
PACIFIC EARTHQUAKE ENGINEERING 
RESEARCH CENTER

Influence of Kinematic SSI on Foundation Input 
Motions for Bridges on Deep Foundations

Benjamin J. Turner
Scott J. Brandenberg
Jonathan P. Stewart

Department of Civil and Environmental Engineering
University of California, Los Angeles

PEER Report No. 2017/08
Pacific Earthquake Engineering Research Center

Headquarters at the University of California, Berkeley

November 2017
PEER 2017/08

November 2017



Disclaimer

The opinions, findings, and conclusions or recommendations 
expressed in this publication are those of the author(s) and 
do not necessarily reflect the views of the study sponsor(s) 
or the Pacific Earthquake Engineering Research Center.



 

Influence of Kinematic SSI on Foundation Input 
Motions for Bridges on Deep Foundations 

 

 
 
 
 
 
 

Benjamin J. Turner 

Scott. J. Brandenberg 

Jonathan P. Stewart 

 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 

PEER Report 2017/08 
Pacific Earthquake Engineering Research Center 

Headquarters at the University of California, Berkeley 

November 2017 



ii 

  



iii 

ABSTRACT 

Seismic design of bridges and other pile-supported structures often utilizes a substructure method 
of dynamic analysis in which the foundation elements are not explicitly modeled but are replaced 
by springs and dashpots representing the foundation impedance. The ground motion appropriate 
for input to the free end of the springs, known as the “foundation input motion” (FIM), differs 
from the free-field motion (FFM) due to the difference in stiffness and deformation 
characteristics between the pile(s) and soil, which is typically overlooked in practice. Results of a 
parametric study of the influence of kinematic pile–soil interaction on FIM are presented. One-
dimensional nonlinear ground response analyses were used to define free-field motions, which 
were subsequently imposed on a beam-on-nonlinear-dynamic-Winkler-foundation pile model. 
The free-field ground surface motion and top-of-pile FIM computed from these results were then 
used to compute transfer functions and spectral ratios for use with the substructure method of 
seismic analysis. A total of 1920 parametric combinations of different pile sizes, soil profiles, 
and ground motions were analyzed. 

Results of the study show that significant reductions of the FFM occur for stiff piles in 
soft soil, which could result in a favorable reduction in design demands for short-period 
structures. Group effects considering spatially-variable (incoherent) ground motions are found to 
be minor over the footprint of a typical bridge bent, resulting in an additional reduction of FFM 
by 10% or less compared to an equivalent single pile. 

This study aims to overcome limitations of idealistic assumptions that have been 
employed in previous studies such as linear-elastic material behavior, drastically simplified 
stratigraphy, and harmonic oscillations in lieu of real ground motions. In order to capture the 
important influence of more realistic conditions such as material nonlinearity, subsurface 
heterogeneity, and variable frequency-content ground motions, a set of models for predicting 
transfer functions and spectral ratios has been developed through statistical regression of the 
results from this parametric study. These allow foundation engineers to predict kinematic pile–
soil interaction effects without performing dynamic pile analyses. 

While previously available elastic analytical models are shown to be capable of 
predicting the average results of this study, they do not adequately reflect the amount of 
variability in the results that arises from consideration of more realistic conditions. The new 
model is also used to re-examine available case history data that could not be explained by 
existing models. 
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U(ω) Frequency-domain representation of the time domain signal u(t)  

VS Soil shear wave velocity (m/s) 

VS,10B Time-averaged shear wave velocity computed over upper ten pile diameters (m/s) 

VS,30 Time-averaged shear wave velocity computed over upper 30 m of site profile (m/s) 

VS,H Time-averaged shear wave velocity computed over full thickness of soil profiles 
used for ground response analyses, H (m/s) 

VS,L Time-averaged shear wave velocity computed over length of pile, L (m/s) 

y Soil p-y curve relative horizontal displacement between pile and soil (m) 

z Depth below ground surface measured as a positive number (m) 
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GREEK SYMBOLS AND OPERATORS 

α Static stiffness modifier for pile lateral translation 

β Damping, expressed as percentage of critical damping. 

δ Ratio of Winkler modulus Ke to soil elastic modulus Es  

Δt Time increment for discrete time signal (s) 

ε50 Strain mobilized at one-half of maximum stress during laboratory strength tests on 
soil 

F Fourier transform operator 

γavg Average soil shear strain in pile–soil interaction zone of influence for laterally-
loaded pile 

γr Reference strain corresponding to 50% modulus reduction 

γ2 Coherence 

κ Wavenumber 

λ Characteristic term or “Winkler parameter” for laterally loaded pile (m-1) 

λff Wavelength of free-field soil column under harmonic excitation (m) 

ν Poisson’s ratio 

ω Angular frequency (rad./s) 

ϕ Curvature (m-1) 

ϕpk Soil peak friction angle (deg.) 

θ Pile head rotation (radians) 

ρp Mass density of pile (Mg/m3) 

ρs Mass density of soil (Mg/m3) 
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1 Introduction 

Seismic design of bridges and other structures supported on bored or driven piles often utilizes a 
substructure method of dynamic analysis in which the foundation elements are not explicitly 
modeled but are replaced by springs and dashpots representing the foundation impedance. The 
ground motion appropriate for input to the free end of the springs, known as the foundation input 
motion (FIM) differs from the free-field motion (FFM) due to the difference in stiffness and 
deformation characteristics between the pile(s) and soil, which is the concept of kinematic soil–
structure interaction (SSI). As with many other aspects of SSI, the difference between the FIM 
and FFM often results in a favorable reduction in demand placed on the structure, yet it is 
typically ignored in practice. In some cases, however, the FIM could actually be greater than the 
FFM, which is also typically overlooked. 

Within the substructure method, the problem of relating the FFM to the FIM is solved 
separately from the dynamic analysis of the superstructure. Ground motions from a seismic 
hazard analysis represent shaking in the free field and must be modified to account for kinematic 
SSI. For example, the PEER ground-motion database [Ancheta et al. 2014], a commonly used 
source for accelerograms used for dynamic analyses, excludes records influenced by SSI. 
Similarly, response spectra representative of the FFM rather than the FIM are typically used for 
pseudo-static response spectrum analysis. Pseudo-spectral accelerations (PSA) on seismic hazard 
maps and site amplification factors used in building codes and seismic design guidelines (e.g., 
ASCE-7 [2010]) do not include the influence of SSI. 

Whereas kinematic SSI for shallow foundations is relatively well understood, and tools 
are available for implementation in routine practice (e.g., NIST [2012]), similar tools are not yet 
available for piles. Since the 1960s, several researchers have studied the response of piles and 
pile groups using simplifying assumptions such as linear elasticity, homogeneous soil properties, 
and harmonic ground motions, including Tajimi [1969], Flores-Berones and Whitman [1982], 
Gazetas and Dobry [1984a], Fan et al. [1991], Kaynia and Novak [1992], and many others. More 
recent developments such as Anoyatis et al. [2013], Sica et al. [2013], and Di Laora and Rovithis 
[2014] have incorporated the effects of inhomogeneous and layered soil profiles and different 
pile boundary conditions. However, the previous studies to-date have yet to produce tools such 
as formulas for transfer functions and response spectrum scaling factors that reliably account for 
the complexity of realistic pile, soil, and ground motion conditions—in particular, nonlinear 
material behavior—yet are simple enough for implementation in routine practice. The purpose of 
this study is to develop such tools with consideration of realistic dynamic material behavior and 
subsurface conditions using the type of information known for a typical project. Emphasis is 
placed on evaluating the influence of the following factors: 
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 Nonlinearity due to (i) free-field site response, (ii) interaction at the pile–soil 
interface, and (iii) nonlinear pile structural behavior. 

 Inhomogeneous soil profiles, which for this study are developed from the 
results of real subsurface investigations. 

 The complexity of real ground motions, including variable frequency content, 
intensity, and incoherence (i.e., spatial variability). 

 Pile group behavior, in particular the influence of ground-motion incoherence 
over the spatial extent of the pile group in light of the preceding factors. 

Previous computational studies using elastic material properties and other highly 
idealized conditions have generally concluded that reductions between the FIM and FFM are 
insignificant and can be ignored in practice. This study demonstrates that large-diameter piles 
used in soft-soil conditions can result in reductions to design ground motions that are significant 
and could result in appreciable cost savings. 

The few documented case studies of measured kinematic pile–soil interaction effects 
provide conflicting evidence as to whether or not it is a significant phenomenon that should be of 
interest to foundation engineers. This research seeks to explain these case studies and clearly 
demonstrate the conditions under which pile kinematic SSI should be considered, and likewise 
when it can safely be ignored. 

The outcome of this work is a set of “generalized models” for predicting transfer 
functions and spectral ratios for use in routine practice. The terminology “generalized model” is 
used here to refer to a mathematical model (i.e., equation with a specified functional form) 
intended to cover a wide range of conditions encountered in routine practice. The generalized 
model is implemented for specific project conditions by computing coefficients based on known 
project parameters such as pile size and soil shear-wave velocity. The coefficients have been 
determined by statistical regression of the results of a parametric analysis covering typical 
foundation, subsurface, and ground motions conditions. 

1.1 ORGANIZATION 

This report is organized as follows: 

 The remainder of Chapter 1 introduces the fundamentals of kinematic pile–
soil interaction, followed by a literature review of previous work on the 
subjects of pile dynamics and lateral load analyses using the p-y method. 
Since most of the available pile kinematic solutions rely on simplifying 
assumptions of linear elasticity and highly idealized subsurface conditions, a 
critique is given in the context of the limitations of these assumptions and the 
motivation to overcome them with the present study. The limited amount of 
available empirical and experimental evidence of pile kinematic SSI is also 
presented. 

 Chapter 2 presents a derivation of an elastic analytical solution for kinematic 
pile–soil interaction. The closed-form solution that results is used for 
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validating the numerical modeling approach that will subsequently be used for 
nonlinear analyses. 

 Chapter 3 defines the bounds of the parametric study performed to investigate 
the kinematic pile problem, and lays out the means by which the input 
parameters for the nonlinear analyses were formulated. 

 Chapter 4 presents the results of the parametric study, followed by 
development of generalized models for predicting those results in a forward-
design scenario. The forward prediction models consist of a specified 
functional form with coefficients that are predicted via equations developed 
through statistical regression. Comparisons are made between the nonlinear 
analysis results and idealized elastic solutions, which show that the elastic 
solutions generally are capable of predicting the average response of the 
nonlinear system. However, the elastic solutions fail to capture the large 
variability exhibited by the nonlinear analysis results, which is caused by the 
complexity of realistic subsurface conditions and ground motions, and soil 
nonlinearity. 

 Chapter 5 investigates issues related to the combination of inertial and 
kinematic SSI effects. An understanding of the combined effects is necessary 
for the re-examination of case history data presented in the following chapter. 

 Chapter 6 provides example applications of the generalized models through (i) 
re-examination of existing case history data, and (ii) a hypothetical bridge 
design scenario. 

 Chapter 7 provides conclusions and recommendations for implementation of 
the generalized results in engineering practice. 

 Appendix A contains profiles of soil properties that define the sites used for 
nonlinear analyses. 

 Appendix B discusses a pilot field study done as part of this project to 
measure kinematic pile–soil interaction transfer functions for full-scale 
conditions. The framework used for this pile study is documented with the 
intent that it will be repeated in the future for further validation of 
computational approaches. 

1.2 FUNDAMENTALS 

Soil–structure interaction (SSI) can be broadly classified into two effects1: 

 Inertial interaction, which describes how inertial forces generated in the 
structure induce foundation displacements and rotations that would not occur 

                                                 
 
1 Professor Robert V. Whitman is credited with coining the terms inertial and kinematic during the 1970s [Roesset 
1994; Kausel 2010]. 
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if the structure had a fixed base, resulting in additional displacements in the 
structure and a change of fundamental frequency or “period lengthening” 

 Kinematic interaction, which describes how waves propagating in the free 
field differ from the motion of the foundation(s) due to differential 
foundation–soil stiffness, ground-motion incoherence, and wave-scattering 
effects 

In the context of the substructure method, foundation “impedance” (defined below) depends 
primarily on inertial SSI, and kinematic SSI determines the appropriate FIM to be used for the 
analysis. For pile-supported structures, kinematic SSI will be referred to as “kinematic pile–soil 
interaction” in this text. 

Two effects resulting from kinematic pile–soil interaction are of interest to foundation 
engineers. The first, which is the primary subject of this study, is the difference between the FIM 
and the FFM. The second topic of interest is quantifying demands placed on the pile directly as a 
result of excitation of the surrounding soil. Pile foundations are typically designed only to resist 
force effects from the superstructure, including inertial demands during earthquake loading in 
seismic regions. Kinematic loads coming from the ground are often ignored, except for cases of 
large permanent ground displacement such as lateral spreading. However, kinematic pile–soil 
interaction can impose large demands on piles even in the absence of permanent ground 
deformation, particularly where a significant soil stiffness contrast exists over the length of the 
pile. While kinematic demands are not the focus of this study, the analysis method described 
herein sheds lights on the problem and could be used for future studies. 

The substructure method of SSI analysis (e.g., Roesset et al. [1973]) for a pile-supported 
structure can be summarized in three steps: 

1. Determine the kinematic response of the pile foundation with the mass of the 
supported structure set equal to zero; this provides an estimate of the demand on the 
pile resulting from the ground vibration as well as the motion at the top of the pile 
(the FIM); 

2. Determine the dynamic impedance at the pile head, consisting of frequency-
dependent springs and dashpots that relate an applied force or moment at the pile 
head to a unit displacement or rotation, respectively; and 

3. Evaluate the response of the structure supported on the springs and dashpots from 
step 2 and excited by the FIM from step 1. 
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averaging for shallow foundations (e.g., see Veletsos and Prasad [1988]), in which the stiffness 
and strength of the foundation average the spatially variable ground motions imposed across its 
footprint. As for shallow foundations, spatial variability (incoherence) of real ground motions 
has the potential to further increase the averaging effect for pile groups that cover a large area, 
such as the footprint of a building. 

Between these extremes, intermediate-frequency excitation places the largest flexural 
demands on the pile for the example parameters considered here. Notice that the free-field 
excitation has the same displacement amplitude for each of the frequencies shown. 
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The transfer functions depicted in Figure 1.4 were computed using an analytically-
derived linear-elastic solution that is presented in detail in Chapter 2. For more realistic pile, soil, 
and ground motion conditions typical of a real project, numerical techniques such as the finite-
element method can be used to compute the dynamic response of the system, which is the 
approach used in this study. Because real earthquakes cause the free field and structure to 
respond at multiple frequencies simultaneously, and because of nonlinearity in the system 
response, the results of dynamic analyses cannot be used directly to compute up/ug at a single 
isolated frequency. Instead, the response history of the pile-head and ground-surface motions 
must be transformed to the frequency domain, e.g., using a Fourier transform. This allows Hu to 
be computed as the ratio of Fourier amplitude spectra (FAS) at each frequency over the range of 
interest as depicted in Figure 1.5. The following notation is used to denote these operations: 

    u t U F   (1.1) 

     u FIM FFMH U U      (1.2) 

In Equations (1.1) and (1.2), u(t) is the time-domain signal of either the FIM (up) or FFM (ug), 
and F denotes a Fourier transform operation that produces a complex-valued frequency-domain 
signal denoted by capital letter U(ω). The amplitude and phase of the signal are computed from 
its real and imaginary parts [Re(U(ω)) and Im(U(ω))] as: 

     2 2
U Re U Im U             (1.3) 

 
 
 

arctanU

Im U

Re U


 



         
   (1.4) 

For simplicity, the abbreviation FAS is sometimes used as a shorthand for the magnitude of the 
FAS, that is FAS =  U  . The frequency domain signal can be represented equivalently in 

terms of either frequency f or angular frequency ω. 

Although transfer functions may be unfamiliar to foundation engineers outside the realm 
of pile dynamics, they are a very useful tool for seismic design. Once a kinematic pile–soil 
interaction transfer function has been defined for a given pile–soil system, it can be used to 
compute a FIM given a FFM without repeating the actual dynamic analysis of the pile subjected 
to the FFM. This is accomplished by convolving the transfer function with the FFM in the 
frequency domain (i.e., multiplying the FAS ordinates of the FFM and transfer function at each 
frequency), then performing an inverse-Fourier transform to recover the FIM signal in the time-
domain—essentially performing the process depicted in Figure 1.5(b)–(d) in reverse. These 
operations can easily be performed with commonly used mathematical software. Hence, if a 
reliable predictive model is made available to define a transfer function using parameters known 
for a typical project—pile and soil properties and estimates of ground-motion intensity measures 
from a seismic hazard analysis—then foundation engineers can skip the dynamic pile analysis 
yet still provide the structural designer an estimated FIM instead of FFM for more realistic 
dynamic analysis of the superstructure. 

While response history analysis may be used for major bridges or other critical 
infrastructure, for routine projects, seismic design is usually performed via pseudo-static 
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the dynamic analyses performed for this project. These methods will be collectively referred to 
as Winkler-type to distinguish them from continuum models. 

Early nonlinear p-y curves (e.g., McClelland and Focht [1958]) were developed by 
matching the results of full-scale load tests to simple functional forms that were based on the 
theoretical state of stress around a laterally loaded pile. The offshore oil drilling industry funded 
seminal work by Matlock [1970] for soft clays, Reese and Welch [1975] for stiff clay above 
groundwater, Reese et al. [1975] for submerged stiff clays, and Reese et al. [1974] for sand. 
Reese et al. [2006] provides an overview of the theoretical and experimental development of 
these p-y curves. Much of this original work has been improved upon and adapted for specific 
conditions; e.g., Reese et al. [1974] was updated by O’Neill and Murchison [1983] and is often 
known as the “API sand” curve [API 1993]. Boulanger et al. [2003] recommended further 
modifications to the API [1993] curve to reflect the fact that the modulus of sand tends to 
increase approximately in proportion to the square root of confining pressure rather than 
increasingly linearly with depth. 

The first-widely available computer-based implementation of the p-y method was a 
finite-difference solution called COM624 [Reese and Sullivan 1980]. This code later became the 
basis for the commercial program LPILE [Reese et al. 2005] and other similar software that is 
widely used in practice. For many projects, the extent of “seismic” foundation design is that the 
project structural engineer provides the foundation engineer with top-of-pile force effects (shear, 
axial, and moment), and the foundation designer sizes the pile in terms of diameter and length to 
adequately resist these loads. Even in cases when the design loads are pseudo-static 
representations of seismic inertial forces, LPILE or an equivalent program is often used to design 
for seismic lateral loads as if they were static, without consideration of the fact that the default p-
y curves available in the software are not intended for dynamic problems. While top-of-pile 
spring stiffness matrices (impedance functions) are sometimes provided back to the structural 
designer for further analyses, kinematic pile–soil interaction is rarely considered. 

While the p-y curves described above have seen widespread use in practice, they were 
initially developed for static or slow-monotonic loading conditions. In some instances, effects of 
cyclic degradation over time were taken into account, but these were meant to represent repeated 
cyclic loading from wave action for offshore applications—not rapid, high-intensity cyclic 
loading from earthquakes. Existing p-y curve definitions have several shortcomings, including 
(after Khalili-Tehrani et al. [2014]): 

 Inaccurate small-strain stiffness. 

 A functional dependence on diameter that is not thoroughly validated since 
the curves are based on a limited number of tests. 

 A lack of functional dependence on the pile head boundary condition. 

For dynamic analyses, the initial stiffness problem is of greatest concern. There are two 
issues to consider: 

1. Some of the functional forms (e.g., Matlock [1970] and Reese and Welch [1975]) 
have an initial tangent stiffness of infinity. While this may be trivial for conventional 
problems in which loads applied at the pile head induce significant head displacement 
and thus reach the nonlinear range of the p-y curve, infinite stiffness is problematic 
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for dynamic problems where small relative displacements may occur between the pile 
and soil, especially at depth. Small trial displacements during numerical solution 
routines will result in erroneously large forces, causing convergence problems. 
Furthermore, infinite initial stiffness is problematic when performing modal analyses 
to compute natural frequencies of the pile-soil or structure-pile–soil system. 

2. Because of the rudimentary equipment used in the early tests, accurate 
measurements of pile strains could not be achieved in the range of truly elastic 
soil behavior [Choi et al. 2015]. This error is further propagated when the strains 
are numerically double integrated to compute displacement and double 
differentiated to compute soil reaction, which are necessary steps to generate p-y 
curves from load test results. Hence, even if the functional form of the p-y curve 
allows specification of the initial stiffness, the available load test results are not 
adequate for accurately defining it. A more attractive approach would relate the 
initial stiffness of the soil–pile interaction to the elastic soil stiffness measured in 
situ using geophysical methods (e.g., maximum shear modulus Gmax), which is 
described further in §3.4.1. 

Lam [2009] questioned the applicability of initial stiffness corresponding to Gmax for 
practical applications of p-y curves, noting that several lateral load tests of full- and model-scale 
piles have shown that the measured initial p-y stiffness is significantly softer— by a factor of as 
much as ten—than the elastic stiffness computed from the results of small-strain geophysical site 
investigation methods. In reality, however, the instrumentation used during the load test is not 
capable of measuring the true initial stiffness. Hence, the experimental measurements to which 
Lam [2009] refers are actually in the nonlinear, albeit small-strain, range. 

Numerical implementation of p-y curves to accommodate cyclic loading via 
unload/reload rules is described by Wang et al. [1998] and Boulanger et al. [1999]. With some 
exceptions that will be discussed further in §3.3, the p-y macro-element described by Boulanger 
et al. is implemented in OpenSees [McKenna 1997; McKenna et al. 2010] as the material 
PySimple1. The backbone curve defined by the PySimple1 material is formulated to match the 
shapes of the Matlock [1970] and API [1993] curves for clay and sand, respectively. The infinite 
initial stiffness problem of Matlock [1970] is overcome in PySimple1 by using a finite elastic 
stiffness computed using the method of Vesic [1961] up to a value of 35% of the ultimate 
resistance of the spring (pult). 

1.3.2 Analytical and Numerical Solutions for Pile Dynamics 

Computational studies of pile dynamics can generally be divided into two groups: (i) simulated 
loading is applied at the pile head by machine vibrations or seismically-induced inertial forces in 
the structure, thereby inducing inertial SSI; or (ii) loading is applied by excitation of the free 
field, typically from seismic sources, inducing kinematic SSI. Studies falling into the latter 
category may or may not include inertial effects in addition to kinematic effects, depending on 
whether or not a superstructure mass is included. Studies can be further classified based on (i) 
the computational method used to arrive at the solution—analytical versus numerical; (ii) 
whether the domain is represented as a continuum or is discretized into thin layers using, for 
example, Winkler’s assumption; and (iii) whether linear or nonlinear material properties are 
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used. While even further subcategories could be defined (two- versus three-dimensional 
domains, homogeneous versus layered soil, mixed linear/nonlinear materials, etc.), the preceding 
classification broadly outlines the existing body of work on pile dynamics and will guide the 
following literature review. 

Two of the earliest studies of pile dynamics, Penzien et al. [1964] and Tajimi [1969], 
considered a complete soil–pile–superstructure system excited by seismic waves. Penzien et al. 
performed one-dimensional ground response analysis of a clay layer using a lumped mass model 
and applied these free-field excitations to the pile foundations via viscoelastic Winkler springs, 
which in turn excited the superstructure. Soil nonlinearity was approximated using bilinear rather 
than linear springs, and connection details within the bridge superstructure were modeled 
explicitly. The entire system was solved simultaneously using a numerical time-stepping 
approach, a considerable achievement given computational power in the 1960s. Penzien [1970] 
describes application of this method for design of the Elkhorn Slough Bridge in California, with 
a detailed account of how the soil properties were selected based on results of a rigorous field 
investigation and laboratory testing program. Tajimi [1969] derived an elasticity-based analytical 
solution for a rigid structure supported by a flexible pile in a three-dimensional elastic 
continuum. While an exact solution is not reached, approximate solutions are given for the 
amplification of the structure displacement relative to the free-field ground displacement and for 
the pile head impedance. 

In much of the pile dynamics work that followed, and especially over the following 
decade, emphasis was placed on inertial SSI with less attention given to kinematic effects. In 
inertial SSI studies, loading is applied at the pile head, and the goal is to generate impedance 
functions to represent foundation stiffness and damping for use in the substructure method. This 
includes studies utilizing Winkler models by Novak [1974], Matlock et al. [1978], Kagawa and 
Kraft [1981], Dobry et al. [1982], Gazetas and Dobry [1984a], Nogami and Konagi [1988], 
Nogami et al. [1992], and Chau and Yang [2005], as well as continuum model approaches by 
Novak et al. [1978], Kuhlemeyer [1979], Kaynia and Kausel [1982; 1991], Sen et al. [1985], 
Wolf [1985], Pak and Jennings [1987], Tronchanis et al. [1991], and Mamoon and Banerjee 
[1992]. While the inertial SSI results are not directly applicable to this study, the analytical 
framework developed by these researchers was often used subsequently to investigate kinematic 
effects. Additionally, studies that focused on inertial SSI provide the only available references 
for quantifying certain parameters, such as the dashpot coefficient used to model radiation 
damping for Winkler-type analyses. 

