

Development of a Performance-Based Multi-hazard Engineering (PBME) Framework Consistent with Existing Single-hazard PBE Frameworks

Michele Barbato, Ph.D., PE, F.ASCE, F.SEI, F.EMI Professor, UC Davis

> Lei Zhou Ph.D. Candidate, UC Davis

Outline

Existing Performance-Based Engineering Frameworks

Proposed Performance-Based Multihazard Framework

Capability of the Extended Framework

Application Example

* Conclusions

♦ <u>Future Work</u>

Performance-Based Earthquake Engineering (PBEE) Framework

 $G(DV) = \iiint G(DV | DM) \cdot f(DM | EDP) \cdot f(EDP | IM) \cdot dDM \cdot dEDP \cdot dIM$

 $G(\cdot)$ = complementary cumulative distribution functions, and $G(\cdot | \cdot)$ = conditional complementary cumulative distribution function; $f(\cdot)$ = probability density function, and $f(\cdot | \cdot)$ = conditional probability density function; DV = decision variable, DM = vector of damage measures; EDP = vector of engineering demand parameters; IM = vector of intensity measures;

[1] Porter, K.A. (2003) An Overview of PEER's Performance-Based Earthquake Engineering Methodology

Performance-Based Hurricane Engineering (PBHE)

 $G(DV) = \iiint G(DV | DM) \cdot f(DM | EDP) \cdot f(EDP | IM, IP, SP) \cdot f(IP | IM, SP)$

 $\cdot f(IM) \cdot f(SP) \cdot dDM \cdot dEDP \cdot dIP \cdot dIM \cdot dSP$

IP = vector of interaction parameters; SP = vector of structure parameters;

[2] Barbato et al. (2013) Performance-Based Hurricane Engineering (PBHE) framework

Proposed PBME Framework

 $G(DV) = \iiint G(DV_{t,\tau} | DM_{\tau}) \cdot f(DM_{\tau} | EDP, C_{t}) \cdot f(EDP | IM, IP, SP_{\tau}) \cdot f(IP | IM, SP_{\tau})$ $\cdot f(IM | C_{t}) \cdot f(SP_{\tau} | C_{t}) \cdot f(C_{t}) \cdot dDM_{\tau} \cdot dEDP \cdot dIM \cdot dIP \cdot dSP_{\tau} \cdot dC_{t}$

 C_t = climatological parameters; τ = structural time scale; t = global time scale

[3] Esmaeili (2022) Evaluation of the Effects of Climate Change on Hurricane-Induced Losses for Residential Buildings

Capabilities of the Extended Framework

Climate change effects

Structural aging effects

Earthquake Records Selection

	Earthquake			Recording Station	
ID NO.	М	Year	Name	Name	
1	6.7	1994	Northridge	Beverly Hills - Mulhol	
2	6.7	1994	Northridge	Canyon Country - WLC	
3	7.1	1999	Duzce, Turkey	Bolu	
4	7.1	1999	Hector Mine Hector		
5	6.5	1979	Imperial Valley Delta		
6	6.5	1979	Imperial Valley	El Centro Array #11	
7	6.9	1995	Kobe, Japan	Nishi - Akashi	
8	6.9	1995	Kobe, Japan	Shin - Osaka	
9	7.5	1999	Kocaeli, Turkey	Duzce	
10	7.5	1999	Kocaeli,Turkey	Arcelik	
11	7.3	1992	Landers	Yermo Fire Station	
12	7.3	1992	Landers	Coolwater	
13	6.9	1989	Loma Prieta	Capitola	
14	6.9	1989	Loma Prieta	Gilroy Array #3	
15	7.4	1990	Manjil, Iran	Abbar	
16	6.5	1987	Superstition Hills	El Centro Imp. Co.	
17	6.5	1987	Superstition Hills	Poe Road (temp)	
18	7.0	1992	Cape Mendocino	Rio Dell Overpass	
19	7.6	1999	Chi-Chi, Taiwan	CHY101	
20	7.6	1999	Chi-Chi, Taiwan	TCU045	
21	6.6	1971	San Fernando	LA - Hollywood Stor	
22	6.5	1976	Friuli, Italy	Tolmezzo	

Normalized & Mean Spectra

Benchmark Example (1)

Benchmark Example (2)

