversible joint dilatation, and irreversible joint compaction under cyclic loading (Koutromanos and Shing, 2012).

Bond-Slip and Dowel Action Models

Implemented in a user-defined interface element

<u>Advantage</u>: allows the connection of beam elements to shell elements of a much larger size (Mavros, 2015; Kottari et al. 2016).

Material laws

Reinforcing Steel Model

The model developed by Kim & Koutromanos (2016) is adopted.

The model accounts for low-cycle fatigue

Rupture occurs when a **scalar damage parameter**, which is based on the cumulated plastic work by tensile stress, exceeds a specified **critical value**.

Element Removal Procedure

- A non-local element removal scheme was introduced in LS-DYNA:
 - A. When a **smeared-crack** shell element satisfies the criterion of failure (compressive strain exceeds ε_u):
 - 1. Remove the **shell** element.
 - 2. Remove all the **bond-slip interface** elements connected to the deleted shell element.
 - 3. Remove all the adjacent **cohesive crack interface** elements.
 - B. When a **reinforcement beam** element satisfies the criterion of rupture:
 - 1. Remove the **reinforcement beam** element.
 - 2. Remove the adjacent **bond-slip interface** element.

Flexure-dominated Wall Test

Flexure-dominated wall tested by Sherman (2011)

Dimensions: 40 in x 72 in. Boundary conditions: Cantilever. Reinforcement: Vertical 5#6, Horizontal 9#4. Applied vertical stress : 160 psi.

Shear-dominated Wall Test 1

Shear-dominated wall Specimen 5 tested by Shing (1991)

Dimensions: 72 in x 72 in. Boundary conditions: Cantilever. Reinforcement: Vertical 5#7, Horizontal 5#3. Applied vertical stress: 100 psi.

Shear-dominated Wall Test 2

Shear-dominated wall UT-PBS-02 tested by Ahmadi (2011)

Dimensions: 72 in x 72 in. Boundary conditions: Fixed – Fixed. Reinforcement: Vertical 5#6, Horizontal 5#4. Applied vertical stress : 190 psi.

2-story Shake-Table Test Structure

2-story shake-table structure tested by Mavros (2016)

Simulation of RM through Collapse

- In all previous experimental studies, RM specimens were tested to maximum drifts of less than 3%.
 - Can the model also predict the response of RM structures at larger drifts and through collapse?

At 16% drift,

the structure

is still stable.

New shake-table test at UC San Diego

Will appear in: Cheng, J., Koutras, A., and Shing, P.B. (2019) "A shake-table test investigating the drift capacity of reinforced masonry wall systems." In *13th North American Masonry Conference,* Salt Lake City, UT.

Response of Test Structure

Testing was conducted in two phases:

Before the test, a time-history analysis was performed (pre-test analysis) as an attempt to predict the experimental response.

Response of Test Structure

Extension to Partially Grouted Masonry

Simulation of the one-story shake-table test structure.

Response of the FE Model

Last motion of the testing sequence.

Front view

Positive direction

Back view

Positive direction

Case Study: A Commercial Building

- The FE modeling scheme is applied for the time-history analysis of a commercial building archetype designed for SDC D_{max}.
- Bi-directional excitation is used.

Response under an extreme 1.8xMCE

View of longitudinal side

Response under an extreme 1.8xMCE

View of transverse side

ATC 4-story Commercial SDC D: 8/4/2018 Time = 7.7095

Le .

Severe crushing, bar buckling and rupture

Collapse is governed by a combined flexureand shear- dominated mechanism.

Response under an extreme 1.8xMCE

Conclusions

The proposed FE modeling scheme can capture the seismic response of RM structures in a realistic manner. The models can be used to:

- Gain insight into the seismic behavior and collapse potential of RM building systems.
- Calibrate or validate more computational efficient simplified models.
- Assess and improve the design-code provisions.

Acknowledgements

Thank you!