Blaney et al. [1976] generated perhaps the first kinematic transfer functions for free-head 
piles from results of a finite-element continuum model considering a limited parametric range of 
pile and soil profile properties. At roughly the same time, R. Flores-Berrones’ research [1974], 
who was completing a Ph.D. at the time, focused on the pile kinematic problem but utilized a 
Winkler model. In their seminal 1982 paper, Flores-Berrones and Whitman provide a chart-based 
solution for predicting the amplification or de-amplification of the pile head relative to the free-
field soil displacement as a function of excitation frequency and the soil-profile fundamental 
frequency. The kinematic response is isolated by using a massless superstructure; the work also 
considers combination of inertial and kinematic effects. Other studies including kinematic 
response include Gazetas [1984], Gazetas and Dobry [1984a], Banerjee et al. [1987], Fan et al. 
[1991], Makris and Gazetas [1992], Makris et al. [1996]), Giannakou et al. [2010] for battered 
piles, Di Laora et al. [2012], Di Laora and Sanctis [2013], Anoyatis et al. [2013], and Di Laora 
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and Rovithis [2014]. The most recent references provide analytical solutions for increasingly 
complex soil profiles (e.g., stiffness increasing as a nonlinear function of depth) and new insight 
into normalization of the results. 

While most of these studies modeled seismic excitation by vertically-propagating shear 
waves, similar solutions for inclined waves have been presented by Barghouthi [1984], Mamoon 
and Banerjee [1992], and Kaynia and Novak [1992]. Kaynia and Novak [1992] and Makris 
[1994] also provided solutions for Rayleigh waves, and solutions are available for axial 
kinematic response due to vertical P-wave excitation (e.g., Mylonakis and Gazetas [2002]). 

Kaynia and Kausel [1982] formulated a boundary-integral solution to the Green’s 
functions for a loaded circular disc in an elastic half-space meant to represent a pile. Their 
rigorous approach produced impedance functions and kinematic transfer functions for single 
piles and pile groups, and became the standard by which many other studies were judged 
throughout the 1980s and 1990s. Fan et al. [1991] implemented a computer-based solution of the 
Kaynia and Kausel [1982] formulation, which allowed computation of transfer functions for 
single piles and pile groups for a variety of pile/soil stiffness ratios, pile length/diameter ratios, 
and pile head-fixity conditions. Up until this point, most studies had failed to present generalized 
recommendations that could easily be applied in a forward design sense. Fan et al. [1991] thus 
became the standard against which future pile KSSI studies were judged. Transfer functions from 
the Fan et al. [1991] study are shown in Figure 1.7. 

The results of these studies showed that pile kinematic SSI effects depend primarily on (i) 
the stiffness contrast between the pile and soil, often expressed as a ratio of pile to soil modulus 
(Ep/Es); (ii) the variation of soil stiffness over the length of the pile, e.g. homogeneous soil versus 
layered or increasing stiffness with depth; (iii) the pile head-fixity condition; and (iv) the pile 
length to diameter or “slenderness” ratio (L/d). With regards to L/d, recent work by Anoyatis et 
al. [2013] as well as the results of this study show that for piles longer than the active length (i.e., 
flexible piles), as is typical for deep foundations, kinematic effects are not strongly dependent on 
the slenderness ratio as a standalone parameter. Fan et al. also considered pile groups, and 
concluded that the group response was similar to that for a single pile for typical pile spacing 
when coherent ground motions are considered. 

For the studies that do center on kinematic effects, the focus is often placed on the 
flexural and/or shear demands imposed on the pile by the deforming soil (e.g., Banerjee et al. 
[1987]; Kavvadas and Gazetas [1993]; Kaynia and Mahzooni [1996]; Mylonakis [2001]; 
Nikolaou et al. [2001]; Saitoh [2005]; Maiorano et al. [2009]; Di Laora et al. [2012], and Sica et 
al. [2013]) rather than on modification of the FIM relative to the FFM. This is likely in part due 
to the prevailing opinion that piles in general do not have sufficient stiffness to significantly 
reduce the FIM over the frequency range of engineering interest. However, this may not be true 
considering that (i) large diameter drilled shafts and cast-in-steel-shell piles on the order of 2 m 
to 3 m diameter or more are now commonplace for supporting large bridges; (ii) soil nonlinearity 
effectively increases the stiffness contrast between pile and soil, and explicit consideration of 
nonlinearity has been missing from most previous studies; and (iii) the ability to reduce high-
frequency motions may be of significant interest for certain structures, higher modes of 
conventional structures, and vibration-sensitive nonstructural components, even if there is no 
significant reduction near the first-mode period of the structure. 
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For pile dynamics problems, transfer functions are often presented versus dimensionless 

frequency 0
pa , typically defined as (e.g., Kaynia and Kausel [1982] and Fan et al. [1991]): 

0
p

S

B
a

V


    (1.5) 

where 2 f   is the angular frequency of excitation, B is the pile diameter (or radius for some 
studies, e.g., Novak et al. [1978] and Gazetas and Dobry [1984a]), and VS is the soil shear-wave 
velocity. This dimensionless frequency was borrowed from the equivalent term for shallow 
foundations, where the B term represents the shallow foundation radius (e.g., Gazetas [1983]). 
While this form of a0 is essentially the only available choice for shallow foundations, pile 
behavior can be better characterized by terms other than diameter, which is a poor standalone 
representation of stiffness and characteristic patterns of deformation. 

To incorporate the effect of pile-to-soil stiffness ratio, results of early studies are often 
presented as families of transfer function curves for various ratios of pile-to-soil modulus Ep/Es. 
For example, the Fan et al. [1991] results in Figure 1.7 indicate that the same result is achieved 
for any size pile and soil stiffness as long as the slenderness ratio L/B and Ep/Es are held constant. 
While the ratio of pile-to-soil stiffness is a very significant parameter in terms of its influence on 
the kinematic pile–soil interaction, the simple quantity Ep/Es is a poor representation of this 
mechanism for practical applications because it does not contain any information on the 
geometric properties of the pile cross section. An “effective” pile modulus can be computed that 
equates a hollow section such as a steel pipe to an equivalent solid section, but this calculation is 
cumbersome and unfamiliar in routine foundation engineering. A more informative and familiar 
quantity to describe the pile stiffness is its flexural rigidity, which is the product of the pile 
material elastic modulus Ep and its moment of inertia Ip. By using flexural rigidity, explicit 
consideration can be made of (i) any pile geometry (e.g., rectangular, circular, hollow, octagonal, 
etc.); (ii) composite sections such as cast-in-steel-shell concrete piles; and (iii) material 
nonlinearity such as cracking of concrete in tension or yielding of reinforcing steel. Likewise, the 
use of B in Equation (1.5) serves only as a proxy for pile stiffness because it does not contain 
information about the material modulus. Accordingly, a more desirable dimensionless frequency 
parameter would be one that contains the pile flexural rigidity directly along with a measure of 
the soil stiffness. A useful parameter that combines these quantities is [Hetenyi 1946]: 

4
4 p p

k

E I
   (1.6) 

Hetenyi referred to λ as the “characteristic” term because it appears in the roots of the 
characteristic equation of the homogeneous form of the governing differential equation for a 
laterally-loaded pile (presented in §2.1). Hetenyi also noted that since λ has the units [length-1], 
the quantity 1/ λ has units of length and hence he dubbed it “characteristic length.” More recent 
researchers sometimes refer to λ as the “Winkler parameter,” which is not to be confused with 
the Winkler coefficient δ as defined for this study in §2.3. 

Randolph [1981] used the term “critical length” (and, interchangeably, “active length”) to 
refer to the portion of a laterally-loaded pile that effectively resists a lateral load, approximated 
as: 
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44 p p
a

E I
L

k

 
   

 
 (1.7) 

For piles that are longer than the active length, further increases in length will not affect the 
response to lateral loads at the pile head; thus, the piles are classified as “long” or “flexible” in 
comparison to “short” piles that are shorter than the active length. Close inspection of Equation 
(1.7) reveals that it is not equal to the inverse of Equation (1.6). The ratio of 1/ λ to Equation 
(1.7) is 4-3/4 ≈ 0.35; therefore, the definitions of “characteristic” and “critical” length used by 
Hetenyi and Randolph, respectively, are different. To avoid confusion, “active length” will be 
used in this text to refer to the portion of the pile that effectively resists the lateral load such as 
defined by Equation (1.7). 

Di Laora and Sanctis [2013], expanding on the work of Rovithis et al. [2009] and 

recognizing the aforementioned shortcomings of the typical definition of 0
pa  given by Equation 

(1.5), proposed a revised dimensionless frequency that incorporated the characteristic length 
directly. Similarly, Anoyatis et al. [2013] proposed the following dimensionless frequency: 

0
p

S

a
V




   (1.8) 

where λ is consistent with the definition given by Equation (1.6). This term improves upon the 
previous form given by Equation (1.5) because it contains (i) the ratio of pile stiffness expressed 
as flexural rigidity to soil stiffness contained in the λ term, and (ii) the ratio of pile characteristic 
length (1/ λ) to the wavelength of soil free-field excitation (λff = VS/ω). The latter quantity 
captures a fundamental aspect of the problem at hand, which is that a stiff pile will not conform 
to the deformed shape of the free field under high-frequency excitation as shown in Figure 1.2. 
Because the new normalization scheme better captures the underlying physics of the problem, 
the static results (radiation damping and pile inertia not considered) for a flexible pile (L > La) 
with any combination of soil and pile stiffness conveniently collapse into a narrow band as 
shown in Figure 1.8, which can be represented by a simple best-fit equation. Similarly, transfer 
functions for free-head pile rotation collapse into a narrow band when the transfer function 
ordinate is defined as Hθ = θFIM /λ∙uFFM, where 1/λ is used to normalize the result in lieu of B. 
This finding is perhaps the most significant advancement in elastic analytical solutions for pile 
kinematic SSI in recent years. 
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first-order approximation, a more precise value will be computed for this study as the length for 
which 4L    [Timoshenko 1948; Reese et al. 2006], where λ is computed using the average 
values [as in Equation (1.9)] over the trial pile length L. Because the soil properties vary with 
depth, a simple iterative calculation is required to determine La in this manner. 

Because the concept of active length refers specifically to the upper portion of a pile that 
responds to a lateral load imposed at the pile head, it is not directly applicable to the pile 
kinematic SSI case in which kinematic demands are imposed over the full length of pile. 
Nonetheless, the results of this study have shown that the pile–soil interaction near the surface 
has the greatest influence on the foundation input motion; therefore, considering some portion of 
the pile length near the surface is a useful descriptor of system response. 

1.3.4 Limitations of Elastic and Analytical Solutions 

The previous studies described above generally considered highly idealized soil–pile domains, 
such as uniform or simple layered combinations of uniform elastic soil layers, rigid bedrock, 
rigid and/or infinitely long piles, and simple harmonic excitation in lieu of realistic earthquake 
ground motions. Linear-elastic solutions are useful for elucidating the driving mechanisms 
behind complex SSI problems and have some advantages over nonlinear approaches. The 
primary attraction is that they require low computational effort, and in many cases chart-based or 
closed-form solutions are available. This makes them amenable to preliminary analysis when full 
details of a project or soil conditions are not yet known, and the solutions can quickly be updated 
as more information becomes available. Also, the principle of superposition is exactly valid for 
use with the substructure method when linear elasticity is used to model all system components, 
and because the elastic solutions are exact, they should be reproducible for verification. 
However, to quote the late professor A.S. Vesic [1977], “…analyses of this kind assume that the 
surrounding soil acts as an elastic-isotropic solid defined by a constant modulus of deformation 
and a Poisson’s ratio. This assumption represents a serious departure from reality…” Put 
simply, this is because lateral pile–soil interaction is nonlinear, and real subsurface conditions 
are inhomogeneous. 

Highly idealized assumptions can have unintended and unrealistic consequences on the 
dynamic behavior of the system. For example: 

 Pile radiation damping cannot occur for a pile embedded in an elastic soil 
layer underlain by rigid bedrock at frequencies below the fundamental 
frequency of the soil profile (e.g., see Gazetas [1991], Syngros [2004], and 
Anoyatis et al. [2013]), which is unrealistic for real systems. 

 Theoretical transfer functions for fixed-head piles suggest that the pile head 
motion is always less than the free-field motion for any pile and soil 
properties and at all frequencies. Not only is this shown to be false when 
realistic stratigraphy is considered, but it is erroneous in the unsafe direction, 
potentially resulting in an underestimate of actual demands imposed on the 
structure. 

A primary issue with elastic SSI solutions is that a single value of strain-compatible soil 
stiffness must be specified to approximate nonlinearity. Simplified methods are available for 
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estimating the average shear modulus reduction induced in the free field by a ground motion of a 
given amplitude (e.g., Table 2-1 in NIST [2012]). However, no similar method is available for 
estimating a reduced modulus to represent pile–soil interaction that considers the non-uniform 
relative pile–soil displacement occurring over the length of the pile. An accurate equivalent-
linear modulus must combine the effects of modulus degradation due to pile–soil interaction and 
shearing by the ground motion during free-field site response2. 

Furthermore, even in the simplest case of an approximately uniform soil layer such as 
stiff over-consolidated clay, because the amount of relative pile–soil displacement will vary over 
the depth of the layer [e.g., see Figure 1.2(b)], the equivalent-linear soil stiffness needed to 
accurately capture the response changes with depth. This has been recognized since the early 
work on pile dynamics began; see Kagawa and Kraft [1980]. Although the stiffness specified in 
an equivalent-linear analysis could be varied with depth, this further complicates the selection of 
appropriate equivalent-linear properties and makes most closed-form solutions unsolvable. 

Relative to the total number of publications concerning pile dynamics for elastic material 
properties, the amount of guidance on selection of equivalent-linear properties for actual 
implementation is comparatively sparse. While back-analyses of single case studies or model 
studies may be able to determine a single value of reduced modulus that can be used in 
equivalent-linear analysis to match the desired response, doing so in a generalized manner for 
forward design cases presents significant challenges and uncertainty. 

A shortcoming of continuum solutions, whether solved analytically or numerically, is that 
the interaction between the pile and soil is often distilled to a simple condition of displacement 
compatibility (e.g., Tajimi [1969], Novak et al. [1978], and Kaynia and Kausel [1982]). Even if 
the independent behavior of soil and pile materials could be captured by constitutive models, a 
pile-soil system cannot be accurately modeled without capturing interaction at the interface. 
While the assumption of displacement compatibility (i.e., no slip) may be appropriate for 
relatively small amplitude loading, such as produced by vibrating machinery, design-level 
earthquakes will induce significant nonlinearity at the pile–soil interface. 

While the simplifications adopted for theoretical, elasticity-based solutions may have 
been state-of-the-art and the “best available” tools for practicing engineers in the decades before 
modern personal computing power became widely available, this is simply no longer the case. 
Tools such as dynamic p-y analysis using nonlinear finite elements that enable significantly more 
accurate modeling of realistic pile, soil, and ground motion characteristics are now at the 
disposal of our profession. Nonetheless, use of these tools is beyond the scope of most projects 
and the expertise of most practitioners. The present work is meant to address these disparities by 
providing simplified tools that capture realistic complexities of soil and pile dynamics in a more 
rigorous manner than previous efforts. 

                                                 
 
2 Stewart et al. [2000] referred to these as “secondary” and “primary” nonlinearities, respectively. These terms could 
be misleading for pile-soil interaction because the nonlinearity induced by pile-soil interaction can exceed that due 
to site response for large earthquakes. 
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1.3.5 Experimental Investigations 

Experimental studies of pile dynamics are limited relative to the number of computational 
studies described in the previous section. Of the experiments that have been conducted, most use 
dynamic loading applied at the pile head to generate inertial SSI as opposed to loading the pile 
via free-field excitation. From a practical standpoint, it is much easier to apply load directly to a 
test structure via actuators or shakers than to load the structure indirectly by loading the adjacent 
ground. To measure a purely kinematic response, (i) no superstructure mass can be supported by 
the pile, and (ii) it must be excited by the free field. Hence, experimental results for purely 
kinematic pile SSI are very limited. 

One g model-scale tests of piles undergoing dynamic loading at the pile head by Gaul 
[1958], Novak and Grigg [1976], Novak and El Sharnouby [1984], Blaney and O’Neill [1986], 
Han and Novak [1988], and El-Marsafawi et al. [1992] along with centrifuge tests by Prevost et 
al. [1981] were useful for validating early analytical procedures. More recent full-scale tests by 
Vaziri and Han [1992], centrifuge tests by Ashlock and Pak [2009], and model-scale tests by 
Burr et al. [1997], Tokimatsu et al. [2005], and Manna and Baidya [2010] have been compared 
favorably to nonlinear analyses. Durante et al. [2015] describe a series of 1g tests that provide an 
opportunity to validate combined kinematic and inertial analysis techniques. 

Only a handful of full-scale dynamic tests have been reported and only for inertia 
loading. Vaziri and Han [1992] conducted ground-level forced vibration tests on a group of six 
7.5-m-long, 0.32-m-diameter drilled shafts connected by a concrete pile cap. McManus and 
Alabaster [2004] performed cyclic loading on a group of four 5.5-m-long, 0.75-m-diameter piles. 
Appendix B documents an attempt made as part of this study to measure transfer functions for 
full-scale piles by exciting the free field and establishes a repeatable method for this type of 
testing in the future. Apart from this effort, the authors are not aware of any full-scale 
experiments of purely kinematic SSI for piles. Further experimental testing to validate the results 
of this study is an important future research need. 

A common finding of the experimental tests listed here, especially for the full-scale tests, 
is that the stiffness and damping of the piles are highly strain-dependent. This makes it difficult 
to choose a single value of stiffness or damping that is appropriate for design, supporting the 
notion that nonlinear analyses are superior to analytical or theoretical methods utilizing a single 
value of equivalent-linear stiffness or damping. 

1.3.6 Empirical Observations of Kinematic Pile–Soil Interaction 

Due to the same challenges that make experimental measurements of purely kinematic pile–soil 
interaction difficult—namely, the necessary absence of a superstructure mass atop the pile—
empirical observations of pile kinematic SSI during past earthquakes are also limited. A few 
well-documented cases of pile-supported buildings instrumented with accelerographs at the 
foundation-level and in the adjacent free field undergoing strong earthquakes are available. 
However, interpretation of these cases is complicated by the fact that the foundation-level 
response includes not only the influence of pile kinematic SSI, but also inertial SSI due to the 
superstructure response. The issue of combined kinematic and inertial SSI effects is examined in 
more detail in Chapter 5. 
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1.3.6.1 Empirical Transfer Functions 

Stewart et al. [1999a; 1999b] considered pairs of instrumented structure and adjacent free-field 
recordings to compare foundation-level and free-field intensity measures from earthquake 
recordings at 57 building sites in California and Taiwan, including 23 buildings supported on 
deep foundations. The intensity measures considered were peak ground acceleration (PGA) and 
pseudo-spectral acceleration (PSA) at the flexible-base, first-mode building period. The results 
indicated that kinematic reduction of the foundation-level PGA was appreciable, whereas the 
reductions of first-mode PSA was relatively modest. However, this study did not present 
foundation/free-field transfer functions and hence provides limited insight into kinematic 
interaction effects. 

Kim and Stewart [2003] focused specifically on kinematic interaction and considered 
recordings from 16 of the pile-supported buildings, all of which utilized grade beams or mat 
slabs to connect the piles. Figure 1.9 shows a comparison from the Kim and Stewart study 
between the Fan et al. [1991] kinematic pile model and the observed “transmissibility” function 
at one of the sites. (A transmissibility function represents the same concept as a transfer function, 
but is computed from ratios of power spectral density functions rather than spectral amplitude; 
the motivation for this alternative approach is discussed below.) The Fan et al. model generally 
underpredicts the reduction seen in the observed transfer function, while a base-slab averaging 
model representing shallow foundation kinematic SSI by Veletsos et al. [1997], using a site-
specific value of a parameter controlling ground motion incoherence (a), provided a closer 
match. Kim and Stewart concluded that kinematic interaction between the ground and surface 
foundation elements likely dominated the response of the pile-supported buildings in their study. 
However, Kim and Stewart noted that the Fan et al. model and other existing kinematic pile 
models fail to include the effects of ground motion incoherence (spatial variability), thus posing 
a lingering question as to whether or not consideration of incoherence in a pile kinematic model 
would provide a closer match to observed behavior. 

Mikami et al. [2006; 2008] and Givens et al. [2012] describe recordings from a pile-
supported building in Sendai, Japan, during the 2003 Off-Miyagi and 2011 Tohoku earthquakes 
that show a stronger reduction of foundation-level motion to FFM than the California and 
Taiwan recordings reported above. Three modeling approaches were applied in an attempt to 
match the observed transfer function: (i) a shallow foundation base-slab averaging model 
[Veletsos et al. 1997; Kim and Stewart 2003] similar to that ultimately published in NIST 
[2012]; (ii) a linear-elastic model including piles in the computer program SASSI [Ostadan 
2005] subjected to coherent ground motions; and (iii) a second SASSI model without piles but 
with incoherent ground motions. The results are shown in Figure 1.10. 

The NIST model and SASSI model with coherent ground motions and piles both fail to 
capture the significant reduction in the observed transfer function between about 2–7 Hz. The 
SASSI model with incoherent ground motions but no piles comes closer to capturing the 
reduction but misses the sharp drop-off occurring around 2 Hz. Mikami et al. and Givens et al. 
speculate that the misfit of these models may be due to inadequate consideration of incoherence 
in combination with the pile kinematic interaction or failure to capture the end-bearing resistance 
of the piles. Recent discussion with Professor Atsushi Mikami [personal communication, 2015] 
and a re-examination of this case in Chapter 6 make it clear that the influence of inertial SSI is 
the dominant factor causing the significant reduction in the observed transfer function. 
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1.3.6.2 Signal Processing Techniques  

Empirical transfer functions computed from recorded earthquake motions exhibit sudden 
changes in amplitude over short frequency ranges as seen in Figure 1.9 and Figure 1.10. 
Especially at high frequencies where the motion amplitude is typically low, this is due in part to 
the fact that the ratio of two very small numbers is being computed, such that small oscillations 
in either the free field or foundation-level motion can result in spurious peaks in the transfer 
functions. The level of displacement required to produce such a spike may be close to the 
recording accuracy of the accelerographs and therefore representative of “noise” in the signal 
rather than a meaningful representation of the system response. Noise could also result from 
energy sources other than seismic waves that affect either the free field or foundation-level 
accelerographs, but not both, such as vibrating machinery near one of the recording stations. 

Kim and Stewart [2003], and Mikami et al. [2008] describe signal processing techniques 
to separate the meaningful transfer function ordinates from noise by utilizing an alternative 
transfer function definition: 

( ) ( ) / ( )u pp ggH S S    (1.10) 

where Spp and Sgg are the smoothed auto power spectral density functions of the foundation-level 
and FFM, respectively3. Auto (Spp and Sgg) and cross (Sgp) power spectral density functions are 
defined as: 

     pp pp ppS U U    (1.11) 

     gg gg ggS U U    (1.12) 

     gp gg ppS U U    (1.13) 

where U*(ω) is the complex conjugate of U(ω): 

       U Re U - Im U i      (1.14) 

and i is the imaginary number defined by 2 1i   . In signal processing terms, Hu computed using 
Equation (1.10) is called a transmissibility function, while Equation (1.2) produces a transfer 
function. The concept is the same—describing the manner in which a system modifies an input 
signal to produce an output signal—so the term “transfer function” will be used from this point 
forward. 

There are two benefits to using Equation (1.10) rather than defining the transfer function 
directly as the ratio of the FAS: 

 Coherence can be computed, which allows quantitative identification of the 
transfer function ordinates with the highest signal-to-noise ratio. 

                                                 
 
3 Kim and Stewart [2003] and Mikami et al. [2006; 2008] use the notation x and y to refer to the free-field and 
foundation-level, respectively; p and g will be used here to be consistent with the previous notation and to retain the 
physical interpretation as the pile and ground-surface motions. 
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 Smoothing of the power spectral density functions, a necessary step for 
computing coherence, further reduces the spurious nature of the transfer 
functions computed from raw signals. 