Structural Uncertainty

Plastic Hinge Model for Collapse Simulation

	Variable	Distribution	Mean	St. D.
	E steel	Normal	29200	964
Material	f _y	Beta	60	6
Uncertainty	f' _c	Lognormal	5	1
	E _{conc}	Normal	4030	0.086
Soil Spring	Horizontal	Normal	924	277
Soli Spring	Vertical	Normal	15840	4752
Oncertainty	Rotational	Normal	4752000	1425600
	T 7 ' 1 1	\mathbf{D}^{\prime} (1 (T	
	Variable	Distribution	Eqn	$\sigma_{ m LN}$
	M_y	Normal	Eqn $(6)^{[5]}$	σ _{LN} 0.2*
	$\frac{M_y}{EI_{stf}}$	Normal Lognormal	Eqn (6) ^[5] $(4.3)^{[4]}$	σ _{LN} 0.2* 0.33
Hinga Uncertainty	Variable M_y EI_{stf} θ_{cap}	Normal Lognormal Lognormal	Eqn $(6)^{[5]}$ $(4.3)^{[4]}$ $(4.15)^{[4]}$	σ_{LN} 0.2* 0.33 0.54
Hinge Uncertainty	Variable M_y EI_{stf} θ_{cap} θ_{pc}	Normal Lognormal Lognormal Lognormal	Eqn $(6)^{[5]}$ $(4.3)^{[4]}$ $(4.15)^{[4]}$ $(4.17)^{[4]}$	σ_{LN} 0.2* 0.33 0.54 0.72
Hinge Uncertainty	Variable M_y EI_{stf} θ_{cap} θ_{pc} M_c/M_y	Normal Lognormal Lognormal Lognormal Lognormal	Eqn $(6)^{[5]}$ $(4.3)^{[4]}$ $(4.15)^{[4]}$ $(4.17)^{[4]}$ $(4.18)^{[4]}$	$ \begin{array}{c} \sigma_{LN} \\ 0.2^{*} \\ 0.33 \\ 0.54 \\ 0.72 \\ 0.1 \\ \end{array} $

*: standard deviation

[4] Haselton (2007) Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment-Frame Buildings
[5] Apanagiotakos & Fardis (2001) Deformations of Reinforced Concrete Members at Yielding and Ultimate

Results for Fixed-Based Model

Results for Soil Springs Model

Effect of Natural Period Variability

ECDF & Period Distribution for Fixed-Base Model

ECDF & Period Distribution for Soil Springs Model

Conclusions

- We have proposed a PBME framework that is consistent with PBEE
- PBME allows to account for multiple items that would require ad-hoc modification of PBEE
- For the example considered here, the effects of natural period variability due to structural uncertainty are negligible
- Additional work is needed to assess if this is a general result, as well as additional properties of the proposed PBME framework

Future Work

- Investigate the proposed framework for other cases
- Implement and assess the proposed framework considering multiple hazards, e.g., scour and seismic actions

Seismic and Scour Analysis (1)

Experimental Scour Depth Measuring

(cm)

Seismic and Scour Analysis (2)

Example: Otay River Bike Bridge

6' Тур

TYPICAL SECTION

Bridge Typical Section

Discharge:

Peak Discharge (cfs)
12,000
22,000
29,000

Scour Information:

imum ranc uctu	Substructure Component	Short-Term Scour Depths	Long-Term Scour Depths		Total Scour Depth (ft)
		Local Scour (ft)	Degradation (ft)	Contraction Scour (ft)	
	Abutment 1	0.00	0.00	0.00	0.00
	Pier 2	8.60	0.00	2.31	10.91
	Pier 3	6.82	0.00	2.31	9.13
	Pier 4	7.59	0.00	2.31	9.90
	Abutment 5	0.00	0.00	0.00	0.00

72" DRILLED SHAFT

Pier Cross Section

10

#8 HOOP, SEE NOTE 2

COLUMN Reinf, SEE "SECTION C-C"

€ COLUMN = € PILE

-#18 MAIN Reinf. To† 18

2" ID INSPECTION PIPES,

Tot 6, SPACED EQUALLY

€ PIER

Acknowledgements

- California Department of Transportation (Caltrans) Agreement 65A0774-TO 012
 - YEN Sharon, LIAO David, MALEK Amir
- Pacific Earthquake Engineering Research (PEER) Center Bridge 2024-00011742

Thank you very much! Questions?

Michele (Mike) Barbato, Ph.D., P.E. (LA, Italy), F.ASCE, F.SEI, F.EMI Professor of Structural Engineering and Structural Mechanics Department of Civil and Environmental Engineering, UC Davis Director, UC Davis Climate Adaptation Research Center Director, Climate Initiative, CITRIS and the Banatao Institute E-mail: <u>mbarbato@ucdavis.edu</u> Webpage: <u>https://faculty.engineering.ucdavis.edu/barbato/</u>