SFORD JUNIOS

Spatial correlations in CyberShake ground motion simulations: Validation and estimation of non-stationarities

Jack W. Baker and Yilin Chen

SC//EC an NSF+USGS center

Stanford | ENGINEERING

Spatial correlations in ground motion amplitudes

Empirically estimating correlations

Assume sites with equal separation distance have equal correlation ("stationarity")

Impact of spatial correlations on risk

Spatial correlation is important for evaluating risk to distributed infrastructure systems.

Consequence = Travel time delay [total hours during peak hour]

CyberShake simulations

- "Physics-based" simulations of wave propagation through a 3D crustal velocity model (v15.12)
- Earthquake ruptures are described kinematically by slip amplitude, direction, and timing across the fault

Multiple realizations of same rupture geometry

Stationary CyberShake correlations

Site-specific correlation estimation using simulations

If we have many observations at a pair of interest

Observed pairwise correlations, for SA(3s)

Reference empirical model – stationary

Observed pairwise correlations, for SA(3s)

Potential source effects

reference site: s768 T = 3s

T = 3s

11

Can we identify areas with deviations from stationarity?

1. Construct a correlation graph

2. Fit a global correlation model $\hat{\rho}(i,j) = f(h(i,j))$

3. Calculate the deviation of each pair

$$A_{ij} = [Z(\rho(i,j)) - Z(\hat{\rho}(i,j))]\sqrt{n-3}$$

Chen and Baker (2021) Computers and Geosciences

Signed Spectral Clustering to identify communities

Compute the signed degree matrix (absolute sum of edge weights connecting to node i)

$$\tilde{D}_{ii} = \sum_{\cdot} |A_{ij}|$$

Cluster based on eigenvectors of $\tilde{D} - A$ (gives high within-cluster correlation and low across-cluster correlation)

Chen and Baker (2021) Computers and Geosciences

Application to CyberShake simulations

Chen and Baker (2021) Computers and Geosciences

Community detection results

Detected communities

Edge weights between stations, grouped by community

(2)

3

4

15

6

- 2

- 0

-2

-6

Community-based correlation structure

Conclusions

- Spatial correlations in amplitudes are an important characteristic in simulations, and a useful target for validation
- CyberShake stationary correlations appear to be consistent with empirical data at long periods
- Going further, repeated rupture simulations allow us to estimate pairspecific correlations, inferring causality and high-correlation communities of locations