Coherence (γ2) between the foundation-level and FFM signals is defined as [Pandit 
1991]: 

 
   

2

2 gp

gg pp

S

S S




 
  (1.15) 

Coherence indicates the strength of the relationship between an input and output signal; values 
near 1.0 indicate a strong dependence of the output on the input, while smaller values indicate a 
weak relationship. Hence, coherence can be used as a quantitative measure of whether certain 
frequency components of the foundation-level motion are likely a result of the system 
responding to excitation by the FFM or represent noise. By using a threshold value of coherence 
below which data are discarded, empirical transfer functions can effectively be filtered to discern 
the most meaningful data points. Points with coherence greater than 0.8 are show in Figure 1.10, 
which is the cutoff used by Mikami et al. and Givens et al. 

Prior to computing coherence with Equation (1.15), the power spectral density functions 
must be smoothed. Coherence computed between unsmoothed input and output signals over the 
full frequency bandwidth of the signals will be unity at every frequency and thus is not a useful 
metric. The smoothing operation is accomplished by replacing each ordinate of the unsmoothed 
power spectrum with a weighted average value of the unsmoothed ordinates over a frequency 
band (i.e., window) centered on the point of interest. Mikami et al. [2008] examined the 
influence of the parameters used to define the smoothing window, which ultimately affect the 
computed value of coherence, and found that an 11-point Hamming window provided 
qualitatively good results. Mikami et al. also recommended not only emphasizing empirical 
transfer function points with high coherence, but bandwidths that have high coherence at 
multiple successive frequencies. This is an important secondary criterion, because even pairs of 
white noise signals will occasionally have coherence greater than 0.8 despite having a mean 
value of approximately 0.15 to 0.25 (the exact value depends on the shape and bandwidth of the 
windowing function used for smoothing). 

As the terminology implies, incoherent or spatially-variable ground motions resulting 
from stochastic effects such as wave scattering and subsurface variability will result in 
differences in the foundation-level and FFM that are not due to foundation kinematic interaction; 
this ground motion incoherence will manifest as low coherence in the computed empirical 
transfer function. Since the incoherence of real ground motions tends to increase with increasing 
frequency, this mechanism is especially significant at higher frequencies. Mikami et al. [2008] 
concluded that empirical transfer function ordinates at high frequencies are usually dominated by 
incoherence, and thus should be deemphasized relative to low-frequency ordinates when 
quantifying kinematic SSI. For the examples described in their paper, the usable frequency range 
is typically below about 10 Hz. 

Although interpretation of empirical transfer functions is not the main focus of this study, 
the signal processing techniques described above turn out to be very useful, if not necessary, for 
interpreting the results of the numerical simulations. Ground motions used as input to the pile–
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soil interaction analyses are sourced from earthquake recordings at a single location, and the 
foundation is modeled as occupying the same physical location. Therefore, the incoherence of 
real ground motions between the physical locations of the free field and foundation-level 
recording stations that can cause low coherence for high-frequency empirical transfer function 
ordinates does not apply, at least for single pile models. Nonetheless, variability between the 
computed FIM and FFM when represented in the frequency domain can mimic the variability 
between empirical foundation-level and FFM signals because: 

 Numerical oscillations in the finite-element solution on the order of the 
tolerance that satisfies the convergence criterion are significant relative to the 
Fourier amplitude of the computed FIM, particularly at higher frequencies, 
and 

 Transfer functions are an imperfect representation of seismic response due to 
the finite-duration and non-stationary nature of the signals used to compute 
them (discussed further below). 

As a result, transfer functions computed from the numerical simulations look similar to 
the empirical transfer functions described above, in particular exhibiting large variability at 
higher frequencies. This is true even when the numerical solution approach is used to compute 
transfer functions for elastic pile and soil conditions subjected to harmonic free-field ground 
motions, and thus is not solely an artifact of nonlinearity in the system response. To facilitate 
extraction of meaningful trends from the simulations performed in this study, the same signal 
processing techniques described by Mikami et al. [2008] are applied, specifically: 

 Transfer functions are computed using Equation (1.10), 

 Power spectral density functions are smoothed with an 11-point Hamming 
window, 

 A minimum coherence threshold of 0.8 is applied to the computed transfer 
functions, while in some instances a more stringent value of 0.9 is used to 
clarify the trend exhibited by the results, particularly for stiffer soil sites for 
which the transfer function corner frequency is relatively high, and 

 Transfer functions are only defined up to the frequency at which a smoothed 
version of the coherence-versus-frequency curve is above the minimum 
threshold (0.8 or 0.9). 

Although other approaches could be taken for smoothing the results, for example simply 
smoothing the computed transfer functions directly, the approach used for interpretation of 
empirical data is adopted here because of its demonstrated applicability to the mechanisms 
governing kinematic SSI. 

The last criterion in the above list is intended to satisfy the recommendation by Mikami 
et al. [2008] that not only should high coherence points be emphasized, but a further restriction 
should be implemented of focusing on bandwidths over which high coherence occurs for a series 
of successive frequencies. The coherence versus frequency curve is smoothed using a 25-point 
median smoothing window, which replaces each value with the median of the 25 points centered 
on that frequency. This allows automated processing of the thousands of results from the 
parametric study. 
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In addition to the insights provided in the context of interpreting empirical transfer 
function data, the concept of using transfer functions as a means of quantifying SSI has 
additional limitations, and some discussion is warranted here. 

Strictly speaking, the concept of a transfer function applies only to an infinitely-repeating 
stationary process, which is defined as an entirely stochastic (random) process that displays no 
trends in mean or variance with time. While certain aspects of SSI are approximately stochastic, 
time signals of earthquake ground motions and the response of structures to these ground 
motions exhibit strong trends with time, and are of a finite duration. While advanced signal 
processing techniques are available to transform the time response of some physical systems 
from non-stationary to approximately stationary (e.g., White and Boahash [1990]), they are 
generally not applicable to ground motions. 

In particular, the ordinates of FAS can be unintentionally altered by the non-repeating 
nature of ground motions, and by the simple fact that the Fast-Fourier transform (FFT) algorithm 
used to perform the Fourier transform generates very small numbers at frequencies away from 
the predominant energy of the signal. Consider the following simple examples to illustrate these 
points. 

A signal defined as a sine wave with amplitude of unity and frequency 1 Hz is passed 
through a system that has the ability to modify the input signal and produce an output signal. 
Since the FFT algorithm applied to a discrete time signal requires that the signal have 2n points, 
where n is an integer, the input signal for this example is chosen to have 211 = 2,048 points. The 
time step Δt is taken as four times the inverse of n (4/2,048 sec) so that the vector of frequencies 
at which the FFT is defined includes f = 1 Hz without the need for interpolation. The amplitude 
is zero at time t = 0, and the amplitude of the 2,048th point is  2 1 0.012sin f t n        such 

that the 2049th point would have an amplitude of zero and the signal could repeat indefinitely. 

The time- and frequency-domain representations of the input and output signals are 
presented in Figure 1.11, along with the transfer functions computed between them using 
Equation (1.2). First consider that the system makes no modification to the input signal, such that 
the input and output are identical [Figure 1.11(a)]. The FFT captures the amplitude of the signal 
at 1 Hz exactly. Theoretically, the amplitude at all other frequencies is zero since the signals are 
perfect 1 Hz sine waves, but the FFT returns a non-zero, albeit very small, amplitude ranging 
between 1.0E-13 and 1.0E-15. Nonetheless, the values are exactly the same for the input and 
output, thus the transfer function ordinate is exactly unity at all frequencies. Figure 1.11(b) 
shows the results when the output signal is perfectly out of phase by ±π radians. Even though the 
transfer function amplitude is defined only as the ratio of Fourier amplitude spectra and should 
not be affected by phase, the small, yet non-zero oscillations in computed Fourier amplitude now 
vary between the input and output signals, such that the transfer function is erratic away from f = 
1 Hz. This highlights an important point—the transfer function amplitude does not reflect the 
amplitude of the input and output signals over different frequencies, only the ratio of their 
amplitudes. Hence by simply examining a transfer function without viewing the corresponding 
FAS, it cannot be known which transfer function ordinates correspond to the predominant energy 
in the system and are therefore most meaningful. 
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Figure 1.11(c) shows the effect of a small phase offset, which produces similar high-
frequency noise in the transfer function. Again, the amplitude of the output signal is identical to 
the input signal for (b) and (c). Figure 1.11(d) shows the effect of a small baseline drift in the 
output signal (linear change of 0.01 over 1 sec), which also has a drastic effect on the transfer 
transfer function away from f = 1 Hz. 

These example of changes between input and output signals were chosen because, to 
some extent, they all appear in signals representing the free field and a structure during seismic 
excitation. The intent in pointing out their influence on the computed transfer functions is not to 
suggest that the transfer function approach should not be used; on the contrary, it is an excellent 
tool for earthquake engineering. These issues simply need to be kept in mind when trying to 
discern the meaningful trends from noise. 

1.3.6.3 Pile Damage due to Kinematic Demands 

Many of the same earthquakes that inspired the seminal work in geotechnical earthquake 
engineering on topics such as soil liquefaction and ground-motion estimation also provided 
evidence that kinematic demands caused damage to pile foundations. The documented cases 
include damage to concrete piles supporting bridges during the 1964 Alaska Earthquake 
[Kachadoorian 1968] and a building during the 1964 Niigata Earthquake [Nishizawa et al. 1984]. 
Mizuno [1987] documented pile performance during several Japanese earthquakes that occurred 
between 1923 and 1983, including several cases of piles damaged by kinematic demands, 
although most appear to be cases with large permanent ground displacement. Tazoh et al. [1987] 
instrumented the Ohba-Ohashi Bridge in Japan and recorded the structural response during 
several earthquakes, including a M 6.0. They found that the peak strains recorded by longitudinal 
strain gauges in the piles supporting one of the main piers occurred deep in the soil profile at the 
interface between the bearing stratum and softer overlying soil. 

Studies by Nikolaou et al. [2001] and others cite this evidence as motivation for 
considering kinematic demands in design, which eventually became a building code requirement 
as discussed in the following section. It is worth noting that the number of documented cases in 
which ground failure (e.g., liquefaction), permanent ground displacement, and inertial loads 
could be ruled out as the cause of damage is relatively low. This does not necessarily imply that 
this damage mechanism is not common; but it is likely more attributable to the difficulty and cost 
associated with post-earthquake inspections of piles at significant depths. 

1.4 KINEMATIC SSI IN BUILDING CODES 

The influence of kinematic pile–soil interaction on FIM receives little or no attention in U.S. 
building codes. On the other hand, demands resulting from pile–soil interaction must be 
considered according to most building codes. For example, ASCE 7-10 (ASCE 2013) §12.13.6.7 
“Pile Soil Interaction” requires that piles be designed for the moment, shear, and deflections 
“considering the interaction of the shaft and soil.” Unlike the specifications in Chapter 19 of 
ASCE 7-10 “Soil-Structure Interaction for Seismic Design,” which are optional and can be 
ignored at the designer’s discretion, the requirement that piles be designed to resist kinematic 
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demands in addition to superstructure demands is required in all cases. Nonetheless, in the 
authors’ experience it is often neglected in practice. 

1.5 NOTES ON TERMINOLOGY AND NOTATION 

Because the terms used to describe various types of deep foundations tend to evolve over time, a 
few clarifications are noteworthy in the context of this study. 

During the timeframe of the early work on this subject (1960s-1980s), the term “pile” 
was most commonly used to refer specifically to driven piles. Drilled shafts were often referred 
to as “caissons” or “piers.” This distinction is important, because driven piles were categorically 
assumed to be more flexible than their drilled counterparts. Early work on this subject often 
applied specifically to relatively flexible driven piles for which kinematic SSI effects are less 
significant in comparison to larger-diameter, stiffer drilled shafts. For example, in the seminal 
1982 paper by Flores-Berrones and Whitman, “Seismic Response of End-Bearing Piles,” the 
authors conclude that: 

… Piles located in seismic zones are subjected to two very important effects; one 
is the action of the soil along the pile length [kinematic SSI] and the other one is 
related to the supported mass at the pile’s head [inertial SSI]. Regarding the first 
of these effects, very often neglected in dynamic analysis for piles subjected to 
seismic forces, there are two extremes… (1) Piles behave as flexible elements and 
follow the ground displacements; and (2) piles behave as rigid elements, and their 
tendency is to remain still while the soil moves around them… Most “piles” fall 
into the first of these categories while piers and caissons might fall in the second 
one… Generally speaking, piles do not reduce significantly the horizontal 
movements of a structure…  

Consistent with this conclusion, much of the work on the topic of kinematic pile–soil interaction 
has focused on the shear and moment demands imposed on relatively flexible piles, while less 
attention has been paid to the beneficial reduction in FIM that large, stiff piles can provide. 
Because large-diameter piles in soft-soil conditions are now commonplace, especially for the 
support of bridges, this topic is worth revisiting. 

For simplicity, the term “pile” foundation will be used herein to refer to both driven piles 
and drilled, cast-in-place deep foundations, also known as drilled shafts or piers, bored piles (the 
predominant term outside the U.S.), cast-in-drilled-hole piles (Caltrans), etc. The distinction 
between driven and drilled shaft-type piles will be noted when relevant; otherwise the content of 
this study is intended to apply to both. 

Early work (1960s–1990s) on pile KSSI and much of the contemporary work using 
analytical solutions use the term Iu, short for interaction factor, to represent the transfer function 
ordinate. This study adopts the term Hu based on the work of Kim and Stewart [2003], who 
applied signal processing techniques borrowed from the field of electrical engineering where H 
is typically used to represent the transfer function between input and output signals. 
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2 Elastic Analytical and Numerical Solutions 

Elastic solutions for kinematic pile–soil interaction are useful for elucidating the fundamental 
mechanisms that control the physics of the problem and for formulating the bounds of the 
nonlinear numerical analyses performed subsequently. In this chapter, a closed-form elastic 
analytical solution is derived, compared to previous solutions by other researchers, and then used 
to validate the proposed numerical modeling approach. 

In addition, for the nonlinear numerical analyses that follow, pile–soil interaction is 
characterized by elastic behavior at very small strains. Hence, issues related to the small-strain 
elastic behavior of the nonlinear system are explored in the second half of this chapter. 

2.1 ELASTIC ANALYTICAL SOLUTION 

Derivation of the closed-form static solution for a vertical elastic pile in elastic soil begins with 
the following fourth-order differential equation for a laterally-loaded pile (after Hetenyi [1946]): 

4 2

4 2
0p p

p p p

d u d u
E I P k u

dz dz
     (2.1) 

in which up is the horizontal pile displacement, z is the depth measured downwards from the pile 
head, EpIp is the pile flexural rigidity, P is axial load, and k is the soil–pile interaction stiffness 
intensity, all defined in a consistent set of units. Equation (2.1) states that the force applied 
externally by the soil reaction (k∙up term) is in equilibrium with the internal forces in the pile 
described by the 4th derivative of the transverse displacement multiplied by the pile flexural 
rigidity, plus second-order (“P-Δ”) effects. The pile is treated as an Euler-Bernoulli beam in this 
formulation. For the purpose of this derivation going forward, axial load is taken as zero such 
that second-order effects are dropped4. 

For a kinematic pile–soil interaction dynamic solution, the pile–soil interaction modulus k 
is replaced with the complex-valued *k k i c  , where c is the dashpot coefficient for 
equivalent viscous damping, the displacement term is replaced with the relative displacement 
between the pile and free-field soil, and an additional term is added to capture the inertial force 

generated by acceleration of the pile mass per unit length pm : 

                                                 
 
4 Second-order moments are included in the nonlinear numerical analyses performed for this study. 
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4 2
*

04 2
[ ] 0p p

p p p g p

d u d u
E I k u u m

dz dt
     (2.2) 

If the free-field ground motion is represented as harmonic excitation by vertically propagating 
shear waves (after Kramer [1996]): 

0( ) cos( )  g gu z u z  (2.3) 

where ug0 is the ground displacement at the surface due to the harmonic seismic excitation, and 
κ* is the complex-valued wave number defined as the ratio of excitation angular frequency (ω) to 

soil complex-valued shear-wave velocity ( * 1 2S S sV V i  , where βs is the soil hysteretic 

damping ratio), then Equation (2.3) can be substituted into (2.2) to give: 

4 2
*

04 2
[ cos( )] 0p p

p p p g p

d u d u
E I k u u z m

dz dt
     (2.4) 

Although a solution is available to the dynamic Equation (2.4) (e.g., Anoyatis et al. 
[2013]), the static solution without consideration of damping or pile inertia is still a reasonable 
means of investigating the controlling mechanisms of kinematic pile–soil interaction. The static 
version of Equation (2.4) is: 

4

04
[ cos( )] 0p

p p p g

d u
E I k u u z

dz
    (2.5) 

The solution to Equation (2.5) is the sum of complementary and particular solutions. 
Finding the complementary solution begins by solving the homogeneous form of Equation (2.5), 
which does not include the ground displacement term since it is not a function of pile 
displacement up: 

 
4

4
0p

p p p

d u
E I k u

dz
   (2.6) 

The characteristic equation for the homogeneous form is: 

4 0
p p

k
r

E I
   (2.7) 

The roots of Equation (2.7) are equal to the 4th roots of the k/EpIp term: 

4 4 4 4

1,2,3,4

exp
4 2 4 4p p p p p p p pj

k k j k k
r i i

E I E I E I E I

 



                   
 (2.8) 

Recalling that a complex root of the characteristic equation results in two terms in the 
complementary solution, the complementary solution to Equation (2.4) can be written as: 

1 2 3 4cos( ) sin( ) cos( ) sin( )                z z z zu e z e z e z e z  (2.9) 

where χ1 through χ4 are constants and the characteristic term β is a substitution variable defined 
as: 
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4
4 p p

k

E I
   (2.10) 

This is the origin of the familiar “Winkler’s parameter”, and the inverse of Equation (2.10) is 
often called the characteristic length. 

The particular solution is found using the method of undetermined coefficients as: 

 0

4
cosg

p p

k u
u z

E I k





 
 

 (2.11) 

and the sum of Equations (2.9) and (2.11) is the complete solution to Equation (2.4) for the pile 
horizontal displacement at any depth z: 

0
1 2 3 4 4

( ) cos( ) sin( ) cos( ) sin( ) cos( )           


  
       

 
gz z z z

p

k u
u z e z e z e z e z z

EI k
 (2.12) 

A similar derivation can be found in Flores-Berrones and Whitman [1981] for pile–soil 
kinematic interaction, and in Hetenyi [1946] for conventional lateral loading at the pile head in 
the absence of free-field excitation. 

Successive derivatives of Equation (2.12) provide expressions for slope (S), curvature 
(ϕ), moment (M), shear (V), and soil reaction (p): 

   1 2 3 4( ) sin( )               
p z zdu

S z e A B e B A C z
dz

 (2.13) 
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The following substitutions were used to abbreviate Equations (2.13) through (2.16): 

0

4
cos( ) sin( ) ;     cos( ) sin( ) ;     = g

p p

k u
A z z B z z C

E I k
   




   
 

 (2.17) 
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To solve for the constants χ1 through χ4, a set of four permissible boundary conditions 
must be imposed. Typically the boundary conditions are prescribed at the pile head and tip since 
these can be determined on the basis of details such as embedment into a pile cap or a stiff 
bearing stratum. For example, in the absence of superstructure force or moment demands 
(required for a kinematic pile–soil interaction analysis) the boundary conditions for a fixed-head, 
free-tip pile of length L are: 

z 0 z 0 z z
0 ;     0 ;     0 ;     0

L L
V S V M

   
= = = =  (2.18) 

An example of the solution in terms of pile-versus-soil displacement, moment, and shear 
is shown in Figure 2.1 for the following input parameters: 

 E = 27 GPa, I = 0.0031 m4 (corresponding to a 0.5-m-diameter RC pile), 
length (L) = 10 m 

 Vs = 100 m/sec (soft soil), k = 47 MPa 

 ug0 = 0.1 m, f = 10 Hz 

 Boundary condition at pile head = zero slope and zero shear; i.e., a fixed-head 
pile with no superstructure demands so that the kinematic pile–soil interaction 
can be evaluated independently 

 Boundary condition at pile tip = zero shear and zero moment; i.e., the pile tip 
is unrestrained 

To produce an analytical transfer function, the pile head displacement determined from 
Equation (2.12) at depth z = 0 is normalized by the amplitude of the harmonic ground motion, 
ug0, and computed over the frequency range of interest (recall that the solution is frequency-
dependent even for the simplified static version because it contains the wavenumber term κ). 
Parametric studies using elastic solutions can provide valuable insight into the range of pile and 
soil stiffness for which kinematic pile–soil interaction is significant over the frequency range of 
engineering interest. Figure 2.2 shows kinematic pile–soil interaction transfer functions 
computed using the elastic analytical solution for three diameters of a 25-m-long pile in two 
homogeneous soil profiles representative of relatively soft and relatively stiff soil. The boundary 
conditions for the pile are the same as shown in Figure 2.1—the pile tip is free (zero shear, zero 
moment), and the pile head is restrained against rotation to model a fixed-head condition with 
zero applied shear. The ranges of pile and soil properties considered are as follows: 

 Pile flexural rigidity (EpIp) between 82 MN·m2 and 21,200 MN·m2. These 
values approximately correspond to a 50-cm-diameter RC pile, such as might 
be used in a pile group, and a 2.0-m-diameter pile that would likely be used as 
a mono-shaft to support a single column or in a pile group for a very large 
suspension or cable-stayed bridge. 

 Pile–soil interaction stiffness k of 60 MPa, corresponding to the initial elastic 
stiffness for a VS = 100 m/sec soft-soil site, and 1050 MPa, corresponding to a 
VS = 400 m/sec stiff-soil site. 
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2.2 ELASTIC NUMERICAL SOLUTION 

The numerical modeling approach used for this study consists of discretized pile segments 
attached to soil springs at each node as depicted in Figure 1.1(b). The elastic analytical solution 
from the preceding section provides an opportunity to verify that the proposed numerical 
modeling approach provides an accurate solution, since the elastic analytical solution is explicit 
and the numerical solution should converge to a high degree of accuracy for elastic conditions. 
While each component of the numerical modeling approach is discussed in detail in Chapter 3, 
this section will focus only on the results of elastic simulations. The pile and soil are modeled 
using elastic beam–column and elastic zero-length uniaxial materials, respectively, in OpenSees.  

Two categories of input excitation are considered, sine-sweep motions consisting of 
uniform-displacement amplitude broadband frequency content from 0.1 to 50 Hz, and recorded 
ground motions with variable bandwidth. The free-field input motions were specified at the 
ground surface and motions at the depth of each soil spring were computed using Equation (2.3). 
By specifying the input motion at the ground surface rather than the base of the soil profile, the 
problem of infinite amplification at resonant site frequencies is avoided. The amplitude of the 
input excitation does not affect the computed transfer functions since the model is linear-elastic. 

Soil and pile properties for the numerical analyses match the properties used in the 
analytical solution so that a direct comparison of the computed transfer functions can be made. 
The soil–pile interaction stiffness (k) at depth z is defined as [Gazetas and Dobry 1984]: 

 
0.137

21.69 ;      ( ) 2 1
( )
p

s s S
s

E
k E E z V

E z
 


 

   
 

 (2.19) 

where Ep is the pile elastic modulus, taken as 2.7E7 kPa for RC, and Es is depth-dependent 
elastic soil modulus computed from VS based on classical elasticity theory with assumed soil 
density ρ = 1.6 Mg/m3 and Poisson’s ratio ν = 0.3. The uniaxial spring stiffness is defined as k 
divided by the tributary length of the pile element to which it is attached. The soil springs 
connected to the pile head and tip are assigned a tributary length equal to half of the pile segment 
discretization length. 

Transfer functions for the analytical solution are compared to the numerical solution 
results for a sine-sweep input motion in Figure 2.4 and for recorded earthquake ground motions 
in Figure 2.5. Two sizes of circular concrete piles were considered, 0.5-m and 2.0-m diameter, 
for a site with VS =150m/sec. Both fixed-head and free-head restraint conditions were considered. 
The sine-sweep input motion transfer functions showed near-perfect agreement with the 
analytical solution for both pile sizes over the entire frequency range considered. 

For the nonlinear parametric study described in the following chapter, ground motions 
were sourced from a set of 40 records with broad frequency content and statistical variability 
compiled by Baker et al. [2011]. These motions and their characteristics are described in detail in 
§3.7.1. For the current comparison, three of the 40 the motions were selected that have variable 
frequency content as seen in the Fourier amplitude spectra (FAS) in Figure 2.5. The three 
motions are described in Table 2.1. 



