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Spatial correlations in ground motion amplitudes
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Within-event ResidualObservation Prediction(GMM) 
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Figures from Baker, Bradley, Stafford (2021)



Empirically estimating correlations
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Assume sites with equal separation distance have equal correlation (“stationarity”)
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Empirical semivariogram
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Impact of spatial correlations on risk
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Spatial correlation is important for evaluating risk to distributed infrastructure 
systems.
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Adapted from Jayaram and Baker (2010)



CyberShake simulations
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………

Multiple realizations of same rupture geometry
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§ “Physics-based" simulations of wave propagation through a 3D crustal velocity model 
(v15.12) 

§ Earthquake ruptures are described kinematically by slip amplitude, direction, and timing 
across the fault 

§ Over 400,000 rupture simulations, with resulting ground motions at 336 stations

Chen and Baker (2019) Bull. of the Seism. Soc. of Am.



Stationary CyberShake correlations
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San Andreas Ruptures Puente Hills Ruptures



Site-specific correlation estimation using simulations
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If we have many observations at a pair of interest



San Andreas M 8.05
reference site: s383

San Andreas M 8.05 
reference site: s345

Observed pairwise correlations, for SA(3s)
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Reference empirical model – stationary



San Andreas M 8.05
reference site: s383

San Andreas M 8.05 
reference site: s345

CyberShake region basin depth

Observed pairwise correlations, for SA(3s)
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Reference empirical model – stationary
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Potential source effects

Puente Hills M 6.65 
reference site: s389 

T = 3s

San Jacinto M 6.95 
reference site: s768 

T = 3s
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Potential path effects

North Frontal M 6.55 
reference site: s387 

T = 3s

Newport M 6.55 
reference site: s389 

T = 3s



1. Construct a correlation graph

2. Fit a global correlation model

3. Calculate the deviation of each pair

Correlation Deviation Graph
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Can we identify areas with deviations from stationarity?
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'𝜌 𝑖, 𝑗 = 𝑓(ℎ(𝑖, 𝑗))

𝐴!= = [𝑍 𝜌 𝑖, 𝑗 − 𝑍 '𝜌 𝑖, 𝑗 ] 𝑛 − 3

Chen and Baker (2021) Computers and Geosciences



Compute the signed degree matrix (absolute sum of edge weights connecting 
to node i)

Cluster based on eigenvectors of 8𝐷 − 𝐴 (gives high within-cluster correlation 
and low across-cluster correlation)

Signed Spectral Clustering to identify communities
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High-correlation communities
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Application to CyberShake simulations
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Puente Hills M 6.65 
reference site: s389

Puente Hills M 6.65 
reference site: s684

Chen and Baker (2021) Computers and Geosciences



Community detection results
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Community-based correlation structure
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Correlation model for each 
community
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Conclusions

• Spatial correlations in amplitudes are an important characteristic in 
simulations, and a useful target for validation

• CyberShake stationary correlations appear to be consistent with empirical 
data at long periods

• Going further, repeated rupture simulations allow us to estimate pair-
specific correlations, inferring causality and high-correlation communities 
of locations
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