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Why use machine learning in earthquake engineering?
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Project objective: Select bridges to retrofit to 2
minimize impacts of seismic road network disruption

38.5°N

Bay Area model

« 32,858 road segments

« 20 million trips per day

* 1743 state-owned bridges
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1992 earthquake scenarios
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Seismic risk assessment workflow
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Seismic risk assessment workflow

Computational costs
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Deep neural networks fast-track risk assessment
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Challenges to train the deep neural network

1. Sampling protocols: How to account for extreme events?

2. Definition of hyperparameters of the neural network
* Number of layers.
« Learning rate.
* Neurons per layer.
 Activation function.

3. Parameters for evaluation: prediction statistics and loss curves
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Data sampling protocols

Goodness of fit

Hazard consistent sampling

=

~4

w
1

(=]

w

o
1

125 4

100 -+

Atp as predicted by neural network
a8 &

o
1

Identity line
Not extreme events TR -
Extreme events 63 v

T T

25 50 75 100 125 150 175
Atp as predicted by traffic model

R2= 0.94

Mean error in bin measured as Atp

Bias Analysis

30
—— Random
Hazard consistent
20
10 -
0 .
_10 o
~201 Bias for Extreme
Events
-30 ' . . . . . ;
25 50 75 100 125 150 175

Atp as predicted by traffic model

Baker and Silva-Lopez



Data sampling protocols

Goodness of fit

Hazard consistent sampling

=

~4

w
1

(=]

w

o
1

125 4

100 -+

w ~
o w
1 1

Atp as predicted by neural network

o
1

Identity line
Not extreme events TR S
Extreme events 63 Yo

T T

25 50 75 100 125 150 175
Atp as predicted by traffic model

R?=0.94

R2

Effect of extreme event sampling

0.95 A

0.90 A

0.85 A

0.80 -

0.75

0.70 A

—

—— Extreme events in test data

All events in test data

0.0

0.2 0.4 0.6 0.8

1.0

Fraction of training data corresponding to extreme events

Baker and Silva-Lopez



Traffic loss curves using the 1992 seismic scenarios
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Understanding the neural network using the 10
LIME (local interpretable model-agnostic) algorithm
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LIME uses local regression models
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LIME-TI: Aggregate over earthquake scenarios
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Traffic Performance Loss [%UD]
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We can do even better with optimization
(enabled by the neural network)

Traffic Performance Loss [%UD]
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Interpretation of LIME-identified bridges
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Conclusions

Neural networks can accurately and rapidly predict traffic
disruption in a large transportation model

Over-sampling extreme events in the training data is valuable

Explainable Al can be used to understand the model and identify
risk-reducing actions

Surrogate model are also valuable for explicit optimization
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