Figu

 

Figu

re 2.4 A
m

re 2.5 F
(t

Analytical and
motion. 

ourier ampli
top) and corr

d numerical 

tude spectra
responding t

40 

solution tran

a for free-fiel
transfer func

nsfer functio

d and found
ctions (botto

ons for sine-s

dation-input m
m). 

 

sweep input 

motions 

 



41 

Table 2.1 Ground motions for elastic numerical analyses; numbering follows Baker 
et al. [2011]. 

Motion # Earthquake Recording Station M PGA (s) 

25 1989 Loma Prieta UCSC 6.9 0.34 

4 1994 Northridge LA – Wonderland Ave. 6.7 0.13 

24 1989 Loma Prieta Golden Gate Bridge 6.9 0.16 

 

Figure 2.5 shows acceleration FAS for the pile head motion (FIM) and ground surface 
motion (FFM) for each of the three input ground motions. Note that each ground motion FAS is 
only plotted over the useable frequency range of the ground motion, which depends on the 
processing applied to the original recording [Ancheta et al. 2014]. The ratio of the displacement 
FAS is the unsmoothed transfer function shown along with the high-coherence transfer function 
computed using Equation (1.10) in the lower portion of the figure. At frequencies up to about 20 
Hz, the analytical solution matches the numerically-computed transfer functions exactly. At 
higher frequencies, the numerical transfer functions are dominated by noise, although the 
smoothed, high-coherence transfer function reduces the noise significantly. 

The finding that the transfer functions computed for the three ground motions with 
variable frequency content all agree perfectly with the analytical solution (and therefore with 
each other) highlights the underlying assumption of elastic material behavior and superposition 
of the response at each frequency. For realistic nonlinear conditions, the response of the system 
will change for input motions with different frequency content. 

In light of the findings that the numerical results provide a near-perfect match to the 
analytical solution (Figure 2.4 and Figure 2.5), and that the analytical solution matches previous 
solutions by others (e.g., Figure 2.3), it has been verified that the proposed numerical modeling 
approach is valid, at least for elastic material properties. 

The remaining sections in this chapter discuss elastic behavior that applies to the small-
strain, initial stiffness range of pile–soil interaction for the nonlinear analyses that follow. 

2.3 ELASTIC WINKLER MODULUS 

2.3.1 Terminology and Units 

In the past, terms such as modulus of subgrade reaction, coefficient of subgrade reaction, 
Winkler stiffness, Winkler modulus, normalized Winkler modulus, and other similar 
combinations of these phrases have been used somewhat interchangeably to refer to two 
concepts that are distinct and must be clearly differentiated. Some clarification is warranted here 
to avoid confusion. 

The concept of “modulus of subgrade reaction” refers to the soil settlement that occurs 
beneath a uniformly loaded area, and hence has units of [(force/length2)/length = force/length3]. 
Herein the symbol kmsr refers to this definition. It is formulated in this way because of its 
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usefulness in structural models for estimating settlement resulting from the bearing pressure 
exerted by a structure; it has limited usefulness as a standalone descriptor of soil behavior (true 
soil modulus Es is more meaningful). Values of modulus of subgrade reaction can be crudely 
measured in the field using the “plate load test” [ASTM D 1194)] by applying a measured force 
to a steel plate of known area (stress = force/area) and measuring the downward deflection. 
Terzaghi and Peck [1955] provided tabulated values of kmsr for different relative densities of sand 
that were widely used for lateral pile analyses until full-scale pile testing began in the 1970s. 

When used with a beam-on-springs Winkler approach, the soil stiffness term must be 
modified to account for the out-of-plane (transverse) width of the beam over which the soil 
pressure acts, since Winkler models consider only two dimensions—the longitudinal axis of the 
beam and the orthogonal direction in which load is applied, parallel to the beam height. For 
example, if a measured value of kmsr was to be used for a Winkler analysis, it would be multiplied 
by beam width to obtain Ke = kmsrB, where Ke is the Winkler modulus with units of distributed 
load per unit deflection [force/length/length], which is equivalent to the units of stress 
[force/length2]. The symbol Ke will be used in this text in reference to both (1) Winkler stiffness 
for elastic analyses and (2) the initial elastic stiffness of p-y springs for nonlinear analyses. 

Confusion may arise because Ke and soil Young’s modulus Es share the same units and 
are sometimes presented as being related by a dimensionless coefficient for pile analysis. A 
discussion of the basis for this assumption is provided in the following sections, but it should be 
noted that Es cannot be exactly defined from a measured value of kmsr. To define Es, a 
measurement of strain parallel to the direction of loading is needed. In a laboratory test this is 
trivial because the specimen height and boundary conditions are known. To measure strain 
during a plate load test would require knowing the height of the soil column (h) that is influenced 
by the load applied at the surface, which for an elastic half-space is theoretically infinite. While 
finite values of h are more reasonable and could be estimated by taking into account the three-
dimensional attenuation of stress below the plate, the computed value of Es scales linearly with h 
and is therefore highly sensitive to the estimate. Hence any tabulated values relating kmsr to Es 
(e.g., Table 9-1 in Bowles [1997]) contain an inherent assumption about the plate load test depth 
of influence and how this will scale with size between the test and real foundations. Likewise 
any relation between measured or tabulated kmsr and Winkler modulus for lateral pile analysis 
contain a similar embedded assumption, or represent the results of specific load test(s). 

2.3.2 Previous Definitions of Ke 

Existing p-y relationships such as the widely-used API [1993] curve for sand and Matlock’s 
[1970] curves for clay were derived by fitting equations that have a theoretically-derived 
functional form to the results of full-scale load tests. While load tests may provide a reasonable 
estimate of the near-surface ultimate lateral soil resistance pult, the instrumentation used to 
measure pile strain in the original tests was not capable of accurately measuring small enough 
deformations to capture the truly elastic soil behavior [Choi et al. 2015]. Since Es can be related 
to the small-strain shear modulus measured using geophysical methods, and since geophysical 
tests are an increasingly common part of site investigations for projects in seismic regions, a 
more attractive approach would relate the soil elastic Young’s modulus Es directly to the initial 
stiffness of the p-y curve, Ke. Soil shear modulus G, shear-wave velocity VS, and Young’s 
modulus are related through the following well known equations from elasticity theory: 
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Values and equations for δ for fixed- and free-head piles and for various soil properties 
(homogeneous, layered, stiffness increasing linearly with depth, etc.) have been proposed by 
many researchers including Kagawa and Kraft [1980], Roesset [1980a], Dobry et al. [1982], 
Gazetas and Dobry [1984b], Kavvadas and Gazetas [1993], and Syngros [2004]. In these studies, 
a single value of δ was applied over the length of the pile in an elastic BDWF model; the value 
of δ was then adjusted until the pile head displacement matched the displacement computed with 
finite-element or boundary-element continuum solutions under the same applied lateral force at 
the pile head. In other words, the pile-head lateral impedances were matched between the two 
numerical modeling approaches. Regression models to determine best-fits to parametric results 
were then used to determine coefficients for the expressions. A selection of these expressions 
and notes on their derivation are given in Table 2.2 and plotted in Figure 2.7. 

Even in the case of a homogeneous soil profile, relative pile–soil displacement varies 
with depth for both inertial and kinematic loading due to the deformation pattern of the pile. 
Since a single value of δ was applied over the entire pile length in these comparative studies, the 
mechanics controlling the interaction at a single depth are not directly reflected in the result, 
which represents an average response. This is counterproductive for practical applications 
because real soil profiles are inhomogeneous, and foundation designers need reliable methods for 
specifying accurate p-y curve parameters at a single depth within a given soil layer. Furthermore 
since this approach simply equates one numerical study with another, the outcome is perhaps less 
a reflection of reality than it is of the difference between the modeling approaches. A more 
rigorous derivation of δ based on theory and rigorous numerical modeling complemented by 
validation from accurate small strain measurements during physical modeling studies is a future 
research need. 

Since loading was applied at the pile head in these studies, the resulting values of δ were 
not derived for the fundamental mechanics governing kinematic interaction from free-field 
excitation. Anoyatis et al. [2013] showed that the commonly used value of δ =1.2, initially 
proposed by Roesset [1980a], does not provide a good match to finite-element solutions for 
kinematic loading for certain pile and soil stiffness combinations. Furthermore, the parametric 
results of Anoyatis et al. showed that even for the same pile and soil conditions, different values 
of δ are required to match the BDWF results to the continuum finite-element results depending 
on which result is being matched (e.g., curvature ratios between the pile and soil at the pile head 
versus pile tip, maximum pile bending moment, etc.), which has also been reported by Kavvadas 
and Gazetas [1993]. This is again a reflection of the fact that the approach of obtaining δ by 
matching impedances from BDWF and continuum analyses does not faithfully capture the 
underlying pile–soil interaction mechanics; if it did then a single expression would work for a 
variety of boundary conditions. A useful finding of Anoyatis et al. is that the δ parameter is not 
strongly frequency-dependent, which is convenient because of the difficulties involved in 
performing frequency-domain analyses. 

Despite the shortcomings of the impedance-matching approach, the difference between δ 
values for fixed- and free-head piles in Figure 2.7 clearly shows that pile rotation or the lack 
thereof has a significant influence on the magnitude of the mobilized soil resistance, and there is 
a physical basis for this trend. Near the head of a free-head pile where rotation is significant, the 
pile encounters greater soil resistance than a fixed-head pile because pile rotation mobilizes soil 
shear resistance in addition to the predominantly compressive stress induced by translation. 
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Ideally, p-y curves should be formulated as p-y-θ curves, where θ is pile rotation. This is another 
future research need and will not be addressed in the current study. 

 

 

Figure 2.7 Values of Winkler coefficient δ proposed in previous pile SSI research. 

 

1E+1 1E+2 1E+3 1E+4
Ep/Es

0

1

2

3

4

5

Syngros (2004), free-head

Syngros (2004), fixed-head

Gazetas & Dobry (1984), free-head

Gazetas & Dobry (1984), fixed-head

Roesset (1980)

Dobry et al. (1982), fixed-head

Es vs. depth key:

Es constant w/ depth

Es linear increase w/ depth



46 

Table 2.2 δ expressions from previous researchers derived by matching results of 
BDWF analyses to continuum analyses. 

Applicable 
soil 

condition 

Pile head-
fixity 

condition 
Source: 

Roesset 
[1980a] 

Dobry et al. 
[1982] 

Kavvadas and Gazetas 
[1993]b 

Syngros 
[2004]c 

Any, or not 
specified 

Any, or 
not 

specified 

δ = 

1.2 - - - 

Constant 
stiffness w/ 

depth 
Fixed - 

0.053

1.67 p

s

E

E


 
 
 

 - 

0.075

2.0 p

s

E

E


 
 
 

 

 Free - 

0.053

1.67 p

s

E

E


 
 
 

 

1/8 1/8

2

3

1
s

p

E L

E B
   
       

  

0.11

3.5 p

s

E

E


 
 
 

 

Linearly 
increasing 
stiffness w/ 

deptha 

Fixed - - - 

0.08

3.0 p

s

E

E


 
 
 

 

 Free - - - 

0.13

5.8 p

s

E

E


 
 
 

 

aSoil stiffness Es defined as the stiffness at the pile tip, decreases linearly to zero at the ground surface. 
bMain emphasis of study was matching peak bending moments between BDWF and finite-element (FEM) continuum analyses 
cFEM studies performed using K-PAX software, described in Syngros [2004] dissertation. The axisymmetric domain is two-
dimensional and formulated in radial coordinates. Soil-pile interaction represented by a strain compatibility condition at interface.  

2.3.3 Diameter Effects 

The relationships for δ in Table 2.2 generally lack a functional dependence on pile diameter, 
suggesting that pile–soil interaction initial stiffness is independent of diameter. While this holds 
true for plane-strain elastic solutions considering a homogeneous full-space domain, solutions 
using more realistic boundary conditions along with experimental results (e.g., see Carter 1984 
and Pender [2004]) indicate that initial stiffness does depend on pile diameter. Conversely, 
experimental work by Ashford and Juirnarongrit [2003] showed that a diameter-independent 
estimate of Ke provided the best match to full-scale experimental results, but only for piles with 
active length contained within a uniform-stiffness stiff clay layer. 

A dependence on diameter is intuitive—it would seem that a pile undergoing lateral 
displacement will encounter greater soil resistance than a smaller diameter pile undergoing the 
same displacement due simply to the fact that it is wider than the small-diameter pile. Pile 
rotation and changes in soil stiffness with depth also affect the resistance encountered by the pile 
as a function of its diameter [Pender 2004]. These effects are due to the dependence of the pile’s 
flexural response on EI (and hence B), and because a larger diameter pile mobilizes soil 
resistance over an increasingly larger depth increment and hence “feels” an increase in stiffness 
with depth. Pender [2004] and others have suggested that previous experimental campaigns 
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failed to identify these trends because only a small number of pile diameters were tested—in 
some cases, one. 

Nonetheless, the majority of elastic pile dynamics work and many nonlinear p-y studies 
(e.g., Kagawa and Kraft [1981] and Boulanger et al. [1999]) have proceeded with the assumption 
of Ke being independent of pile diameter. The underlying assumption for this approach is that a 
small-diameter pile will induce greater average soil strain than a large-diameter pile for the same 
lateral displacement by a factor proportional to the difference of the two piles diameters. This is 
consistent with Terzaghi’s [1955] assumption that the zone in which significant strain is 
mobilized beneath a loaded footing scales in proportion to the size of the footing. 

Kagawa and Kraft [1980] adapted a formulation by Matlock [1970] as the basis for 
applying this assumption to pile dynamics5, suggesting that the average shear strain γave which 
develops around a laterally loaded pile is a linear function of the ratio of displacement to pile 
diameter (y/B), such that as B increases, the relationship between stress and strain, and hence p/y, 
scales at the same rate: 

 1

2.5ave

y

B





  (2.25) 

To test this hypothesis, a series of simple plane-strain elastic analyses were run for this 
study in the finite-element program Phase2 [Rocscience 2013]. The results showed that δ is 
independent of diameter, but only if the domain size is scaled to match changes in pile size—a 
significant caveat. This is in agreement with previous two- and three-dimensional elastic 
analyses (e.g., see Pender [2004]), so further details will not be provided here. 

The potential error introduced by using a diameter-independent Ke is likely minor for 
many applications in which large relative pile–soil displacements are expected, since the tangent 
modulus of a nonlinear p-y curve depends on both the initial stiffness and the ultimate resistance. 
The results of Ashford and Juirnarongrit [2003] also suggest that the error is minor for small-
strain dynamic loading if the soil stiffness is approximately constant with depth. 

Despite its shortcomings, the framework of Equation (2.25) is convenient because it 
allows the relative pile–soil displacement defining the onset of nonlinearity yyield to be defined as 
a function of shear strain at the onset of soil nonlinearity, the latter of which has been studied 
extensively through laboratory testing (e.g., Vucetic and Dobry [1991]). Hence, a diameter-
                                                 
 
5 It is worth noting that further examination of the underlying theory behind Equation (2.25) reveals that it has little 
relation to lateral pile-soil interaction. The basis for Equation (2.25) is Skempton’s [1951] method for estimating the 
immediate settlement of an embedded strip footing on clay based on a combination of elasticity theory, limit-state 
concepts, and laboratory tests results. Skempton estimated that the ratio of Es to undrained strength (su) for typical 
clays is about 50 to 200, and assumed that the inverse of this range (0.005 to 0.02) could be used to approximate the 
strain occurring at one-half the measured strength (ε50). Using these values and an assumption of the size of the 
stress zone of influence below the footing, a simple approximation for settlement was provided. Matlock adopted 
this for piles by taking the average of the ε50 range (≈ 0.01) and substituting pile diameter for footing width, 
resulting in the expression that average normal strain around the pile could be approximates as y/2.5B—hardly a 
rigorous consideration of pile-soil interaction mechanics. Kagawa and Kraft [1980] later adopted this approach for 
their theoretical pile dynamics study. Noting that the strain orthogonal to ε is –υε, and thus the maximum shear strain 
is (1+υ)ε, they came up with Equation (2.25). 
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independent definition for Ke based on Equation (2.25) will be adopted for this study, with the 
opportunity to revise the findings in the future if more rigorous relationships between δ and B (or 
γave and B) become available. 

2.4 QUESTIONS OF PILE MASS AND INERTIA 

For static loading, since acceleration is zero (or is ignored for pseudo-static analysis) no inertial 
force is associated with movements of the pile mass. During the rapid and potentially large-
amplitude loading from an earthquake, however, pile inertia contributes to the overall response 
of the pile–soil system and should be included in dynamic analyses, as recognized early on by 
Novak [1974]. To produce more tractable and simplified solutions, previous researchers using 
Winkler models have often neglected the pile mass such that a static solution is being used to 
approximate the dynamic response (e.g., Dobry et al. [1982] and Anoyatis et al. [2013]). Others 
assigned a mass density greater than the true pile mass (e.g., Berger et al. [1977] and Marshall et 
al. [1977]) to account for the fact that some portion of the soil surrounding the pile moves in 
phase with the pile, amplifying its inertia. The volume of soil that moves with the pile likely 
varies depending on the frequency and amplitude of the excitation along with the pile and soil 
properties, and is therefore difficult to quantify. 

The influence of pile mass is demonstrated in Figure 2.8, which compares normalized 
elastic transfer functions computed for two pile sizes with and without mass. In general, these 
elastic analyses indicate that the effect of pile mass is minor, which agrees with previous findings 
by Kagawa and Kraft [1980], and only deviates from the no-mass condition over a limited 
frequency range. The effect does not appear to scale with pile diameter, since the difference 
between the with-mass and without-mass curves is approximately equal for the two sizes 
considered when plotted versus dimensionless frequency. The effect of pile inertia may not be as 
consistent when system nonlinearity is considered. As discussed in the following section, 
including pile mass in numerical simulations can complicate interpretation of the kinematic 
transfer function because of inertial resonance near the fundamental frequency of the pile–soil 
system. Because of this, and in light of the finding that the influence of pile inertia is minor, piles 
will be modelled as massless for the numerical simulations that follow. 
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3.2 PARAMETRIC STUDY BOUNDS 

The range of pile and soil properties considered for this study are intended to span the conditions 
encountered in typical bridge design practice. The study bounds were further refined based on 
the combinations of pile and soil stiffness found to result in significant kinematic interaction 
based on elastic solutions in the previous chapter. 

Table 3.1 presents the range of single pile properties considered. Models of each of the 
four piles in Table 3.1 have been analyzed for six different soil profiles each subjected to 40 
ground motions for free- and fixed-head pile boundary conditions. This represents 960 analyses 
for each head-fixity, for a total of 1920 single pile analyses. Properties of sites 1 through 6 are 
discussed in §3.6, and the 40 ground motions are discussed in §3.7. In addition, a limited number 
of pile group analyses were performed to investigate group effects and the influence of ground-
motion incoherence, and are discussed in §3.5.4 and §3.7.3, respectively 

Table 3.1 Parametric study bounds for single piles. 

Length (L) Diameter (B) Slenderness Ratio (L/B) Cracked Section 
Stiffness (MN·m) 

7.5 m 0.5 m 15 28 

15 m 0.5 m 30 28 

30 m 2.0 m 15 7220 

60 m 2.0 m 30 7220 

3.3 PySimple3—MOTIVATION AND MODEL UPDATES 

It is well known in the geotechnical community that the generic p-y springs typically used in 
practice do not sufficiently capture realistic soil behavior, especially for dynamic analysis. For 
this study, a modified version of the p-y model developed by Choi et al. [2015] is used, known as 
PySimple3 in OpenSees. The PySimple3 model was developed specifically for dynamic analysis 
of laterally loaded piles and includes several features not found in previously available models, 
such as the ability to independently specify small stain stiffness, the force at which 
yielding/nonlinearity occurs, and hysteretic and radiation damping. The model consists of an 
initial linear portion followed by nonlinear behavior according to a bounding-surface plasticity 
formulation (e.g., Dafalias [1986]) as illustrated in Figure 3.2. The user specifies the initial 
elastic slope of the curve Ke, the ultimate resistance pult, the resistance at yielding py, and shape 
parameter C that describes curvature and hence affects the amount of soil hysteric damping. 
Radiation damping can also be modeled by specifying an optional viscous damping coefficient. 
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and post-yield behavior since the plastic modulus is infinite at the onset of yielding, such that the 
elastoplastic modulus is initially equal to the elastic modulus but undergoes degradation with 
continued displacement. Further details are available in Choi et al. [2015]. 

Three updates were made to PySimple3 to meet the needs of this study and to improve the 
performance of the material for general use in other pile dynamics problems: (i) optional 
viscoelastic behavior was added to model radiation damping; (ii) a backforce-updating routine 
was added to prevent overestimates of force following an unload-reload cycle; and (iii) the 
implicit integration scheme used for solving the governing equations was updated to use the 
unconditionally-stable and efficient Ridders’ method [1979]. 

An elastic spring in parallel with a viscous dashpot as shown in Figure 3.4(b) is known as 
the Kelvin-Voigt viscoelasticity model. The instantaneous force in a Kelvin-Voigt material is the 
sum of the force in the elastic component due to the material’s elastic stiffness plus the force in 
the dashpot: 

2

2
e e

e e e e

dy d ydp
p K y cy K c

dt dt dt

         
   

     (3.6) 

where c is the dashpot coefficient. This formulation defines the elastic (now viscoelastic) 
constitutive law for the updated PySimple3 material. The viscoelastic-plastic tangent becomes: 

p
e

p
e

dp
K

dydp
K

dy dp
K

dy

 
 
  
 
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 (3.7) 

The term relating change in force to change in elastic displacement (dp/dye) can be 
isolated from Equation (3.6) in incremental form as follows: 
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    (3.8) 

where dye,last/dt is the elastic displacement rate during the last converged step. Note that the 
following possible alternative formulation for dp/dye: 
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 (3.9) 

implies that the dashpot force would continue to be added to the total force in the viscoelastic 
component even if the elastic displacement rate stays constant. This is an incorrect formulation; 
if the elastic displacement rate (i.e., velocity) is constant, then the dashpot force should remain 
constant between successive increments. Only the force in the elastic spring component changes 
if the elastic displacement rate is constant; Equation (3.8) has been formulated to capture this. 

The approach for solving the governing equations in the OpenSees implementation of the 
PySimple3 material is as follows: 
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 A trial displacement step is passed to the material by the program; if yielding 
does not occur, the resulting force is determined from Equation (3.6) directly. 

 If yielding occurs, an initial guess is made that divides the trial displacement 
increment into elastic and plastic sub-increments. 

 The force in the plastic and viscoelastic components is computed based on the 
imposed trial displacements. 

 Since the plastic and viscoelastic components are in series, the force in the 
two components must be equal. Hence the unbalanced force between the two 
components is cast as a residual equation, and the trial amount of elastic 
versus plastic displacement is adjusted until the residual unbalanced force falls 
below a specified tolerance. Ridder’s method is used to solve this iteration 
scheme. 

3.4 PySimple3—PARAMETER VALUES 

The following sections describe how each of the parameters that define the PySimple3 model are 
defined for this study. 

3.4.1 Initial Elastic Stiffness Ke 

The initial horizontal interaction between a laterally-loaded pile and soil does not induce 
nonlinearity in the pile or soil. Although the nonlinear PySimple3 model used for this study is 
linear only for very small displacements [on the order of y/B of 2x10-5 (after Choi et al. [2015]), 
the elastic slope has a significant impact on the shape of the p-y curve and the resulting tangent 
stiffness and hysteresis at displacements large enough to induce nonlinearity. Figure 3.6 
demonstrates that for all other parameters being equal, the amount of hysteretic damping during 
harmonic loading is significantly different when Ke is varied by a factor of two—even at 
displacements less than 1 cm. Hence, it is important to make an accurate estimate of Ke in order 
to capture nonlinear behavior at larger strains. 

Values of the parameter δ that relates Ke to the soil elastic modulus were discussed in 
§2.3.2. In general, these values apply to inertial interaction cases and have not been validated 
against real pile behavior. In the absence of more rigorous studies specifically targeting δ for 
kinematic pile SSI applications, lower- and upper-bound values of 1.0 and 3.0 were used for this 
study. The lower-bound value 1.0 was used for fixed-head piles, including pile groups connected 
by a stiff pile cap that undergo translation with little corresponding rotation. The finite-element 
simulations discussed in the following section indicate that this value is reasonable. A value of δ 
= 3.0 was used in this study for free-head piles (such as extended-shaft bridge columns). These 
values fall within the range implied by the elastic solutions presented in Figure 2.7 and Table 
2.2. 

