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Performance-Based Earthquake Engineering (PBEE) 
Framework

( ) ( | ) ( | ) ( | )G DV G DV DM f DM EDP f EDP IM dDM dEDP dIM= ⋅ ⋅ ⋅ ⋅ ⋅  

(Porter, 2003)

𝐺 · = complementary cumulative distribution functions, and 𝐺 · · = conditional complementary cumulative distribution function; 𝑓 · = probability density function, and 𝑓 · · = conditional probability density function; 𝐷𝑉 = decision variable, 𝐷𝑀 = vector of damage measures; 𝐸𝐷𝑃 = vector of engineering demand parameters; 𝐼𝑀 = vector of intensity measures;
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[1] Porter, K.A. (2003) An Overview of PEER’s Performance-Based Earthquake Engineering Methodology



Performance-Based Hurricane Engineering (PBHE) 
Framework

( ) ( | ) ( | ) ( | , , ) ( | , )

( ) ( ) d d d d d

G DV G DV DM f DM EDP f EDP IM IP SP f IP IM SP

f IM f SP DM EDP IP IM SP

= ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
    

(Barbato et al., 2013)

𝐼𝑃 = vector of interaction parameters; 𝑆𝑃 = vector of structure parameters; 
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[2] Barbato et al. (2013) Performance-Based Hurricane Engineering (PBHE) 
framework



Proposed PBME Framework

,( ) ( | ) ( | , ) ( | , , ) ( | , )t tG DV G DV DM f DM EDP C f EDP IM IP SP f IP IM SPτ τ τ τ τ= ⋅ ⋅ ⋅     
( | ) ( | ) ( )t t t tf IM C f SP C f C dDM dEDP dIM dIP dSP dCτ τ τ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝐶௧ = climatological parameters; 

τ = structural time scale; t = global time scale
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[3] Esmaeili (2022) Evaluation of the Effects of Climate Change on 
Hurricane-Induced Losses for Residential Buildings



Capabilities of the Extended Framework 

Structural parameters

Intensity measures

Interaction parameters?

Single hazard:
• Separating the IM and SP

allows considering the effects
of structural parameters on the
loading

• Chain effects

Multiple hazards:
• Capable to model multiple

correlated/uncorrelated,
synchronous/asynchronous
hazards

Climate change effects
Structural aging effects
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Earthquake Records Selection
Normalized & Mean Spectra
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Benchmark Example (1)
Structural Systems
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2D 4 story Reinforced Concrete Building 

s (in)ρtρlb (in)h (in)
5.00.00700.01302222Column I
5.00.00700.01632222Column II
5.00.00700.01132222Column III
5.00.00700.01452222Column IV
5.00.00330.01262224Beam 1
5.00.00330.01122224Beam 2
5.00.00330.00922224Beam 3
5.00.00330.00772224Beam 4

ρl: longitudinal steel 
reinforcement ratio
ρt: transverse steel 
reinforcement ratio

s: spacing between stirrups
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Soil Springs Model

[4] Haselton (2007) Assessing Seismic Collapse Safety of Modern
Reinforced Concrete Moment-Frame Buildings



Benchmark Example (2)
Plastic Hinge Model for Collapse 

Simulation
Structural Uncertainty

St. D.: Standard Deviation
*: standard deviation
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[4] Haselton (2007) Assessing Seismic Collapse Safety of Modern
Reinforced Concrete Moment-Frame Buildings
[5] Apanagiotakos & Fardis (2001) Deformations of Reinforced Concrete 
Members at Yielding and Ultimate



Results for Fixed-Based Model
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Results for Soil Springs Model
Individual IDAs Comparison ECDF Median
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Effect of Natural Period Variability
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ECDF & Period Distribution 
for Fixed-Base Model

ECDF & Period Distribution 
for Soil Springs Model
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Conclusions
• We have proposed a PBME framework that is consistent with PBEE

• PBME allows to account for multiple items that would require ad-hoc modification 
of PBEE

• For the example considered here, the effects of natural period variability due to 
structural uncertainty are negligible

• Additional work is needed to assess if this is a general result, as well as additional 
properties of the proposed PBME framework
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Future Work
• Investigate the proposed framework for other cases

• Implement and assess the proposed framework considering multiple hazards, e.g., 
scour and seismic actions



Seismic and Scour Analysis (1)

Shape?

Final Depth & 
Duration?

Long Term Scour Level

Scour Depth, d 

Time, t

d1

Scour and Recovery Time History

Max. 
Scour
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16 Direction 
Measurement

v = 29.9 cm/s

3D Scour Modeling

v = 29.9 cm/s
(cm)

Experimental 
Scour Depth 
Measuring



Example: Otay River Bike Bridge

Bridge Typical Section

Peak Discharge (cfs)Flood Event
12,000Q-50
22,000Q-100
29,000Q-200

Discharge:

Total Scour 
Depth (ft)

Long-Term Scour DepthsShort-Term 
Scour Depths

Substructure 
Component

Contraction 
Scour (ft)

Degradation 
(ft)

Local Scour (ft)

0.000.000.000.00Abutment 1
10.912.310.008.60Pier 2
9.132.310.006.82Pier 3
9.902.310.007.59Pier 4
0.000.000.000.00Abutment 5

Scour Information:
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Pier Cross Section

Seismic and Scour Analysis (2)



Thank you very much!
Questions?
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