Deep-learning based seismic risk assessment and retrofitting of road networks

Jack Baker and Rodrigo Silva-Lopez

### Why use machine learning in earthquake engineering?



Image from Beroza et al., (2019) *Science* 

# Project objective: Select bridges to retrofit to minimize impacts of seismic road network disruption



Bay Area model

- 32,858 road segments
- 20 million trips per day
- 1743 state-owned bridges

1992 earthquake scenarios (fault, magnitude, extent) and resulting ground motion simulations

# Seismic risk assessment workflow



3

## Seismic risk assessment workflow Computational costs





# Deep neural networks fast-track risk assessment



# Challenges to train the deep neural network

- 1. Sampling protocols: How to account for extreme events?
- 2. Definition of hyperparameters of the neural network
  - Number of layers.
  - Learning rate.
  - Neurons per layer.
  - Activation function.
- 3. Parameters for evaluation: prediction statistics and loss curves



### Data sampling protocols

Goodness of fit

#### Hazard consistent sampling 30 Identity line Mean error in bin measured as $\Delta t p$ Δtp as predicted by neural network Not extreme events 20 Extreme events 10 0 -10-20 0 -30175 25 50 75 75 100 125 150 25 50 n $\Delta tp$ as predicted by traffic model

#### **Bias Analysis**



 $R^2 = 0.94$ 



Baker and Silva-Lopez

### Data sampling protocols



#### Goodness of fit

#### Effect of extreme event sampling



 $R^2 = 0.94$ 

# Traffic loss curves using the 1992 seismic scenarios



With traffic model = 8 hours

With neural network = 0.3 seconds

Understanding the neural network using the LIME (*local interpretable model-agnostic*) algorithm

Bridge Damage States



## LIME uses local regression models



Variable 1

11

### LIME-TI: Aggregate over earthquake scenarios

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

# Retrofitting bridges using LIME

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

Baker and Silva-Lopez

# We can do even better with optimization (enabled by the neural network)

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

# Interpretation of LIME-identified bridges

LIME-TI Selects bridges that are vulnerable, secondary, but leading to primary bridges.

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

# Conclusions

- Neural networks can accurately and rapidly predict traffic disruption in a large transportation model
- Over-sampling extreme events in the training data is valuable
- Explainable AI can be used to understand the model and identify risk-reducing actions
- Surrogate model are also valuable for explicit optimization

#### www.jackwbaker.com

Silva Lopez, Baker, Poulos (2022). "Deep learning-based retrofitting and seismic risk assessment of road networks." ASCE Journal of Computing in Civil Engineering.