The effect of head-fixity condition on the pile response is most significant near the pile 
head within the uppermost pile active length La. Hence, it is possible that using a δ value of 3.0 
over the full length of a free-head pile results in an overestimate of the pile–soil interaction 
stiffness. To investigate whether or not this has a significant effect on the transfer functions 
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where y e yieldp K y  is the value of p at which yielding occurs. The relative pile–soil displacement 

yyield is the value of y at the onset of soil nonlinearity. For this study, yyield was estimated using 
Equation (2.25), the same approach taken in the Choi et al. [2015] study. Shear strain 
corresponding to the onset of soil nonlinearity was approximated as 0.001% based on laboratory 
direct simple shear test results performed by Darendeli [2001]. 

As the target y50 value becomes smaller and the denominator of Equation (3.10) 
approaches zero, C approaches infinity. Very large values of C result in approximately elastic 
perfectly-plastic p-y behavior, which can lead to numerical instability in the finite element 
solution. (The trend towards this behavior is shown in Figure 3.8.) Permissible values of y50 must 
satisfy the expression: 

50

0.5
 ult

e

p
y

K
 (3.11) 

One approach for establishing the target y50 is to use expressions from an existing p-y 
relationship such as API [1993] or Matlock [1970]. For sand, the API relationship tends to 
predict y50 values that are close to the lower bound defined by Equation (3.11), especially for 
loose to medium-dense sands at confining pressures greater than about 400 kPa. This is partially 
due to the implicit assumption in the API formulation that the stiffness of sand increases linearly 
with depth; the stiffness of sand can more accurately be described as scaling in proportion to the 
square root of confining stress [Hardin and Drnevich 1972]. Hence, the API formulation tends to 
overpredict sand stiffness, with the magnitude of the overprediction increasing with depth. This 
results in a corresponding underestimate of y50. The modified version of the API sand 
formulation described by Boulanger et al. [2003], in which soil stiffness is assumed to increase 
in proportion to the square root of confining pressure, also resulted in y50 values near the lower 
bound defined by Equation (3.11). 

To address the shortcoming described above for estimating y50 for sand, a series of plane-
strain finite element analyses of laterally-loaded piles were conducted using the program Phase2 
[Rocscience 2013]. The domain consists of a horizontal slice through the pile and the 
surrounding soil as shown in Figure 3.9. The plane-strain behavior is meant to capture the lateral 
pile–soil interaction below the depth at which a passive pressure wedge would form and displace 
upward near the ground surface. The sand was characterized as having minimum and maximum 
void ratios of 0.4 and 0.9, respectively, and a critical state friction angle of 32° [Bolton 1986]. 
For three relative densities corresponding to loose, medium-dense and dense sand (20%, 50%, 
and 80%) and assumptions of 100% saturation and a specific gravity of solids of 2.65, unit 
weights and corresponding vertical stresses were calculated at depths of 5, 10, 20, and 40 m. 
Shear strength and stiffness properties of the sand were then estimated using a consistent 
framework to ensure that the properties scaled uniformly with changes in stress. 

Peak friction angles were calculated based on relative density, confining pressure, and 
mean effective stress at failure assuming a triaxial stress path after Bolton [1986]. The resulting 
values of ϕ ranged from 32 to 45°; these values were used to compute the coefficient of lateral 
earth pressure at-rest K0 using the expression for normally consolidated sand by Jaky [1948]: 

0 1 sinK     (3.12) 
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Values of Young’s modulus for the sand were estimated using an expression proposed by Lewis 
[1990] with the coefficients representing the average results of laboratory testing on sands at 
different relative densities and confining stresses. The expression captures the increase in 
stiffness of sand as a function of square root of confining pressure: 
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 (3.13) 

where p is mean effective stress, pa is atmospheric pressure in the same units as p, and e is void 
ratio. The parameters ϕ and Es were used to define the Duncan-Chang [1970] nonlinear-elastic 
hyperbolic material model in Phase2. Soil Poison’s ratio ν = 0.3 and a failure ratio Rf = 0.9 were 
used for the model. Although the Duncan-Chang model does not include plasticity, it provides a 
reasonable representation of the stress–strain behavior of soil up to the point of shear failure and 
is simple to define based on readily-quantifiable soil parameters. 

Analyses were performed for the four depths listed previously for pile diameters of 0.5 
and 2.0 m. The loose soil (Dr= 20%) was not considered at the 40-m depth. The plane-strain 
behavior results in p-y curves that do not reach an asymptotic value of pult since increasing pile 
displacement mobilizes resistance in an increasingly larger zone of soil (which is likely a 
realistic behavior, although current p-y curves are not formulated this way). As such, pult was 
defined somewhat arbitrarily as the value of p for which the secant slope of the p-y curve 
decreased to 5% of the initial slope. 

The results of the simulations are presented in normalized form in Figure 3.10(b) along 
with the normalized values predicted by API [1993] and the modified API relationship presented 
by Boulanger et al. [2003] in Figure 3.10(a). The 1:1 slope line in Figure 3.10 represents the 
minimum value of y50/B that satisfies Equation (3.11) for a given pile diameter; values of y50/B 
plotting to the left of this line are inadmissible and values plotting near the line indicate 
approximately elastic perfectly-plastic behavior that can result in numerical instability. The best-
fit linear trend line passing through the Phase2 results can be simplified to the following 
expression: 
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Equation (3.14) was used to define y50 for sand layers in this study. 
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3.4.4 Radiation Damping 

As a pile vibrates, stress waves propagate or “radiate” away into the surrounding soil. This form 
of energy dissipation is known as radiation damping or alternatively as geometric damping 
because the radiated energy tends to attenuate with increasing propagation distance. For dynamic 
pile analyses using continuum elements, radiation damping is usually accounted for by using an 
energy-absorbing boundary that prevents incident stress waves from reflecting back into the 
domain (e.g., Lysmer and Kuhlemeyer [1969]). For Winkler-type analyses, if radiation damping 
is to be considered, it must be incorporated into the pile–soil interaction elements. Equivalent 
viscous damping, modeled through a rate-dependent viscous dashpot, is typically utilized for this 
purpose. The viscous dashpot component is characterized by a dashpot coefficient, c, which is 
defined as the ratio of the force in the dashpot pdashpot to velocity dy/dt, i.e.: 

  dashpot

dy
p c cy

dt
 (3.15) 

The dashpot coefficient has units of [F][T][L]-1 or equivalent, such that when multiplied by a 
velocity a force results. 

For Winkler-type analyses, the energy dissipation due to radiation damping can be 
thought of as additional soil resistance for a given amount of relative pile–soil displacement (y) 
compared to the equivalent static or slow-monotonic loading case. Hence, a dynamic p-y curve 
including radiation damping would be stiffer than the p-y curve for the same pile and soil 
conditions undergoing static loading. This is depicted in Figure 3.11. 

Supporting this concept, cyclic lateral load tests of a full-scale four-pile group in granular 
soil by McManus and Alabaster [2004] found an increase in dynamic stiffness of about 50% over 
the static stiffness, which they concluded was at least partially due to radiation damping effects. 
Ignoring radiation damping for dynamic loading conditions would therefore result in an 
underestimate of foundation stiffness and a corresponding overestimate of superstructure 
displacement and rotation. This may be a conservative design assumption for certain scenarios, 
but for the purpose of quantifying foundation input motions it could result in an unconservative 
overestimate of the kinematic pile–soil interaction effect since the stiffness contrast between the 
pile and soil is a dominant factor controlling the interaction. Indeed, even the pioneering work on 
pile dynamics (e.g., Novak [1974]) recognized the importance of radiation damping in forming 
an accurate solution. 

Much of the previous research utilizing Winkler-type and continuum models for dynamic 
analysis of piles used equivalent-linear viscoelastic elements without a plastic component (e.g., 
Novak [1974], Kaynia and Kausel [1982], Gazetas and Dobry [1984a], Banerjee et al. [1987], 
and Fan et al. [1991]). Recognizing the importance of soil nonlinearity, especially for dynamic 
time domain analyses, other researchers have attempted to modify nonlinear p-y relationships to 
include dynamic effects, including radiation damping. Matlock et al. [1978] proposed adding a 
viscous dashpot in parallel with existing static p-y curves [Matlock 1970], perhaps the first 
attempt to explicitly capture dynamic effects with the nonlinear p-y method. Nogami and 
Konogai [1988] formulated a dynamic p-y element with separate near-field and far-field 
elements, where the nonlinear near-field element captured material hysteretic damping and the 
linear far-field element included a dashpot in parallel with a linear spring; a similar formulation 
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has been adopted for the PySimple3 material as described above. Badoni and Makris [1996] and 
Bentley and El Naggar [2000] also performed analyses with viscous damping in parallel to the 
hysteretic p-y response. However, Wang et al. [1998] demonstrated that this arrangement, which 
they term “parallel radiation damping”, can produce erroneous results because forces in the pile 
can effectively bypass the near-field hysteretic pile–soil interaction during high-velocity loading 
pulses by transmitting through the dashpot component directly to the far field. Wang et al. 
proposed that a more appropriate arrangement is “series radiation damping” in which a nonlinear 
near-field element accounts for elastic or elastoplastic interaction at the soil–pile interface and a 
separate far-field element, connected in series to the near-field element, captures radiation 
damping. This formulation satisfies the intuitive notion that lateral loads must mobilize a 
response in the zone immediately surrounding the pile before energy can be radiated away to the 
far field. The modified PySimple3 element uses series radiation damping. 

While the conceptual motivation for including radiation damping is clear, successful 
implementation is dependent on accurately quantifying the dashpot coefficients, which is 
nontrivial and unfamiliar in the realm of traditional foundation design. Engineers face two 
significant challenges when quantifying dashpots: (i) choosing an appropriate relationship from 
the many available in the literature, and (ii) addressing frequency-dependence. 

Quantifying pile radiation damping based on experimental results is a difficult 
proposition, to say the least. While it is feasible to estimate the total damping of a pile–soil 
system during forced-vibration testing (e.g., Ashford and Juirnarongrit [2003]), this will include 
the combined effects of hysteretic damping in the pile and soil materials as well as radiation 
damping. While the former can be approximately inferred from material stress–strain curves if 
extensive instrumentation is used, there is no simple means for measuring radiation damping 
directly. Furthermore, even if the contribution of radiation damping to the total damping could be 
determined, there is an additional challenge in formulating the corresponding dashpot 
coefficients to be used with distributed springs and dashpots for Winkler-type analysis. Even if 
these results could be generated from a single test, there remains the issue of formulating 
generalized expressions for practical use. In light of these challenges, the available models for c 
are derived from a theoretical approach. Future experimental campaigns that are able to measure 
pile radiation damping more directly would be a valuable contribution to the field of pile 
dynamics. 

Many researchers have used the theory of wave propagation in a linear viscoelastic 
medium to derive expressions for c. Berger et al. [1977] derived theoretical frequency-
independent dashpot coefficients for a wave propagating in a one-dimensional elastic rod. Novak 
et al. [1978], expanding on the work of Novak [1974], developed a plane-strain solution based on 
a cylindrical elastic rod embedded in a viscoelastic half-space (Baranov’s solution). Gazetas and 
Dobry [1984a; 1984b] took a similar approach but assumed the rod was rigid and infinitely long, 
hence their expression does not include a pile modulus or length term. Makris and Gazetas 
[1992] proposed a simplified expression for c based on the results of the aforementioned studies 
and their own further analyses, and Kavvadas and Gazetas [1993] provided yet another 
expression with the same form as Gazetas and Dobry [1984a] but with slightly simplified 
coefficients. Nogami and Konagai [1988] approximated frequency-independent dashpot 
coefficients by calibrating the results of equivalent-linear viscoelastic time-domain BDWF 
analyses of a pile undergoing inertial head loading to frequency domain solutions. The 
relationship between normalized c and dimensionless frequency a0 [defined in this case using the 
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Equation (1.5) definition] from these references are shown in Figure 3.12. Note that the Nogami 
and Konagai [1988] far-field element formulation is actually a series of three elements; the value 
plotted in Figure 3.12 is the third and softest of the three dashpots. Note also that NIST [2012] 
Table 2-4b provides an impedance function for the equivalent pile head radiation damping to be 
used with the substructure method, but not dashpot coefficients for distributed Winkler-type 
springs for BDWF analyses. 

The frequency-dependent models indicate a sharp increase in c at low frequencies, but an 
approximately constant value for a0 greater than about 0.5. While c may indeed be frequency-
dependent, only frequency-domain solution approaches (e.g., Banerjee et al. [1987] and Wu and 
Finn [1997a]) can explicitly implement such behavior. For time-domain solutions, which are 
used for this study and are the predominant method used for structural and geotechnical 
nonlinear analyses, it is necessary to specify a single value of c for the entire duration of the 
analysis. To do so, the foundation designer can either: (1) choose a representative frequency, 
such as the fundamental frequency of the pile–soil system to be used with a frequency-dependent 
expression for c; or (2) use a frequency-independent expression for c. Researchers that have 
made an effort to develop and evaluate nonlinear time-domain solution approaches for laterally-
loaded piles tend to favor the latter, while those that have focused on developing analytical 
solutions can accommodate frequency dependence. 

Using a computer implementation of the plane-strain solutions of Novak et al. [1978], 
Novak et al. [1983] found an approximately linear relationship between pile damping and 
increasing frequency above the fundamental frequency of the soil profile. They concluded that a 
constant value of c can be used to represent equivalent viscous radiation damping at frequencies 
above the profile fundamental frequency, and that below this frequency only the soil hysteretic 
damping (also referred to as “material” damping) was significant. Gazetas [1991] and Syngros 
[2004] also proposed that radiation damping only be considered above a dimensionless “cutoff 
frequency” defined as: 
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where B is pile diameter, and ωs is the natural angular frequency of the site, based on the natural 
site period T computed from the well-known formula relating one-quarter wavelength of a 
harmonic oscillation to the thickness of the soil profile H: 

0 1 sinK    (3.17) 

where VS is the soil shear-wave velocity. The fundamental frequency of the site is the inverse of 
Equation (3.17). 
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ω/λVS = 1.25. This value approximately corresponds to Hu = 0.5 for the elastic analytical 
solutions (e.g., see Figure 2.3), and as will be shown in the next chapter, for the nonlinear 
analyses as well. The frequency corresponding to a 50% reduction in free-field motions was 
chosen because the purpose of this study is to define the conditions for which kinematic pile–soil 
interaction is significant and especially to identify the frequency range over which significant de-
amplification of free-field motions could occur. 

In addition to radiation and hysteretic damping, Rayleigh damping was used in the 
OpenSees analyses to achieve damping at low strains. Unlike hysteretic damping or the type of 
radiation damping discussed above that are incorporated into the material model, Rayleigh 
damping operates directly on the mass and stiffness matrices in the formulation of the equation 
of motion that is solved in the finite-element method. Since soil is known to exhibit damping 
even at the smallest levels of measurable strain (e.g., Vucetic and Dobry [1991]), incorporating 
small-strain damping is realistic, and is also computationally beneficial for achieving 
convergence. 

3.5 PILE MODELING 

For the present study, piles are modeled using 0.5-m-long displacement-based beam–column 
elements. Pile nonlinearity is considered by using an equivalent EI representative of a reduced 
moment of inertia due to concrete cracking. The following subsections describe specific aspects 
of the structural modeling approach. 

3.5.1 Pile Moment-Curvature Behavior 

Reinforced-concrete elements exhibit nonlinear moment-curvature (M-ϕ) behavior when flexural 
demands exceed the yield strength of either the concrete or reinforcing steel in tension or 
compression. Of greatest interest in the context of a laterally-loaded pile is the reduction in 
stiffness that occurs when concrete cracks in tension since flexural demands during extreme 
event loading would typically be expected to exceed the cracking moment. As illustrated in 
Figure 3.13, the initial portion of the M-ϕ curve corresponds to linear-elastic material behavior 
across the entire section. Because the slope of a M-ϕ curve is the flexural rigidity of the section, 
the slope of the elastic region corresponds to the elastic EpIp computed using the gross moment of 
inertia of the section. The upper bound of the elastic region is defined by cracking of the concrete 
in tension, which is typically the first nonlinear material behavior. In accordance with §5.6.1.1 of 
the Caltrans [2013] Seismic Design Criteria, this study defined the cracked section stiffness by 
the secant slope of the M-ϕ plot between the origin and the moment corresponding to the first 
yielding of the longitudinal reinforcing steel in tension, My. 

For the generalized transfer function and spectral ratio prediction models generated from 
the results of this study, flexural rigidity of the pile is an input variable. Whether or not the value 
used should correspond to the elastic or cracked section stiffness depends on the anticipated 
behavior under design loading, and the foundation engineer is responsible for making this 
decision. 
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Figure 3.13 Moment curvature analyses conducted at axial load P = 0.05*Ag*f’c for (a) 
2-m- and (b) 0.5-m-diameter pile sections. 

The M-ϕ plots shown in Figure 3.13 were computed using fiber models of the 2-m- and 
0.5-m-diameter pile sections in OpenSees. In the fiber-modeling approach, the section is 
discretized into separate zones (fibers) characterized by unique uniaxial stress–strain behavior 
representative of, e.g., reinforcing steel, confined concrete, and unconfined concrete. Radial 
discretization is used to define the circular cross sections. The following assumptions and 
analysis parameters were used for the M-ϕ analyses: 

 The longitudinal reinforcing steel layout was based on a target steel ratio 
(ρsteel) of 1.5%, with the following layouts used for the analyses: 

o  For the 2-m-diameter shaft, 32 No. 14 bars bundled in groups of two (to 
achieve adequate spacing between adjacent bars) with 6 in. (15.2 cm) of 
clear cover— ρsteel = 1.48%. 

o For the 0.5-m-diameter shaft, 8 No. 7 bars with 3 in. (7.6 cm) of clear 
cover— ρsteel = 1.58%. 

 Clear-cover from the edge of the pile to the edge of the longitudinal bars is 
based on the recommendations in the FHWA drilled shaft design manual 
[Brown et al. 2010] based on the diameter of the pile. 

 Assumed concrete compressive strength of 5 ksi (34.5 MPa) modelled with 
the ConcreteCM uniaxial material model in OpenSees. 

 Grade 60 steel for the longitudinal bars modelled using the ReinforcingSteel 
uniaxial material model with expected material properties (i.e., accounting or 
overstrength in accordance with the Caltrans [2013] Seismic Design Criteria). 

 Confinement of the core concrete was not considered, where the core is the 
portion of the section inside the perimeter formed by the longitudinal bars. 
Because confined and unconfined concrete exhibit similar stress–strain 
behavior up to point of crushing of the unconfined concrete in compression, 
the effect on the M-ϕ behavior is only significant in the post-yield range. 

 The number of discrete fibers was increased until the results were stable, 
which was achieved with 24 radial and 24 angular divisions within the core of 



69 

the section and four radial and 24 angular divisions outside the core for the 
cover concrete. 

 Analysis were performed for an axial load P equal to 5% of the gross 
compressive capacity of the concrete section, i.e., P = 0.05*Ag*f’c. 

The axial load imposed on a pile is a function of the tributary load supported by each 
bridge bent, the number and layout of piles relative to the number of columns or pier walls per 
bent, geotechnical conditions over the length of the pile, whether axial or lateral loads govern the 
pile diameter, and many other factors. In addition, the pile axial load is likely to fluctuate during 
an earthquake as bents undergo frame action, and the axial load changes over the depth of the 
pile as load is shed into or added from the ground. Clearly there is no unique definition for a 
“typical” axial load for a pile foundation based solely on the section diameter. As discussed 
above, the axial load used to define the effective flexural rigidity for design cases should be 
based on the actual anticipated axial load during extreme event loading. In the absence of such 
information for the parametric analyses performed for this study, the arbitrary definition of P = 
0.05*Ag*f’c was adopted for simplicity, which is consistent with the typical axial load for RC 
columns and is therefore a good approximation for extended-shaft column type foundations. 

3.5.2 Pile Head Fixity Condition 

The pile head-fixity conditions used in this study are either “fixed-head”—perfectly fixed against 
rotation, or “free-head”— completely free to rotate without encountering any rotational 
resistance. While these idealized assumptions are conceptually attractive and convenient for 
analytical purposes, the pile-head boundary condition in a real structure falls somewhere 
between the two extremes. 

Piles embedded in a reinforced pile cap or interconnected with stiff grade beams are often 
characterized as fixed head, which implies that an imposed moment will result in zero rotation at 
the connection. However, the true rotational stiffness of these connections is less than rigid. 
Rotation at the connection could be accommodated either on a global or local scale, for example 
by rocking of the entire pile cap or by strain concentrated in the zone around the connection, 
respectively. Short of experimental measurements or continuum numerical modeling, the author 
is not aware of any geotechnical or structural references that provide general guidance on 
quantifying this rotational stiffness. However, previous experience by the author has shown that 
while allowing a small amount of rotation at the pile head in BNWF analyses can significantly 
decrease moment demands, it does not have a significant influence on the pile head horizontal 
translation. Hence, use of a less-than-rigid boundary condition would not be expected to 
significantly change transfer functions computed for free-field versus pile-head horizontal 
displacement. 

For conventional foundation design applications in which superstructure loads are carried 
through the foundation into the ground, a free-head assumption is reasonable for extended-shaft 
columns (i.e., the “flagpole” condition) or for piles that lack significant embedment or structural 
anchorage into a pile cap. However, for the kinematic pile–soil interaction case, it is important to 
remember that the load path acts in the opposite direction—ground movement results in 
foundation displacements and force effects that are subsequently imposed on the base of the 
superstructure. Hence, the pile-head fixity condition should be assessed in terms of the following 
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question: What resisting force/moment would be mobilized in above-ground structural elements 
due to a unit displacement/rotation at the pile head? For extended-shaft columns, pile head 
rotation due to kinematic interaction would encounter resistance as the resulting rotation and 
corresponding moment and translations are carried up the column, through the column-to-
superstructure connection (e.g., bearings and/or other anchorage between the bent cap and 
girders), and into the superstructure. Clearly these elements would provide some resistance to 
rotation such that the pile head is not truly “free” to rotate. 

Despite these inconsistencies between real behavior and the idealized extremes, fixed- 
and free-head boundary conditions will be used for this study for several reasons. First, these 
extremes provide bounds on the problem. The true behavior is somewhere in between, and the 
foundation designer can use judgment to interpret where in between these bounds their problem 
lies or simply use whichever assumption results in greater demands. The latter approach is 
advocated in the realm of conventional deep foundation design for lateral loading by Reese et al. 
[2005]. Second, the rotational resistance provided by pile-to-pile-cap connections and other 
above-ground structural elements depends on the specific geometry and material properties of 
each project; thus, it is hard to generalize in a simplified design tool such as the transfer function 
models being developed for the present study. Finally, because free-head or fixed-head boundary 
conditions are the standard of practice for routine design, and because there are no established 
guidelines for quantifying rotational resistance, including rotational stiffness as a parameter in 
the transfer function model would make the model more difficult to implement in practice. Given 
that the intent of this study is to provide a transfer function model that is compatible with the 
current state of practice for seismic design, such a limitation would be counterproductive. Future 
studies could investigate the influence of head-fixity through parametric analysis of varying 
rotational spring stiffness applied at the pile head. 

3.5.3 Pile Shear Deformations 

Conventional beam-on-Winkler-foundation analyses treat the pile as an Euler-Bernoulli beam, 
for which flexural demands are resisted structurally by the flexural rigidity (EI) of the pile (see 
derivation in §2.1). Shear deformations are neglected in this approach, which is a reasonable 
assumption when it is kinematically possible for the pile to respond to imposed demands 
primarily in flexure, such as for the “flagpole” configuration. However, significant rotational 
resistance provided by embedment into a pile cap or toe embedment into rock may result in shear 
deformations that are significant within a few pile diameters of the point of rotational restraint. 
For example, Massone and Lemnitzer [2012] found that shear deformations accounted for up to 
40% of total horizontal displacement near the pile head connection during full-scale lateral load 
tests of 24-in.- (0.61-m-) diameter piles. Moreover, when flexural demands approach the pile 
plastic moment capacity, these shear deformations can be nonlinear in terms of the shear–stress 
versus shear–strain behavior even when shear stresses are well below the shear strength of the 
concrete (e.g., Massone and Wallace [2004]), which further complicates interpretation of load 
test results. The Massone and Lemnitzer study along with follow-up work by Khalili-Tehrani et 
al. [2014] suggests that commonly used semi-empirical p-y curve models derived from free-head 
lateral load test results (e.g., API [1993]) are inaccurate for fixed-head conditions because shear 
deformations were not considered explicitly in their derivation. 
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For the case of kinematic pile–soil interaction for fixed-head piles, using a numerical 
model that allows shear deformations would be expected to result in slightly larger total 
displacement near the pile head and thus would increase transfer function ordinates (Hu) relative 
to the same case analyzed without consideration of shear deformations, such as done herein. 
However, simply using a structural model that accounts for shear deformations, such as the 
Timoshenko beam column element in OpenSees, or the recently added cyclic shear-flexure 
interaction model by Kolozvari et al. [2015a, b], could provide misleading results. This is 
because, as determined from the experimental work described above, alternative p-y curves 
should be used in combination with structural consideration of shear deformations, and a 
generalized p-y model for this purpose is not currently available. A future study that integrates 
the Kolozvari et al. cyclic shear-flexure interaction elements and p-y curves that explicitly 
consider shear deformations into the numerical modeling framework used for the present study 
could shed light on the influence of shear-flexure interaction for kinematic transfer functions. 

