

Empirical Models of Site Effects for Simulated Ground Motions

Domniki Asimaki - California Institute of Technology

Grigorios (Greg) Lavrentiadis (Postdoc, Caltech); Elnaz Esmaeilzadeh Seylabi (Faculty, UNR); Flora Xia & Yaozhong Shi (Grad Students, Caltech)

2024 PEER - LBNL WORKSHOP Simulated Ground Motions for the San Francisco Bay Area January 18, 2024

... but velocity models are coarse,

Perspective view of the northern part of the USR, showing an enlarged transect across the Los Angeles basin (Shaw et al., 2015)

... because they are 'learned' from data like this.

Depth of Moho in CVM from receiver function studies or from wide angle refraction.

Tape et al. (2012)

Migrated seismic reflection

profile in depth from the Inner California Borderland showing prominent top basement horizon.

Shaw et al. (2015)

10's of Hz propagate through path & site to buildings

Outline of empirical models:

- a. Shallow crustal refinement of velocity models (learned from measured Vs data)
- b. Site response amplification factors (learned from simulated data)
- c. Nonlinear site response analyses (machine learned from data)

a. The California Sediment Velocity Model (to be)

AY: Yong et al. (2013) DB: Boore (2003) CW: Chris Wills with CGS ³⁸ LC: LeRoy Crandall **914 profiles** ³⁶

211 measured and unified profiles in SFBA

Tehrani et al (2023); Lavrentiadis et al (202X)

Scaling relationships for the median profile

$$ar{V}_S(z) = egin{cases} V_{S0} & ext{for } z \leq z^* \ V_{S0}(1+k(z-z^*))^{1/n} & ext{for } z > z^* \end{cases}$$

based on Shi and Asimaki (2018a)

Within-profile variability varies in space (via k)

(a) Proposed, z = 0m

(b) Proposed, z = 10m

(c) Proposed, z = 100m

(f) USGS, z = 100 m

(d) USGS, z = 0m

In progress...

- Criteria for 'stitching' with USGS model at 1km/sec, especially at basin edges.
- Eliminate median scaling (grandfathered in from S&A18) \rightarrow Gaussian Process
- Expand to So Cal and Central Valley using e.g. Ahdi et al (2017).
- Analyze residuals from 1D and 3D analyses vs. GMMs.

b. Complex site amplification factors

If velocity model doesn't include SVM (and perturbations thereof), integrate nonlinear site response (1D) using only $V_{s,30}$ input.

Shi and Asimaki (2021) developed precomputed complex amplification factors based on Shi and Asimaki (2018) So Cal SVM.

Generated range of SS and reverse simulated ground motions using the SCEC BBP

PySeismoSoiI: Automatically assigns NL properties to Vs(z)

*Download from http://asimaki.caltech.edu/Resources

Shi and Asimaki (202X)

Fourier surface/rock outcrop ratios: Amplitude

Fourier S/RO amplitude: EQ linear vs. nonlinear

Example for $V_{s,30} = 250 \text{ m/sec}$; Z1.0 = 150 m

Fourier surface/rock outcrop ratios: U/R Phase

Github release and validation

🖀 PySeismoSoil

"Frequency_Spectrum" class "Ground Motion" class

"Simulation Results" class

"Site_Effect_Adjustment" class "Site_Factors" class

"Parameters" class

"Simulation" class

"SVM" class

Helper modules

"Vs Profile" class

Search docs

Utility classes "Curves" class Docs » Utility classes » "Site_Effect_Adjustment" class

View page source

"Site_Effect_Adjustment" class

A class that defines the methodology of adjusting ground motions to include site effects.

class PySeismoSoil.class_site_effect_adjustment.Site_Effect_Adjustment(input_motion, Vs30 in meter per sec, z1 in m=None, ampl method='nl hh', lenient=False) [source]

Adjusts rock-outcrop ground motions by applying site effect adjustment using the SAG19 site factors.

Parameters

• input_motion (PySeismoSoil.class_ground_motion.Ground_Motion) - Input ground motion.

- Vs30_in_meter_per_sec (float) Vs30 values in SI unit.
- z1_in_m (float) z1 (basin depth) in meters. If None, it will be estimated from Vs30 using the following correlation: z1 = 140.511 * exp(-0.00303 * Vs30), where the units of z1 and Vs30 are both SI units. This formula is obtained from the dataset used in Shi & Asimaki (2018).

In progress...

- Expand amplification factor computations for CA SVM.
- Use deterministic simulated ground motions of historic events for validation.
- Derive 3C-1D nonlinear complex amplification for the vertical component.
- Validate corrected vs. raw rare event scenarios against published GMMs ...

c. Machine learning nonlinear site response w/ FNOs

Fourier Neural Operators (FNO) are <u>mesh-independent</u>, <u>resolution-invariant operators</u>. Unlike Neural Networks, they learn the solution to the PDEs, not snapshots of the solution. Can be evaluated at any spatiotemporal resolution at 10⁵ faster than simulations

SVL, HH nonlinear model and wave equation

Nonlinear site response with Neural Operators (~3ms)

To be continued...

- Populate the shallow crust with high resolution material properties → improve 3D site effects in the high frequencies (what about the rare events?)
- Sample V_{s30} maps and adjust locally using complex FAS factors or FNO-nonlinear analyses → improve 3x1D site effects (what about surface waves?)
- Do a little bit of both?

Add **some nonlinearity to the 3D simulations** and some **high frequency realism through machine learning** to compensate for the imperfect velocity models ...?

We're on it! 😳