3.5.4 Pile Groups 

Pile groups were modeled as multiple individual piles connected at their heads through massless 
rigid links using the equalDOF command in OpenSees. Pile caps were not modelled explicitly 
because their mass and stiffness would result in inertial and kinematic interaction in addition to 
the pile–soil interaction. The rigid link between piles combined with a fixed-head pile boundary 
condition essentially captures the restraint offered by the pile cap without introducing additional 
SSI, such that pile–soil interaction can be studied independently. In real systems utilizing pile 
groups, the pile cap motion, which excites the superstructure, depends on kinematic pile–soil 
interaction as well as kinematic interaction between the pile cap and the ground. For example, an 
embedded pile cap is subjected to ground motions imposed through lateral earth pressure on its 
sides, horizontal motions imposed on its base, and the motions of the piles which it connects. 
Depending on the surficial soil stiffness and the pile cap dimensions, particularly the depth of 
embedment, the pile cap motion could be dominated by cap–soil interaction more than pile–soil 
interaction. Future studies could investigate this effect by explicitly modeling pile caps in 
addition to piles. 

The pile group layout considered for the present study is for a 23 group of 2-m-diameter 
piles on a 7.5-m center-to-center spacing (i.e., 3.75·B) as shown in Figure 3.14. This 
configuration is typical for support of large bridge bents, and use of B = 2-m piles allows for 
direct comparison to the 2-m single pile results. The incoherent ground motions discussed below 
in §3.7.3 were imposed on the piles such that each pile in the group experienced a different input 
motion. The motion at each pile head is identical because of the rigid links and effectively is an 
average of the motions imposed on the individual piles, which is similar to the concept of base 
slab averaging. Additional group configurations were not considered because of the considerable 
effort required to generate incoherent ground motions at each pile location as well as the 
significant computational demand for running dynamic group analyses. 
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sets of motions are included in the Baker et al. set; for this study the “Set #2, broad-band ground 
motions corresponding to M 7.0, R [source-to-site distance] = 10 km, and rock conditions” were 
used. These motions are specifically intended to represent rock conditions with an average VS of 
760 m/sec for use in ground response analysis, and were selected by Baker et al. such that the 
median and ± standard deviation response spectra computed from the 40 unscaled motions match 
the Boore and Atkinson [2008] ground-motion prediction equations. A basic description of the 
motions is provided in Table 3.3, and Table 3.4  lists their peak ground acceleration, velocity, 
and displacement (PGA, PGV, and PGD) values. Table 3.5 lists minimum, maximum, and mean 
PGA/PGV/PGD for the 40 motions, showing that the set covers a wide range in terms of these 
intensity measures. For each motion, a fault-normal (FN), fault-parallel (FP), and vertical record 
are available. The FN component of each ground motion was used for this study, which on 
average is slightly stronger than the FP component. Further details of the motions are available in 
the Baker et al. report. 
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Table 3.3 Ground-motion records used for analyses (after Baker et al. [2011]). 

Record 
No. 

NGA 
Record 

Sequence 
No. 

Earthquake 
Name 

Year Station Magnitude 
Closest 
Distance 

1 72 San Fernando 1971 Lake Hughes #4 6.6 25.1 

2 769 Loma Prieta 1989 Gilroy Array #6 6.9 18.3 

3 1165 Kocaeli, Turkey 1999 Izmit 7.5 7.2 

4 1011 Northridge-01 1994 LA - Wonderland Ave 6.7 20.3 

5 164 Imperial Valley-06 1979 Cerro Prieto 6.5 15.2 

6 1787 Hector Mine 1999 Hector 7.1 11.7 

7 80 San Fernando 1971 Pasadena - Old Seismo Lab 6.6 21.5 

8 1618 Duzce, Turkey 1999 Lamont 531 7.1 8.0 

9 1786 Hector Mine 1999 Heart Bar State Park 7.1 61.2 

10 1551 Chi-Chi, Taiwan 1999 TCU138 7.6 9.8 

11 3507 Chi-Chi, Taiwan-06 1999 TCU129 6.3 24.8 

12 150 Coyote Lake 1979 Gilroy Array #6 5.7 3.1 

13 572 
Taiwan 
SMART1(45) 

1986 SMART1 E02 7.3 - 

14 285 Irpinia, Italy-01 1980 Bagnoli Irpinio 6.9 8.2 

15 801 Loma Prieta 1989 
San Jose - Santa Teresa 
Hills 

6.9 14.7 

16 286 Irpinia, Italy-01 1980 Bisaccia 6.9 21.3 

17 1485 Chi-Chi, Taiwan 1999 TCU045 7.6 26.0 

18 1161 Kocaeli, Turkey 1999 Gebze 7.5 10.9 

19 1050 Northridge-01 1994 Pacoima Dam (downstr) 6.7 7.0 

20 2107 Denali, Alaska 2002 Carlo (temp) 7.9 50.9 

21 1 Helena, Montana-01 1935 Carroll College 6.0 - 

22 1091 Northridge-01 1994 Vasquez Rocks Park 6.7 23.6 

23 1596 Chi-Chi, Taiwan 1999 WNT 7.6 1.8 

24 771 Loma Prieta 1989 Golden Gate Bridge 6.9 79.8 

25 809 Loma Prieta 1989 UCSC 6.9 18.5 

26 265 Victoria, Mexico 1980 Cerro Prieto 6.3 14.4 

27 1078 Northridge-01 1994 Santa Susana Ground 6.7 16.7 

28 763 Loma Prieta 1989 Gilroy - Gavilan Coll. 6.9 10.0 

29 1619 Duzce, Turkey 1999 Mudurnu 7.1 34.3 

30 957 Northridge-01 1994 Burbank - Howard Rd. 6.7 16.9 

31 2661 Chi-Chi, Taiwan-03 1999 TCU138 6.2 22.2 

32 3509 Chi-Chi, Taiwan-06 1999 TCU138 6.3 33.6 

33 810 Loma Prieta 1989 UCSC Lick Observatory 6.9 18.4 

34 765 Loma Prieta 1989 Gilroy Array #1 6.9 9.6 

35 1013 Northridge-01 1994 LA Dam 6.7 5.9 

36 1012 Northridge-01 1994 LA 00 6.7 19.1 

37 1626 Sitka, Alaska 1972 Sitka Observatory 7.7 34.6 

38 989 Northridge-01 1994 LA - Chalon Rd 6.7 20.5 

39 748 Loma Prieta 1989 Belmont – Envirotech 6.9 44.1 

40 1549 Chi-Chi, Taiwan 1999 TCU129 7.6 1.8 
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Table 3.4 Intensity measures for ground-motion set. 

Record 
number 

Earthquake name Year Magnitude PGA 
(g) 

PGV 
(m/sec) 

PGD 
(m) 

1 San Fernando 1971 6.6 0.15 0.08 0.02 

2 Loma Prieta 1989 6.9 0.16 0.17 0.06 

3 Kocaeli, Turkey 1999 7.5 0.15 0.23 0.10 

4 Northridge-01 1994 6.7 0.16 0.11 0.03 

5 Imperial Valley-06 1979 6.5 0.15 0.18 0.08 

6 Hector Mine 1999 7.1 0.34 0.37 0.14 

7 San Fernando 1971 6.6 0.09 0.07 0.01 

8 Duzce, Turkey 1999 7.1 0.16 0.13 0.08 

9 Hector Mine 1999 7.1 0.07 0.07 0.03 

10 Chi-Chi, Taiwan 1999 7.6 0.20 0.41 0.36 

11 Chi-Chi, Taiwan-06 1999 6.3 0.34 0.17 0.06 

12 Coyote Lake 1979 5.7 0.45 0.52 0.07 

13 Taiwan SMART1(45) 1986 7.3 0.13 0.13 0.05 

14 Irpinia, Italy-01 1980 6.9 0.19 0.29 0.10 

15 Loma Prieta 1989 6.9 0.27 0.26 0.13 

16 Irpinia, Italy-01 1980 6.9 0.12 0.18 0.11 

17 Chi-Chi, Taiwan 1999 7.6 0.60 0.44 0.38 

18 Kocaeli, Turkey 1999 7.5 0.24 0.52 0.44 

19 Northridge-01 1994 6.7 0.50 0.49 0.06 

20 Denali, Alaska 2002 7.9 0.09 0.10 0.05 

21 Helena, Montana-01 1935 6.0 0.15 0.06 0.01 

22 Northridge-01 1994 6.7 0.16 0.18 0.02 

23 Chi-Chi, Taiwan 1999 7.6 0.96 0.69 0.31 

24 Loma Prieta 1989 6.9 0.14 0.29 0.07 

25 Loma Prieta 1989 6.9 0.37 0.12 0.06 

26 Victoria, Mexico 1980 6.3 0.63 0.31 0.13 

27 Northridge-01 1994 6.7 0.23 0.14 0.03 

28 Loma Prieta 1989 6.9 0.29 0.31 0.07 

29 Duzce, Turkey 1999 7.1 0.11 0.10 0.09 

30 Northridge-01 1994 6.7 0.11 0.08 0.02 

31 Chi-Chi, Taiwan-03 1999 6.2 0.13 0.20 0.04 

32 Chi-Chi, Taiwan-06 1999 6.3 0.06 0.09 0.04 

33 Loma Prieta 1989 6.9 0.41 0.18 0.05 

34 Loma Prieta 1989 6.9 0.43 0.39 0.07 

35 Northridge-01 1994 6.7 0.58 0.77 0.20 

36 Northridge-01 1994 6.7 0.38 0.22 0.05 

37 Sitka, Alaska 1972 7.7 0.10 0.07 0.05 

38 Northridge-01 1994 6.7 0.19 0.19 0.02 

39 Loma Prieta 1989 6.9 0.14 0.20 0.06 

40 Chi-Chi, Taiwan 1999 7.6 1.01 0.60 0.51 



77 

Table 3.5 Summary of ground-motion intensity measures. 

Value PGA 
(g) 

PGV 
(m/sec) 

PGD 
(m) 

Minimum 0.06 0.06 0.01 

Maximum 1.01 0.77 0.51 

Mean 0.28 0.25 0.11 

3.7.2 Ground Response Analyses 

To define the free-field ground motion at the p-y spring depths for the BDNWF models, each of 
the 40 motions was propagated through a one-dimensional ground response analysis model in the 
program DEEPSOIL [Hashash et al. 2015]. DEEPSOIL analyses were conducted using the 
nonlinear time-domain total stress method. Using the idealized profiles for each of the six sites 
presented in Appendix A, modulus reduction and damping curves were developed using the 
procedures of Menq [2003] and Darendeli [2001] for granular and cohesive materials, 
respectively. The “hybrid” procedure recommended by Yee et al. [2013] was used to ensure that 
the modulus reduction curves matched the inferred shear strength of the material at large strains, 
although strains approaching these levels were generally not mobilized during the analyses. 
Profiles of reference strain γr for the modulus reduction curves are shown alongside the VS 
profiles in Figure 3.15. The reference strain corresponds to 50% modulus reduction (i.e., G/Gmax 
= 0.5) and thus is a good proxy for the amount of nonlinearity exhibited by the material; smaller 
values indicate that the soil will exhibit greater nonlinearity at small strains. 

As described above, the idealized site stratigraphy is based on real CPT data to the 
approximate maximum depth of the CPT sounding, typically between 30 and 40 m. Below this 
depth, additional layers were added to the profile to create a gradual transition to the elastic 
bedrock. This was done so that the input motions, which are representative of outcrop motions 
on rock with an average VS = 760 m/sec, would not encounter a strong impedance contrast at the 
base of the profiles. 

The following options were used for the DEEPSOIL analyses: 

 Pressure-dependent modified Kodner-Zelesko nonlinear backbone 
formulation [Matasovic 1993] with non-Masing unloading/reloading 
formulation. 

 Input motions specified as outcrop motions. 

 Elastic half-space (bedrock) with VS = 760 m/sec and unit weight 22 kN/m3 
underlying the soil profiles. 

 Frequency-independent damping formulation. 

 When needed to achieve convergence, sub-stepping of time increments using 
linear interpolation of input motion with maximum strain increment of 0.005. 

Acceleration time series computed from DEEPSOIL for each layer were manually post-
processed to generate displacement records, which are needed as the input to the soil nodes of 
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the p-y springs for the OpenSees analyses. Performing the integration necessary to compute 
displacement from acceleration time series, whether executed in the time or frequency domain, is 
a nontrivial exercise that can result in spurious amplification of low-frequency noise if proper 
filtering procedures are not implemented. Recent versions of DEEPSOIL offer the option to 
export displacement records computed during direct integration of the equation of motion, but no 
filtering was applied to these records. 

For this study, high-pass filtering was applied to remove low-frequency noise using a 
third-order Butterworth filter at frequencies above about 0.1–0.2 Hz. To remove spurious high-
frequency noise, the motions were also filtered using a low-pass Butterworth filter at the higher 
of (i) the low-pass frequency used for the original PEER ground motion processing or (ii) the 
maximum frequency that could be propagated through the DEEPSOIL model, which depends on 
thickness and shear-wave velocity of the layers. In most cases the low-pass frequency used for 
the original PEER ground motion processing was higher, so this was used for the low-pass 
filtering. In addition, the acceleration time series were baseline corrected and zero-padded at the 
beginning and end of each record. The transition between a displacement of zero and the 
computed displacement was achieved with a cosine filter over 20 time increments; failure to do 
so can result in significant low-frequency noise even if the beginning and end displacements 
have relatively small amplitudes. The fundamental frequency of each site as computed by 
DEEPSOIL is given in Table 3.6. 

Table 3.6 Site fundamental frequencies. 

Site: 1 2 3 4 5 6 

Site fundamental frequency fS (Hz) 0.57 0.87 0.88 1.21 1.20 1.82 

3.7.3 Ground Motion Incoherence 

Real ground motions exhibit incoherence, or variation between two physical locations because of 
two effects: (i) the wave-passage effect, which for inclined waves simply characterizes the delay 
in arrival time of a uniform planar wave front between two locations; and (ii) “stochastic” 
incoherence, which is due to the inherent spatial variability of the ground motion itself since 
earthquake ground motions are generated not at a single point but along a heterogeneous fault, 
and from the scattering of waves due to material heterogeneity at the site. Abrahamson and 
Youngs [1992a] and others have demonstrated that this can have important consequences for 
SSI. 

Because DEEPSOIL performs one-dimensional ground response analysis assuming 
vertically-propagating shear waves, the only component of incoherence that is captured is the 
influence of changing soil properties with depth; the wave passage effect and stochastic 
incoherence are not captured. For a single pile foundation, this is acceptable. For pile groups, 
however, ground-motion incoherence results in different motion being imposed on each pile 
within the group. Much like the concept of base-slab averaging for shallow and mat foundations, 
the response of a stiff pile cap represents an average of the motions imposed on each pile within 
the group. 
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To capture ground motion incoherence in the horizontal direction for the pile group 
simulations in this study, spatially-variable ground motions (SVGM) were generated using the 
program FDW2D.r, which is based on a simulation routine described by Ancheta and Stewart 
[2015]. Starting with one of the 40 input motions as a “seed” motion corresponding to a corner 
pile location within the pile group shown in Figure 3.14, a motion was generated at each of the 
five remaining pile locations that matches a set of target spatially variable ground-motion 
(SVGM) functions. Dr. Timothy Ancheta was hired as a sub-consultant for this project to 
generate the incoherent motions, and the following is a summary of his work. 

The basic process of simulating an incoherent motion is to modify a seed ground motion 
by adding a random phase and amplitude at each frequency to match target coherency and 
amplitude models that are consistent with empirical observations. Additionally, for the method 
used here, the coherency between the seed-to-simulation and simulation-to-simulation matches 
the target coherency function for all locations simultaneously. The FDW2D.r simulation method 
uses an energy randomization process called Frequency Dependent Windowing (FDW). The 
FDW method is used to conserve the low-frequency (coherent) energy and resample the high-
frequency (random) energy to be consistent with a set of SVGM functions without introducing 
unwanted spectral leakage. 

The FDW method is a non-stationary simulation routine that utilizes a modified short-
time Fourier transform (MSFT) routine. The MSFT routine allows preservation of the non-
stationary properties of the motion and incorporation of time-varying nonlinear spectral 
modifications. The routine is summarized in the following steps: 

 The seed time series is split into short time segments. 

 A discrete Fourier transform (DFT) is performed on the segment. 

 Phase angles at each frequency within a desired frequency range (dependent 
on segment length) are modified consistent to a coherency function for each 
segment (this procedure is fully described in Ancheta [2010]). 

 The new set of Fourier phase angles is combined with the seed Fourier 
amplitudes and transformed into the time domain with an inverse Fourier 
transform (IFT). 

 The modified short time segments are recombined to form a modified time 
series. 

 The preceding steps are performed multiple times for multiple segment 
lengths, with each segment length having a specified frequency range over 
which phase angles are modified. Hence, multiple modified time series are 
created. Segment lengths and corresponding frequency limits used are shown 
in Table 3.7. 

 The multiple modified time series are band-pass filtered within the limits of 
the pass-band matching the band of the modification to combine the modified 
frequency bands in the frequency domain. 

 The non-overlapping frequency bands are transformed back to the time 
domain to create the final broadband modified time series. 
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The SVGM generated using this procedure all occur within a single horizontal plane. In 
other words, the seed and simulated motions exist at different x and y horizontal locations, but at 
the same depth z. For the purpose of this study, this depth corresponds to the base of the soil 
profiles. To generate motions at each depth increment for input to the BDNWF group analyses, 
transfer functions were computed from the DEEPSOIL results relating the seed input motions to 
the motion computed at the depth of each layer. These transfer functions were then used to 
compute a ground motion at the depth of each layer from the SVGM, thus effectively 
propagating the same amount of spatial variability generated at the base of each profile from 
FDW2D.r uniformly over the full depth of the profile. In other words, horizontal and vertical 
incoherence are uncoupled in the approach used here, but both are ultimately reflected in the 
ground motions imposed on the pile group. 

An example of the seed and SVGM is shown in Figure 3.16 in terms of acceleration and 
displacement. Note that only a short time window of two seconds is shown. It is apparent from 
this figure that while a modest amount of variability exists between pile locations in terms of 
acceleration, the displacement time series are nearly identical. This is because incoherence 
increases with increasing frequency, and displacement tends to amplify low-frequency energy 
and de-amplify high-frequency energy relative to acceleration. 

 

Table 3.7 Segment duration (L) and frequency bands (b) used in the FDW routine. 

Segment duration (sec) Frequency limits (Hz)  

1.28 2-Nyquist 

2.56 1–2 

5.12 0.5–1 

10.24 0.25–0.5 

20.48 0.12–0.25 

Full duration of time series 0–0.12 
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 If convergence was not achieved at a particular step, the modified-Newton 
algorithm with initial stiffness was used; if this failed to converge, the 
tolerance was decreased by an order of magnitude and the Krylov-Newton 
algorithm was used again. 

 Newmark integrator with γ = 0.5 and  = 0.25. 

 A P- transformation was utilized to capture secondary moments induced by 
offset axial loads 
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4 Results 

4.1 SINGLE PILES 

Horizontal displacement transfer function results for each pile/site/motion combination are 
presented in Figures 4.1–4.12. Each figure is for one site and contains four plots, one for each of 
the four piles, where each plot contains the computed transfer function ordinates with high 
coherence for the 40 ground motions along with the mean and ± one standard deviation of the 
results shown in that plot. Separate figures are presented for the fixed- and free-head conditions. 
Collectively, the plots represent the results of 1920 single-pile simulations. 

Because the time step, duration, and high- and low-pass filtering for the input ground 
motions vary, the frequency vector computed during the Fast Fourier Transform (FFT) operation 
varies between ground motions. To accommodate computing the mean and standard deviation at 
each frequency, the data were binned into 200 log-evenly spaced frequency bins spanning 
between the minimum high-pass and maximum low-pass frequencies used during processing of 
the 40 motions (0.0375 and 62.5 Hz, respectively). Furthermore, within each frequency bin it is 
typically the case that not all 40 transfer functions exceeded the minimum coherence threshold of 
0.8. In general, the number of transfer functions meeting the minimum coherence threshold 
decreases with increasing frequency above the corner frequency. To avoid spurious fluctuations 
at these higher frequencies, the mean and ± one standard deviation were only computed if at least 
25% (10) of the 40 transfer functions exist in a given frequency bin. For this reason, the plots 
show individual transfer functions at higher frequencies than the mean, and ± one standard 
deviation were generally plotted. 

Following presentation of the single pile results versus plain frequency, normalized plots 
versus dimensionless frequency are presented in §4.2. This is followed by identification of the 
controlling parameters for kinematic pile–soil interaction and a comparison to previous elastic 
solutions in §4.3. Models for predicting transfer functions and spectral ratios for design 
applications are developed in §4.4 and §4.5. The chapter concludes with a summary of pile group 
simulation results. 
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Figure 4.2 
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unctions for SSite 2 fixed-hhead piles. 

 



 
 
 
 
 

 

Figure 4.3 
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unctions for SSite 3 fixed-hhead piles. 

 



 
 
 
 
 

 

Figure 4.4 
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unctions for SSite 4 fixed-hhead piles. 

 



 
 
 
 
 

 

Figure 4.5 
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unctions for SSite 5 fixed-hhead piles. 

 



 
 
 
 
 

 

Figure 4.6 
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unctions for SSite 6 fixed-hhead piles. 

 



 
 
 
 
 

 

Figure 4.7 
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unctions for Site 1 free-hhead piles. 

 



 
 
 
 
 

 

Figure 4.8 
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unctions for Site 2 free-hhead piles. 

 



 
 
 
 
 

 

Figure 4.9 
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unctions for Site 3 free-hhead piles. 

 



 
 
 
 
 

 

Figure 4.10 
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unctions for Site 4 free-hhead piles. 

 



 
 
 
 
 

 

Figure 4.11 

 

Transfer fu

94 

unctions for Site 5 free-hhead piles. 
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scheme are due to: (i) the use of flexural rigidity EpIp in the λ term instead of diameter; and (ii) 
inclusion of the characteristic length relative to the free-field wavelength, which drives the 
frequency-dependence of the problem. 

Following the approach of Di Laora and Rovithis [2014], λ and VS are computed over the 
depth increment corresponding to the uppermost pile active length, denoted by λLa and VS,La. 
Consistent with Equation (1.9), λLa is computed using the initial stiffness of pile–soil interaction 
Ke. Nonlinearity due to degradation of the p-y springs is reflected in the results and will be 
considered in development of the prediction models. 

Figure 4.13 presents the normalized transfer functions for fixed-head piles. Free-head pile 
transfer functions for horizontal displacement and head rotation are presented in Figure 4.14 and 
Figure 4.15. Unlike the plots in the previous section, computed transfer functions for the 
normalized versions are plotted as points rather than lines. This is simply because plotting 960 
lines within a narrow band would make it nearly impossible to discern one from another. In 
contrast, plotting only points that represent transfer function ordinates with high coherence not 
only makes the overall trend clear, but it also provides a visual guide to where the greatest 
concentration of points lie. Prior to plotting, the results were binned into 200 equally spaced 
dimensionless frequency bins. The results were further grouped into nine equally spaced 
dimensionless frequency bins for computing mean and standard deviation trends as shown in the 
figures. Note that the “best-fit to functional form” curves in these figures are for the functional 
forms discussed subsequently in §4.4. 
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Variations in soil stiffness over the length of pile also play an important role as suggested 
by Fan et al. [1991] and others. For example, the difference between the Anoyatis et al. [2013] 
and Di Laora and Rovithis [2014] curves in Figure 4.13 is due to the fact that Di Laora and 
Rovithis used a soil profile with increasing stiffness versus depth, while Anoyatis et al. 
considered a homogeneous profile. Figure 4.17 compares transfer functions computed for the B = 
2.0 m, L = 30 m pile for three ground motions at Sites 3 and 4. Recall that Sites 3 and 4 have 
similar shear-wave velocity profiles over the upper 20 m (see Figure 3.15) and both consist of 
predominantly granular soil; the only significant difference between the two sites is that the 
stiffness of Site 4 shows a marked increase below 20 m. The portion of the pile embedded in this 
stiffer layer influences the response of the upper portion of the pile at Site 4, whereas Site 3 lacks 
this behavior. 

The two most significant effects that are not reflected in the elastic analytical solutions 
are (i) nonlinearity due to pile–soil interaction and (ii) radiation damping. An increase in ground-
motion intensity generally results in greater pile–soil relative displacement and corresponding p-
y softening, effectively increasing the pile-to-soil stiffness contrast and shifting transfer function 
ordinates to lower values. On the other hand, because radiation damping manifests as an increase 
in stiffness for dynamic p-y curves, its effect is to decrease the pile-to-soil stiffness contrast and 
shift transfer function ordinates higher. Hence, nonlinearity due to pile–soil interaction and 
radiation damping are competing effects in terms of their influence on the transfer functions. 

This is illustrated in Figure 4.18, which shows transfer functions computed for the B = 
0.5 m, L = 7.5 m pile in the Site 1 profile subjected to the 1971 San Fernando, California, 
earthquake (NGA record sequence number 72). A comparison of the transfer functions computed 
with (i) a constant value of elastic p-y stiffness set equal to the initial stiffness Ke, versus (ii) an 
equivalent-linear degraded stiffness, verifies that a decrease in soil stiffness shifts the transfer 
function ordinates down. However, when a dashpot representing radiation damping is added to 
the degraded stiffness model, the transfer function ordinates are shifted back up, in this case 
above the transfer function representing initial stiffness but without the dashpot. Finally, the 
transfer function for the fully-nonlinear model is shown, which on average plots above the elastic 
transfer functions computed without radiation damping. Thus, the effect of nonlinearity due to 
pile–soil interaction is effectively outweighed by the increase in stiffness due to radiation 
damping for this case. (Note that all four models were subjected to the same input ground 
motions, so the effect of nonlinearity due to site response is equal for all cases). 

Comparison of the trends indicated by the binned means in Figures 4.13– 4.15 shows that 
the nonlinear results computed for this study plot near or slightly above the elastic analytical 
solution. This is somewhat counterintuitive, as it would seem that including pile–soil interaction 
nonlinearity would shift the results below the elastic analytical solution due to soil softening. 
However, because the elastic solutions in these plots do not include radiation damping, this is a 
somewhat misleading comparison. Although radiation damping is included in the full derivation 
by Anoyatis et al. [2013], the best-fit curves from their study that are shown on the normalized 
transfer function plots in the previous section are for a static simplification in which pile inertia 
and radiation damping are ignored (the influence of hysteretic damping on the free-field ground 
response can be included by using a complex shear-wave velocity *

SV  ). Furthermore, ground-
motion intensity does not influence elastic solutions except to the extent that the soil modulus 
values specified by the designer should be consistent with the anticipated level of strain. 
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functions in Figures 4.1 through 4.12). One of the causes of this variability is that pile/site 
combinations which are initially the same but then subjected to different ground motions exhibit 
different levels of nonlinearity due to free-field site response and pile–soil interaction. While the 
former effect is only approximately reflected in the results by means of the variable displacement 
time series imposed on each p-y spring, nonlinearity due to pile–soil interaction directly alters 
the pile-to-soil stiffness contrast. The effect of this interaction nonlinearity is difficult to isolate 
in the resulting transfer function, because the level of nonlinearity varies over the duration of the 
earthquake. 

A related effect is due to the variable frequency content between the different input 
motions. By using a nonlinear time-domain solution, the pile–soil system is subjected and 
responds to energy at multiple frequencies and amplitudes simultaneously, just like in a real 
earthquake. The resulting interaction of nonlinear responses to different frequencies can have a 
significant influence on the results that is not captured by elastic solutions, which assume the 
system response to all frequencies can be superimposed. As a simple example, consider 
excitation of a pile–soil system by a signal containing a low-frequency, large-amplitude pulse, 
and a second high-frequency component with a smaller amplitude. For an elastic system, the 
transfer function will be the same regardless of when the low-frequency energy arrives relative to 
the high-frequency waves. For a nonlinear system, if the high-frequency energy arrives during 
the low-frequency pulse such that the pulse has resulted in significant p-y softening, the high-
frequency excitation effectively occurs during a period of softened pile-to-soil stiffness contrast. 
Hence, the transfer function ordinate at the high frequency will be lower compared to a case 
where the high-frequency energy excitation occurs prior to the low-frequency pulse arrival. 

Again, the effect of variable frequency content demonstrated by the preceding example is 
hard to pinpoint in the computed transfer functions, because many more than two frequencies of 
excitation are present in the input motions, and the effect of variable frequency content is 
conflated with the other effects discussed in this section. Rather, it can generally be stated that 
the effect of variable frequency content along with time-variable pile–soil interaction 
nonlinearity is to increase fluctuations in the computed transfer functions relative to the idealized 
elastic case. Moreover, the interplay of these effects with highly variable stratigraphy, as 
opposed to uniform or smoothly varying soil stiffness, further increases the irregularity of the 
transfer functions computed herein relative to elastic solutions. 

In summary, the key parameters controlling kinematic pile–soil interaction are: 

 Pile head-fixity condition 

 Pile-to-soil stiffness contrast 

 Variations in soil stiffness over the pile length 

 Nonlinear soil behavior due to pile-soil-interaction, which depends on relative 
pile-to-soil stiffness contrast, and due to free-field ground response 

 Radiation damping 

 Variable frequency content of the free-field excitation 

The key differences between simplified elastic solutions and the nonlinear results computed for 
the more realistic conditions considered in this study are caused by the latter three factors in the 
above list. 
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The results presented above make it clear that although using an elastic solution may 
provide a reasonable approximation of average behavior, it cannot capture the variability that is 
possible when more realistic subsurface conditions and ground motions are used along with 
explicit consideration of nonlinearity. It is noteworthy, and rather convenient, that the elastic 
solutions are approximately coincident with the average results of this study. While this suggests 
that elastic solutions provide a reasonable first-order approximation of behavior, it also means 
that they over-predict reductions in free-field motions roughly half the time. A need to capture 
the impact of realistic conditions, which is reflected by the variability in the results computed for 
this study, is the motivation for development of predictive models in the following sections. 

4.4 GENERALIZED MODELS FOR PREDICTING TRANSFER FUNCTIONS 

The results presented above demonstrate that when the nonlinear transfer functions computed for 
this study are normalized using dimensionless frequency ω/(λVS), consistent trends are exhibited 
between the individual results, but significant dispersion still exists about the mean trend. In this 
section, predictive models (i.e., equations with a specified functional form) are developed to 
predict this variability so that it can be represented in transfer functions used for design 
applications. Coefficients used in these models depend on the controlling parameters identified 
in the previous section. Similar models are developed for predicting spectral ratios in the 
following section. 

Two potential approaches for developing the models were considered. Each begins with 
specifying a functional form, which is described in more detail in the following subsection. For 
now, consider the functional form suggested by Anoyatis et al. [2013] for fixed-head piles: 
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in which Anoyatis et al. recommended values of C0 = 0.25 and C1 = 4 for the coefficients. 
Equation (4.1) with these values for the coefficients is plotted in Figure 4.13 through Figure 
4.15. The first option for a fixed-head pile transfer function predictive model would be to add 
terms to Equation (4.1) that are functions of dimensionless frequency and other parameters in an 
attempt to achieve better normalization, for example: 
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  (4.2) 

Mathematically speaking, many potential variations of this approach are possible, e.g., including 
terms in the denominator of the fraction rather than as additive terms. The alternative approach is 
to leave the functional form of the model unchanged—e.g., the use of Equation (4.1)—and 
develop regression models to predict the coefficients: 

     0 0 1 1 ...j n nC f predictor f predictor f predictor intercept       (4.3) 
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Equation (4.3) is an example of a multiple linear regression model for predicting a coefficient Cj 
as a linear combination of functions of predictor variables, each with an independent coefficient 
(slope) β. In a multiple linear model, functions of predictor variables do not necessarily have to 
be linear, but they must be combined in a linear fashion. For example, the following is a 
permissible multilinear model: 

   2
0 0 1 0   jC predictor predictor intercept   (4.4) 

while this is not: 

    2

0 0 1 0     jC predictor predictor intercept   (4.5) 

The approach of using multiple linear regression to predict individual coefficients rather 
than attempting to modify the functional form has several benefits. First, performing multiple 
linear regressions for one coefficient model at a time is much simpler and faster than performing 
a nonlinear mixed-effects regression on the entire 60,000+ data points reflected in each of the 
Figure 4.13 through Figure 4.15. Second, it maintains the ability to compare to elastic solutions. 
If the functional form were modified to improve normalization of the nonlinear results, the x-axis 
value of the normalized plots would no longer have a clear physical meaning like ω/(λVS) does. 
A modified x-axis variable would also complicate the process of converting the normalized 
transfer function back to Hu as a function of plain frequency, a necessary step to actually 
implement the transfer function for practical applications. Furthermore, there would be no clear 
way to express the elastic solutions in the new normalized space if the x-axis values were 
functions of parameters describing nonlinearity. It is useful to retain the ability to make the 
elastic versus nonlinear comparison, because it highlights the shortcoming of elastic solutions in 
terms of their inability to predict the variability that occurs when realistic conditions are 
modelled. Hence, the multiple linear regression approach is used here. 

Predictor variables used in the multiple linear regression models must capture the 
physical mechanisms that control kinematic pile–soil interaction in order for the models to be 
meaningful and reliable. The recent work by Anoyatis et al. [2013] and Di Laora and Rovithis 
[2014] shows that the ω/(λVS) normalization scheme captures two of the controlling parameters 
well for elastic conditions: (i) pile-to-soil stiffness contrast and (ii) the ratio of pile characteristic 
length to the wavelength of free-field excitation, which controls the frequency-dependence of the 
problem. Hence, the primary goal of the of the coefficient prediction models is to capture the 
effects that are not present in the elastic solutions, namely: 

 Nonlinearity due to pile–soil interaction. 

 The influence of ground response on the free-field motions that excite the pile, 
and nonlinearity associated with the free-field response. 

 Ground motion intensity and frequency content characteristics. 

 Furthermore, parameters used in the models should be dimensionless if 
possible 

 Easy to define with routine project information, i.e., without the need for in 
situ or laboratory testing that is outside the bounds of conventional practice, 
and using readily-quantifiable structural properties. 
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 Based on parameters consistent with the level of seismic hazard analysis 
appropriate for the project. For example, if spectral ratios are desired for a 
response-spectrum based design, the parameters in the spectral ratio prediction 
model should be based on the free-field response spectrum rather than 
requiring parameters that describe an appropriate acceleration time series. 

4.4.1 Functional Form 

The functional forms used here for fixed- and free-head horizontal displacement transfer 
functions are adopted from the Anoyatis et al. [2013] and Rovithis et al. [2009] studies, 
respectively. Note that Anoyatis et al. provide results for free-head piles in terms of plots of 
normalized transfer functions, but they only present a best-fit function for the fixed-head case. 
Although Rovithis et al. do not present the free-head function in the same form that it is 
presented below, the form below can be derived from other equations presented in their paper. 

Prior to adopting these previously-established functional forms, an independent study 
was conducted to derive expressions for the fixed- and free-head cases in order to evaluate if 
alternative forms existed that could capture the underlying trends with fewer coefficients or 
simply provide a better fit. To do this, the derivation presented in Chapter 2 was distilled down 
to the simplest possible mathematical form, and then terms were dropped one at a time to 
evaluate whether or not each term was necessary to capture the underlying trends. This exercise 
produced results that were essentially the same as Anoyatis et al. [2013] and Rovithis et al. 
[2009], presumably because they used a similar process, so their functional forms will be used 
herein. 

The functional form for normalized (i.e., versus dimensionless frequency) fixed-head 
transfer functions is: 
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  (4.6) 

The only difference between this functional form and Equation (4.1) used by Anoyatis et al. 
[2013] is that Equation (4.6) uses λLa and VS,La, that is, values of λ and VS computed over the 
depth increment corresponding to the uppermost active length of the pile. This makes Equation 
(4.6) consistent with the form recommended by Di Laora and Rovithis [2014], who proposed C0 
= 0.3 and C1 = 3 as an approximate best-fit to their elastic results. 

The functional form for normalized free-head horizontal displacement transfer functions 
is: 
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The second term in Equation (4.7) containing coefficients C4 and C5 captures the kinematic 
amplification exhibited by free-head piles. Note that although Equation (4.6) appears as the first 
term in Equation (4.7), coefficients C0 and C1 generally do not take on the same values as C2 and 
C3 for a given pile/site/ground-motion combination in which all factors are equal other than the 
head-fixity condition. Although Rovithis et al. [2009] used the same coefficients for this portion 
of their free- and fixed-head equations, the models developed herein were found to have more 
predictive power if the coefficients were defined independently for each head-fixity case. 

To the best of the authors’ knowledge, no functional form for the underlying trend of 
free-head pile rotation transfer functions has previously been established. The curve shown in 
Figure 4.15 for Anoyatis et al. is simply a replication of results they presented graphically. Based 
on the similarity between these transfer functions (see Figure 4.15) and the kinematic 
amplification region of free-head horizontal displacement transfer functions (see Figure 4.14), 
the following functional form for normalized free-head rotation transfer functions has been 
established for this study: 
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  (4.8) 

4.4.2 Approach 

The statistical software package R [R Core Team 2015] was used to aid in development of the 
multiple linear regression for each coefficient prediction model. The steps taken to develop the 
models can be summarized as follows: 

 Use R software to perform nonlinear least-squares regression (NLSR) to 
determine best-fit coefficients for each transfer function result for fixed- and 
free-head piles. For example, see Figure 4.20. These values of coefficients 
become the “targets” that the coefficient models will be used to predict. 
Computed transfer functions that lacked a significant number of high 
coherence points or did not extend to a high enough dimensionless frequency 
such that the underlying trend was well-constrained by the data were excluded 
from the regression model at this step. 

 Evaluate a number of statistically independent predictive parameters for 
possible inclusion in the models by looking for strong correlation, low 
standard error, and an approximately linear trend between a given parameter 
and coefficient. In most cases, a log transformation of both the predictive 
parameters and pool of target coefficients [e.g., log(parameter0) and log(C0)] 
was found to improve linearity, correlation, and normality/variance structure 
of residuals, while in other cases either no transformation or a power 
transformation was found to be optimum. The Box-Cox test [Box and Cox 
1964] was used to determine the optimum transform power. 
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 Once best candidates for predictive parameters have been identified, use R to 
assess the performance of the models. Begin with a null model (predicted 
coefficient = mean of best-fit results from NLSR), then add the single-best 
standalone predictor and test for statistical significance; look for next-best 
predictor that can be added that will have most predictive power and statistical 
significance, etc., until adding additional predictors does not significantly 
increase the predictive power of the model. This saturation usually occurred 
once three strong predictors were identified. 

 After a model has been developed for each coefficient needed for a given 
functional form, identify the predictors that (i) have the clearest physical 
meaning; (ii) have the most predictive power; and (iii) appear in multiple 
coefficient prediction models. Reformulate all coefficient prediction models to 
use the same set of predictors. While this may decrease the predictive 
capability of an individual coefficient prediction model, using the same 
predictors in each model makes them easier to implement. 

 Throughout the process outlined by the above steps, but especially when a 
potential set of final models has been produced, check that the underlying 
assumptions of multiple linear regression are satisfied (after Kutner et al. 
[2004]): 

o Linear relationship between predictor and target parameter 

o Normally-distributed predictor variables, e.g. as tested by a Q-Q plot 

o Little or no multicollinearity between predictor variables 

o Homoscedasticity and lack of autocorrelation of residuals 
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term used here corresponds to a single value of frequency fm, which is the 
inverse of the mean period Tm defined by Rathje et al. [2004]: 

2

2

(1 )
  for  0.25 Hz 20 Hz, with 0.05 Hz

i i
i

m i
i

i

FAS f
T f f

FAS
    



 (4.11) 

where FASi are the Fourier amplitude coefficients from the Fourier 
Amplitude Spectrum (FAS) of the free-field ground surface motion, fi are the 
frequencies corresponding to each FASi, and Δf is the frequency interval used 
in the FFT computation. This term will be referred to as “mean frequency” of 
the surface motion, although Rathje et al. do not use this terminology because 
they refer to it only in terms of period. Use of mean frequency as a predictor 
term is a convenient way to represent the frequency content of the ground 
surface motion with a single value. (Note: in order to be consistent with this 
model, fm must be computed from the ground surface motion and not the 
input motion used for one-dimensional ground response analysis). Using 
mean frequency in a dimensionless frequency term effectively compares the 
pile characteristic length to the wavelength of free-field excitation 
corresponding to the predominant energy in the ground motion. Finally, the 
λLa term allows the coefficient to have a dependence on pile-to-soil stiffness 
contrast, which has been demonstrated in this study to influence the results 
due to its effect on nonlinearity beyond what is captured by the dimensionless 
frequency term in the basic fixed-head functional form. 
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 is a proxy for shear strain in the free field due to ground response, 

and also serves as a general proxy for ground-motion intensity. The former is 
based on the fundamental relationship of ground velocity normalized by 
shear-wave velocity in the transverse direction being equal to shear strain 
(e.g., see Newmark [1967]). Again, PGV is the peak ground velocity (PGV) 
of the free-field ground surface motion and is not the base input motion used 
for ground response analysis. In addition to producing a dimensionless ratio 
when normalized by shear-wave velocity, PGV was found to be a strong 
predictor because it is mostly dependent on mid-range frequency content of 
the ground motion, which is where kinematic pile–soil interaction becomes 
significant. 

 The preceding two terms are multiplied in order to allow the ground motion 
intensity to interact with the pile-to-soil stiffness term, which is an attempt to 
capture the increase in pile–soil interaction nonlinearity that is caused by 
increasing ground-motion intensity. 
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 is the ratio of shear-wave velocity over the uppermost pile active 

length (hence, near the ground surface) to the shear-wave velocity over the 
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full length of the pile. This quantifies the increase, or lack thereof, in soil 
stiffness over the length of the pile. 

 0.5
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T s
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 is the ratio of free-field ground surface acceleration response 

spectrum ordinates at 0.5 and 0.05 sec, which serves as another descriptor of 
free-field ground motion frequency content. The periods 0.5 and 0.05 sec (f = 
2 to 20 Hz) were chosen because the transfer function corner frequencies and 
bandwidth over which significant de-amplification occurs usually falls within 
this range (e.g., see Figure 4.16). The term may also capture, at least in part, 
the influence of free-field motion variable frequency-content on nonlinearity 
as discussed in §4.3. 

As shown in Figure 4.19(a), there is variability between the normalized transfer functions 
computed for the two diameters of piles considered in this study. This is shown again in terms of 
all computed transfer function ordinates with high coherence in Figure 4.22. This variability 
provides an opportunity to test the predictive capabilities of the coefficient models (4.9) and 
(4.10) by comparing the mean model predictions to the study results for each diameter 
independently. Figure 4.23 and Figure 4.24 show that the models match the overall trends 
exhibited by the two sizes of piles well. Note that although this variability is discussed here in 
terms of diameter, the actual behavior is better characterized by its dependence on EpIp, and 
diameter only appears in the functional form and coefficient prediction models through its 
inclusion in the EpIp term. 

 

Table 4.1 Fixed-head transfer function coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C0 0.44 139 2.2E-16 

C1 0.19 43 2.2E-16 
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  (4.15) 

As for the fixed-head pile transfer functions, the free-head transfer functions exhibit 
variability between the two diameters considered in the study. Figure 4.26 and Figure 4.27 
demonstrate that the coefficient prediction models are capable of capturing these trends well. 

Table 4.2 Metrics for free-head displacement transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C2 0.51 72 2.2E-16 

C3 0.22 21 8.0E-12 

C4 0.47 62 2.2E-16 

C5 0.06 5 1.5E-3 
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Table 4.3 Metrics for free-head rotation transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C6 0.52 40 2.2E-16 

C7 0.31 17 4.1E-09 

C8 0.44 29 1.3E-13 

C9 0.18 9 2.3E-05 

 



Figu

 

re 4.28 R
fo
L

Residuals ver
or free-head 
ines on resid

rsus predicte
rotation tran
duals plots s

122 

ed values plo
nsfer functio
show trend a

ots (left) and
n coefficient

and ± one sta

d normal Q-Q
t prediction m
andard devia

Q plots (right
models. 
ation. 

 

) 



 
 
 
 
 

Figu

 

re 4.29 V
d
Variability in f

iameters con

 

free-head rot
nsidered in t

123 

tation transf
this study. 

fer function rresults for thhe two pile 

 



 
 
 
 

Figure 44.30 Mean free-head rrotation tran

124 

nsfer functionn model preddiction for B = 0.5 m resu

 

ults. 



Figure 4

4.5 G

The same
used to 
controllin
mechanis
ordinates
frequency
free-field

4.5.1 F

Spectral 
ordinates
to the per
system b
both the 
peak in t

4.31 Mea

GENERALIZ

e approach d
develop m

ng paramete
sms that infl
s are contro
y energy. R

d ground sur

Functional 

ratios for k
s generally d
riod Tmin (se

behavior. At 
pile head an

the respectiv

n free-head r

ZED MODE

described ab
models for p
ers identified
fluence trans
olled by the
Response spe
face and pile

Form 

kinematic pi
decrease with
e Figure 4.3
periods bel

nd free-field
ve motions. 

rotation tran

ELS FOR P

bove for dev
predicting s
d in §4.3. Sp
fer function

e largest am
ectra used to
e-head motio

ile–soil inte
h decreasing
2). The min
ow Tmin (i.e

d ground sur
This behavi

125 

nsfer function

PREDICTIN

elopment of
pectral ratio

pectral ratios
ns, except tha
mplitude pea
o compute s
ons for 5% d

eraction exh
g period, dow
imum value 
., frequencie
rface motion
ior is maxim

n model pred

NG SPECTR

f transfer fun
os that inc
s primarily d
at short-peri
ak in the si
spectral rati
damping. 

hibit a chara
wn to some 
 defines a tr
es above 1/T
n are control
mized at T =

diction for B 

RAL RATIO

nction predic
lude variab
depend on th
iod (high-fre
ignals rather
ios were com

acteristic for
limiting valu
ansition poin
Tmin), spectra
lled by the l

= 0 sec (i.e., 

= 2.0 m resu

OS 

ction models
bility due to
he same phy
equency) spe
r than the 
mputed from

rm in which
ue correspon
nt in the pile
al accelerati
largest ampl
PGA), whe

 

ults. 

s was 
o the 
ysical 
ectral 
high-

m the 

h the 
nding 
e–soil 
on of 
litude 
en the 



spectral a
amplitud
of 2–5 H
kinemati
insignific
zero peri
correspon
piles will

T
interactio
is the ela
piles is a

Equation
Rmin are 
ratio, and
period b
basic fun

Figure 

acceleration 
de peak of de
Hz (e.g., pe
c pile–soil 
cant for sma
iod depends
nding to the
l approach u

The only pub
on spectral r
astic study by
dopted from

FIM

FFM

PSA

PSA


n (4.20) is a 
coefficients
d Tmin, and 
eyond whic

nctional form

4.32 Fixe

is simply eq
esign-level e
eriods aroun
interaction 

aller piles in 
s on the lev
e peak ampli
unity as the le

blished wor
ratios are com
y Di Laora a

m their study:





0 0

1 1

1             

R R

R


 


  






piecewise c
 defining th
Tcrit are the
h no signifi

m are illustrat

ed-head pile 

qual to the m
earthquake m
nd 0.2–0.5 
may be sig
stiffer soil (
el of kinem
itude of the 
evel of pile–

rk that the a
mputed and 
and Sanctis [
: 





min
min

min

                  

crit

crit

T
R

T

T
R

T T


 



 
 

combination
he spectral r
e period cor
icant reducti
ted in Figure

spectral rati

126 

maximum of
motions usua
sec), which
gnificant fo
see Figure 4

matic pile–so
free-field gr

–soil interact

authors are 
discussed in

[2013]. The 

2

n

2

min
min

;        

;    

             

T

T
T

T

T












 of two para
ratio at a pe
rresponding 
ion occurs, 
e 4.32. 

io functional

 

f the acceler
ally occurs w

h correspond
r stiff piles

4.16). Hence
oil interactio
round surfac
tion decrease

aware of in
n terms of an
functional f

min

in crit

crit

T

T T

T



 



 

abolas and a
eriod of zero

to the mini
respectively

l form after D

ration time s
within mid-r
ds to the ra
s in soft so
e the spectra
on that occu
ce motion an
es. 

n which kin
n underlying

form used he

  

a straight lin
o and the m
imum spect
y. These par

Di Laora and 

eries. The la
range freque
ange over w
oil but relat
l ratio ordin

urs at freque
nd for fixed-

nematic pile
g functional 
ere for fixed-

(

ne, where R
minimum spe
tral ratio an
rameters an

 

Sanctis [201

argest 
encies 
which 
tively 
ate at 

encies 
-head 

e–soil 
form 

-head 

(4.20) 

0 and 
ectral 
d the 

nd the 

13]. 



D
the autho
pile spec

E
kinemati
piecewis

4.5.2 M

Models f
–(4.25). M
and Figu

Fi

Di Laora and
ors are not a
tral ratios co

FIM

FFM

PSA

PSA


Equation (4.2
c amplificat
e formulatio

Models for 

for predicting
Metrics for a
re 4.34. 

0,FXHR  

igure 4.33 

d Sanctis onl
aware of any
omputed for 








0 0

max

max1

1             

R R

R
R

R

T





















21) is a modi
tion on the c
on. The peak

Predicting

g the coeffic
assessing the

0.086log



 



Free-head 

ly considere
y published 
this study is





 



min
min

min max

max

2

max

1

                  

cri

crit

T
R

T

R R

T T

T T

T T


 







 



ified version
computed sp

k spectral rati

g Fixed-Hea

cients to be u
e statistical s

0

,

0
a aL S L

f

V





127 

pile spectral

d fixed-head
functional f

s matched w

 




2

n

2

max
2

min

2

;             

 ;

 ;            

        

it

T T

T







           

n of the fixed
pectral ratio
io is defined

ad Spectra

used in Equa
significance 

,

,

.047 aS L

S L

V

V

 
  
 

l ratio functio

d piles; for f
forms. The 
ell by the fo

min

min

max

    

;    

   

T T

T T

T T



 

 

   critT T

d-head form
os by adding
d by (Rmax, Tm

al Ratio Co

ation (4.20) 
of the mode

0.046log
 
  

onal form. 

free-head pi
trend exhibi

ollowing: 

max

crit

T

T





  

m which capt
g a third par
Tmax) as show

oefficients 

are given in 
els are prese

maxPSA

g

 


 

 

le spectral r
ited by free-

(

tures the effe
rabolic leg t

wn in Figure 

Equations (
ented in Tabl

0.81  (

ratios, 
-head 

(4.21) 

ect of 
to the 
4.3. 

(4.22)
le 4.4 

(4.22) 



128 

,0 max
min,FXH

, ,

0.38log 0.12 0.026log 0.16a

a a

S L

L S L S L

Vf PSA
R

V V g

     
               

  (4.23) 

  0.58 ,0 max
min,FXH

, ,

1.39log 4.53 1.99log 0.26a

a a

S L

L S L S L

Vf PSA
T

V V g
      

               
  (4.24) 

  ,0 max
,

, ,

log 0.79log 0.53 0.27 log 1.01a

a a

S L
crit FXH

L S L S L

Vf PSA
T

V V g

     
              

  (4.25) 

Note that Tmin and Tcrit in Equations (4.24) and (4.25) are in seconds. 

The physical interpretation and motivation for using each of the predictor variables that 
appear in Equations (4.22) through (4.25) are summarized as follows: 

 Similar to the transfer function models, the 0
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 term is a dimensionless 

frequency computed at a single frequency value. In this case f0 is used, which 
is the inverse of the “smoothed spectral predominant period” period T0 
defined by Rathje et al. [2004]: 
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            (4.26) 

where Ti are the discrete periods in the acceleration response spectrum 
equally spaced on a log axis and PSA(Ti) are the spectral accelerations at 
periods Ti. If the spacing criterion is not satisfied, the spectral values must 
be interpolated over a closer log interval. Equation (4.26) essentially 
extracts the spectral ordinates that are greater than 1.2 times PGA, thus 
exhibiting significant amplification and returns the period corresponding 
to the peak of a smoothed curve of these ordinates. The way in which T0 is 
defined makes it mostly dependent on the moderate- to high-frequency 
content of a ground motion, which is the important range for kinematic 
pile–soil interaction. As demonstrated by Rathje et al., T0 is also a better 
overall descriptor of the mean frequency content of the motion than the 
peak of the unsmoothed spectrum because it represents a weighted average 
of the entire period bandwidth over which amplification occurs, and thus 
is not controlled by a single peak that may have narrow bandwidth. 
Furthermore, f0 was chosen because it is defined from the free-field 
ground surface motion response spectrum. For design applications in 
which spectral ratios for kinematic pile–soil interaction are desired, it 
would be impractical to have to compute a parameter like fm which is 
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defined by a ground motion time series instead of a response spectrum. 
The empirical relationships developed by Rathje et al. could also be used 
to predict f0 for use in Equations (4.22)—(4.25) at the planning stages of a 
project or for cases when a site-specific seismic hazard analysis to define 
response spectra is not performed. 

 
,

,

aS L

S L

V

V

 
  
 

 quantifies changes in soil stiffness over the length of the pile.  

 maxPSA

g

 
 
 

 is simply the maximum spectral acceleration normalized by gravity 

such that the term is dimensionless. This measure of ground-motion intensity 
serves as a proxy for nonlinearity and was found to be a more effective 
predictor than spectral acceleration at any one specified period. As discussed 
above, the maximum spectral acceleration also plays an important role in 
defining the zero-period ordinate and thus is a powerful predictor of R0. 

 

Table 4.4 Fixed-head spectral ratio coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.19 74 2.2E-16 

Rmin 0.54 381 2.2E-16 

Tmin 0.33 157 2.2E-16 

Tcrit 0.70 734 2.2E-16 
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Note that Tmin, Tmax, and Tcrit in Equations (4.29), (4.31), and (4.32) are in seconds. 
 

Table 4.5 Metrics for free-head spectral ratio coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.47 203 2.2E-16 

Rmin 0.13 35 2.2E-16 

Tmin 0.41 163 2.2E-16 

Rmax 0.47 203 2.2E-16 

Tmax 0.58 313 2.2E-16 

Tcrit 0.60 350 2.2E-16 
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Free-head pile spectral ratios show amplification (ordinates > 1.0) at short periods 
because kinematic amplification usually occurs during the largest-amplitude pulse in the ground 
motion, which is the component of the motion that controls PGA and short-period spectral 
ordinates. What appears to be a large number of points showing significant amplification at short 
periods in Figure 4.38 is somewhat exaggerated as the points are approximately log-normally 
distributed, which is not visually apparent in Figure 4.38. 

The ability of the predictive models to capture the effect of kinematic amplification at 
short periods is demonstrated in the plot of residuals shown in Figure 4.39. The average residual 
value is near zero at periods greater than about 0.1 sec and is around 0.05 to 0.1 at shorter 
periods. This indicates that the predictive model underestimates the computed spectral ratio by, 
on average, about 5 to 10%. Future studies may be able to reduce this bias by adjusting the 
coefficient prediction models. 

4.6 PILE-GROUP RESULTS 

Simulations of pile groups subjected to incoherent ground motions generally showed that group 
effects were minimal for the parametric bounds considered here, which is consistent with 
previous findings based on elastic solutions. For stiff-pile/soft-site combinations for which single 
piles exhibit significant reduction of the free-field motion at low frequencies, the average trends 
exhibited by pile-group transfer functions typically ranged between 0–10% below the 
corresponding single-pile transfer functions computed for the same ground motion. For pile/site 
combinations with less of a pile-to-soil stiffness contrast, pile groups amplified narrow-
bandwidth frequency components of some ground motions up to about 10–20% relative to the 
single pile transfer functions, but the average trends of the group transfer functions still generally 
plotted slightly below the single pile results. 

For design applications, a reasonable first-order approximation of pile group behavior 
could be estimated by reducing transfer functions predicted using the models presented in this 
chapter by an additional 5% at frequencies beyond the corner frequency. Because of the 
idiosyncratic nature of the group results, for critical projects, modeling of the type used for this 
study would be more appropriate than this rough approximation. Alternatively, group effects 
could be ignored due to their relatively insignificant contribution to kinematic pile–soil 
interaction. Pile-supported buildings that use a stiff mat foundation (i.e., piled-raft) or grade 
beams to connect piles over a large footprint could potentially experience a larger reduction due 
to the group averaging. This should be examined in future studies. 

Examples results are shown in Figure 4.40–Figure 4.42. Comparison of Figure 4.40 to 
Figure 4.41 (same pile/site combination, different motion) shows that the group transfer function 
varies based on the ground-motion amplitude and frequency content in much the same manner as 
the single pile results. Comparison of Figure 4.41 to Figure 4.42 (same pile/motion, different 
site) shows that for stiffer sites, the pile groups may amplify or de-amplify certain frequency 
components, but the smoothed trend exhibits approximately the same difference between single 
pile and group pile results for both sites. 
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5 Combination of Inertial and Kinematic Pile–
Soil Interaction 

5.1 COMBINING INERTIAL AND KINEMATIC SSI 

For comparison of predictive models to empirical transfer functions, and in a broader sense, for 
consideration of a structure’s earthquake response considering soil–structure interaction (SSI), it 
is necessary to consider the combination of kinematic and inertial effects. Analytically 
decoupling these effects for use with the substructure method of design is convenient but must be 
kept in check by considering important factors related to their combined effects. This chapter 
will discuss this topic prior to presentation of the example applications in the next chapter. 

Three distinct motions will be considered in the context of combined inertial and 
kinematic SSI: the free-field motion (FFM), foundation-input motion (FIM), and foundation 
motion (FM). The FFM and FIM are consistent with the definitions given in previous chapters, 
and represent the modification of the free-field ground response due to kinematic pile–soil 
interaction. In the absence of inertia from the superstructure, the FM is the same as the FIM. 
When superstructure inertia is present, however, the FM will differ from the FIM because inertial 
force effects from the superstructure will induce additional foundation displacements and 
rotations, which is the concept of inertial SSI. In other words, the FM is influenced by both 
inertial and kinematic SSI. 

When considering empirical transfer functions computed between recordings of 
instrumented structures and the adjacent free field, it is important to keep in mind that the 
empirical transfer function represents the ratio of FM/FFM—as opposed to FIM/FMM—since 
inertial effects are present in the structure foundation-level recording. To make a meaningful 
comparison between an empirical transfer function and a purely kinematic transfer function 
model such as the ones developed herein, it is necessary to simulate the response of the structure 
subjected to the FIM; the FM is an outcome of this analysis. An alternative method is to 
approximately remove inertial effects by ignoring the portion of an empirical transfer function 
that is near the first-mode frequency of the system, based on the assumption that this is where 
inertial effects are most pronounced (e.g., Mikami et al. [2008]). However, this is often where 
the greatest reductions between FM and FFM are observed, so ignoring this frequency range can 
leave important questions unanswered. 

For many applications, the structure response can be idealized as a SDOFO, and the FM 
can be computed using the substructure analysis method. This process is illustrated in Figure 5.1 
and can be summarized as follows: 
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the kinematic pile–soil interaction transfer function. The pile was replaced with an equivalent 
macroelement representing the foundation translational impedance. To determine the foundation 
impedance, a “pushover” analysis of the pile was performed by imposing a lateral force on a 
model of the pile–soil domain (no SDOFO) and recording the lateral displacement. This 
produced a pile-head lateral force-versus-displacement stiffness Kxx = 54.7 MN/m. To capture 
foundation damping, a dashpot with a coefficient of 142 kN·s/m was modeled in parallel with the 
spring. This dashpot coefficient corresponds to 5% damping at f1̃,SDOFO based on the following 
relationship relating damping ratio β to equivalent viscous damping [NIST 2012]: 

2 j j
j

j

k
c




   (5.3) 

In Equation (5.3), k is stiffness (in this case Kxx), ω is the frequency of interest, and the subscript 
j stands for the mode of interest, which in this case is the first mode. 

The transfer functions computed from the direct and substructure analysis methods are in 
close agreement in this example. The slight misfit between them occurs because of the different 
modal properties of the two systems and the manner in which damping was implemented. While 
the substructure model with lumped mass and a SDOF has only one defined mode, the direct-
analysis model has multiple higher modes associated with deflection of the pile’s distributed 
mass. Hence the modal-mass participation and mode-shapes of the two models are not identical. 
In addition, f1̃,SDOFO of the substructure model is slightly less than for the direct-analysis model 
(6.01 versus 6.12 Hz) because of the different distribution of mass and stiffness that occurs when 
the pile is replaced by a single macroelement. Nonetheless, the good agreement between the two 
approaches verifies that the substructure method can provide a reasonably accurate response for 
linear-elastic systems. Note that at a single frequency of interest, the substructure method can 
provide an exact match to the direct analysis method, but a perfect match cannot be achieved 
over a wide frequency bandwidth for a time-domain solution when Rayleigh damping and 
equivalent viscous damping are combined in the manner of this example. 

Two deviations between the complete SDOFO–pile–soil system transfer function and the 
purely kinematic pile–soil transfer function are of interest. First, significant amplification occurs 
in the complete-system transfer function near f1̃,SDOFO as a result of resonance. At frequencies 
near f1̃,SDOFO, the SDOFO mass undergoes displacements in excess of the ground displacement, 
which generates inertial base shear and moment acting on the foundation. In this example, note 
that in Figure 5.3 the purely-kinematic pile–soil transfer function predicts a negligible difference 
between the FIM and FFM near f1̃,SDOFO; therefore, it can be said that the FM is controlled by the 
structure response near f1̃,SDOFO, and that kinematic pile–soil interaction has a negligible 
influence. This can be verified by repeating the substructure analysis with the FFM in place of 
the FIM—effectively bypassing kinematic pile–soil interaction. Figure 5.4 shows that this results 
in a nearly identical transfer function for frequencies up to the kinematic pile–soil interaction 
transfer function corner frequency (about 7 Hz). Only at frequencies above 7 Hz does the 
reduction of FIM due to kinematic pile–soil interaction result in a significant difference between 
the two transfer functions computed for the complete system. 
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considered, four distinct regions of phase-lag behavior are observed as depicted in Figure 5.5 and 
Figure 5.6: 

1. At low frequencies (f << f1̃,SDOFO), the direction of base excitation changes slowly, 
hence inertial forces are low and damping is insignificant, so the stiffness of the 
system controls the response. Because insignificant inertial forces develop at the 
SDOFO mass-level, the SDOFO response is in-phase with the ground surface 
response at both the mass- and foundation-level. This is evident as near-zero 
phase-lag in the low-frequency range of Figure 5.5(a). 

2. As the excitation frequency approaches the system fundamental frequency (f ≈ 
f1̃,SDOFO), inertia increases, along with the corresponding displacement, velocity, 
and damping of the SDOFO. The magnitude of the peak SDOFO response at the 
mass level, which occurs at f / f1̃,SDOFO = 1, is dependent primarily on the system 
damping. The large base shear and moment resulting from inertia dominates the 
SDOFO foundation-level response; hence, the response at mass level and 
foundation level are nearly in phase with each other. However, as illustrated in 
Figure 5.5(c) and Figure 5.6(e) and (f), the SDOFO response is approximately 90 
out-of-phase with the ground surface response near f / f1̃,SDOFO = 1, i.e., the peak 
SDOFO response occurs when the ground surface displacement passes through 
zero. This is a fundamental property of resonance of a SDOF system. 

3. At high frequencies (f >> f1̃,SDOFO), the direction of base excitation changes 
rapidly. The inertia of the SDOFO mass now opposes the rapidly-changing 
direction of ground displacement, hence the mass-level response approaches a 
phase lag of 180 (perfectly out-of-phase). As shown in Figure 5.6(j)-(l), this 
means that when the ground surface displaces to the right, the SDOFO mass 
displaces to the left and vice versa. As the SDOFO mass increases, the mass-level 
response approaches zero at high frequencies; hence, the SDOFO response is 
controlled by its mass in this frequency range. The pile displaced shape is 
controlled by the profile of ground displacement rather than the SDOFO response; 
hence, the pile-head motion (i.e., SDOFO foundation-level response) is in phase 
with the ground-surface response, so the phase lag returns to zero at high 
frequencies. The magnitude of the SDOFO foundation-level response is reduced 
from the ground-surface response by two mechanisms: (i) the tendency of the 
SDOFO mass to remain still due to its inertia; and (ii) kinematic pile–soil 
interaction, which reduces the foundation-level response relative to the ground-
surface response even in the absence of inertial forces. 

4. A transition between (2) and (3) occurs when the foundation-level response shifts 
from being dominated by inertia to being controlled primarily by the ground 
displacement. This transition is marked by the peak in the foundation-level 
response phase-lag plot [red line in Figure 5.5(a)] and the response history plot 
and graphics in Figure 5.5(d) and Figure 5.6(g)-(i). The local minimum of the 
complete-system transfer function occurring around 7 Hz in Figure 5.3 occurs 
approximately when the foundation-level response transitions from being out-of-
phase with the ground surface response (phase lag > 90) to in-phase (phase lag < 
90). The transfer function ordinate Hu may then increase slightly until kinematic 
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5.1.2 Effects of SDOFO Properties 

In the familiar context of a response spectrum, a SDOFO is defined solely by its fundamental 
frequency (or period). When representing an actual structure as a SDOFO, however, the height, 
mass, and stiffness of the system—not just the fundamental frequency—also affect its seismic 
response. This is because a change to any of these properties will affect the inertial base shear 
and moment imposed on the foundation, in-turn altering the overall seismic response. To 
illustrate these effects, the complete system with the “baseline” properties given in §5.1.1 was re-
analyzed with the following modifications: 

 mSDOFO varied by a factor of three from the original 10 Mg to 3.33 and 30 Mg 

 HSDOFO varied by a factor of three from the original 5 m to 1.67 and 15 m. 

 Free-head pile boundary condition considered in addition to fixed head. 

The fixed-base fundamental frequency of the SDOFO f1,SDOFO was held constant at 7 Hz by 
changing EISDOFO. The transfer function computed from the results of these simulations are 
plotted in Figure 5.7, demonstrating that: 

 The flexible-base fundamental frequency of the system f1̃,SDOFO is decreased 
when the mass or height are increased, and is always less than the fixed-base 
f1,SDOFO. 

 The amount of amplification near f1̃,SDOFO and de-amplification at f > f1̃,SDOFO 
is also altered when the mass and height are changed, 

 The trends of increasing versus decreasing the amount of amplification near 
f1̃,SDOFO relative to the baseline properties as a result of changes in mass are 
opposite for the free- and fixed-head-pile systems, and  

 The effect of changes in height is negligible for the fixed-head pile system 
over the range of properties considered for this example. 

The different behavior of the free- versus fixed-head-pile systems occurs because the 
inertial base shear and moment result in greater rotations and displacements of the free-head pile 
than for the fixed-head pile. 

The effect of SDOFO properties on the combined inertial-kinematic transfer function is 
highlighted here simply for the purpose of demonstrating that accurate mass, height, and stiffness 
must be specified for a meaningful comparison to be made between an empirical transfer 
function and a simplified model. Unfortunately, adequate information to model an instrumented 
structure as a SDOFO is not always available, even when recordings of the structure and ground 
motions are available. Likewise for forward-design scenarios, it is important to accurately 
specify more than just the fundamental frequency of the structure for consideration of combined 
kinematic-inertial SSI effects. 
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5.1.3 Effect of Pile-Soil Kinematic Interaction Corner Frequency versus SDOFO 
Fundamental Frequency 

In the preceding examples, the corner frequency fc of the purely kinematic pile–soil interaction 
transfer functions have always been greater than f1̃,SDOFO of the SDOFO–pile–soil system. (Recall 
that the corner frequency of the kinematic pile–soil interaction transfer function is the frequency 
beyond which significant de-amplification of the FFM occurs, e.g. approximately 7 Hz in Figure 
5.3). This means that over the range where amplification occurs for the complete-system transfer 
function due to inertial resonance (e.g., approximately 4–7 Hz in Figure 5.3), kinematic SSI is 
negligible. This section investigates briefly the result of having fc be approximately equal-to or 
less-than f1̃,SDOFO since this is a possibility for flexible structures supported on stiff piles in soft 
soil. 

A series of dynamic simulations similar to those described in §5.1.1 were performed, 
except that f1,SDOFO was varied from 4 to 19 Hz while fc remained constant at about 7 Hz. HSDOFO 
= 5 m and mSDOFO = 10 Mg were held constant, and EISDOFO was adjusted according to Equation 
(5.1) to yield the desired f1,SDOFO. In other words, the only system component that was changed in 
order to vary f1,SDOFO is the column stiffness. Rayleigh damping coefficients were adjusted to 
achieve 5% damping at f1̃,SDOFO and f2̃,SDOFO. 

The results shown in Figure 5.8 demonstrate that the shape of the transfer function stays 
approximately the same as f1,SDOFO is varied relative to fc; only the magnitude of the amplification 
near f1̃,SDOFO and de-amplification at f > f1̃,SDOFO change. For the example systems shown in the 
figure, the magnitude of these two mechanisms both increase as f1,SDOFO increases, but this is not 
solely a function of f1,SDOFO relative to fc—inertial SSI increases as f1,SDOFO increases because the 
higher acceleration of the excitation results in greater inertial force, in turn resulting in greater 
peak amplification at resonance. (Recall that for the constant-amplitude input displacement used 
for the analysis, as frequency is increased, velocity and acceleration increase.) 

The influence of kinematic SSI on the results is primarily on the amount of de-
amplification at f > f1̃,SDOFO. For systems that have f1̃,SDOFO < fc, kinematic SSI is the primary 
mechanism controlling the transfer function at f > fc. For example, the de-amplification at 
frequencies greater than about 7 Hz for the f1,SDOFO = 4 Hz transfer function is due almost 
entirely to kinematic SSI, whereas for the higher f1,SDOFO transfer functions, inertial SSI still 
plays a significant role at f > fc. Hence, the following statement can be made: if f1̃,SDOFO < fc, 
kinematic pile–soil interaction is the dominant mechanism causing reduction (or lack thereof) of 
the FM relative to the FFM at frequencies greater than f1̃,SDOFO; if f1̃,SDOFO > fc, both inertial and 
kinematic SSI influence the complete-system transfer function at frequencies greater than 
f1̃,SDOFO. 



Figu

5.1.4 E

The resu
dependen
produces
superpos
substruct
not show
as free-f
superpos

T
except th
for the d
element 
impedanc
modulus 
nonlinear
elastic be
to VS = 1
nonlinear

re 5.8 E
sy
fr

Effect of Pi

ults present
nt on soil no
s an exact re
ition to com
ture method 

wn here, it sh
field site res
ition. 

The SDOFO–
hat the linear
direct analys

representin
ce spring. F
Ke was com

rity. For the
ehavior was 
100 m/sec), 
r behavior at

Effect of vary
ystem relativ
requency. 

le–Soil inte

ed in Chap
onlinearity. 
esult only fo

mbine inertial
as a result o

hould also be
sponse and 

–pile–soil sy
r elastic soil
is. For the s

ng foundatio
For the ana
mputed assu
e analyses in

defined bas
not a reduc

t larger displ

ing fixed-bas
ve to kinema

eraction N

pter 4 show
This issue i

or linear-elas
l and kinema
of neglectin
e recognized
nonlinear s

ystem with 
l springs and
substructure
on impedan
alyses previo
uming a 20%
n this sectio
sed on the fu
ced value, si
lacement. 

151 

se fundamen
atic pile–soil 

onlinearity

w that kine
is significan
stic systems
atic effects. 
g nonlinear 
d that nonlin
structural be

the properti
d dashpots w
 analysis, th

nce with ei
ously presen
% modulus 
on computed
ull elastic sti
ince the PyS

ntal frequenc
interaction t

y 

ematic pile–
nt because th
, and the su
In this sectio
pile–soil int

nearity in oth
ehavior, furt

ies given in
were replace
he pile was 
ither a non
nted in §5.
reduction to

d using nonl
iffness (i.e., 
Simple3 mat

cy of SDOFO
transfer func

–soil interac
he principal 
ubstructure m
on the error 
teraction is 
her system c
ther violate 

n §5.1.1 was
ed with nonl
replaced by

nlinear or 
1.1 through
o approxima
linear p-y sp
Ke = 46 MP

terial inhere

 

O–pile–soil 
ction corner 

ction is stro
of superpos

methods reli
introduced t
examined. W

components,
the princip

s again anal
linear p-y sp
y a single m

equivalent-l
h §5.1.3, the
ately accoun
prings, the i
Pa correspon
ently capture

ongly 
sition 
es on 
to the 
While 
 such 

pal of 

lyzed, 
prings 

macro-
linear 
e p-y 
nt for 
initial 
nding 
es the 



152 

Figure 5.9 presents results generated using the same sine-sweep motion of constant 0.1-m 
amplitude over a frequency range of 0.1 to 25 Hz. For this case, the substructure analysis 
performed with a nonlinear foundation impedance spring closely matches the direct analysis 
results, with only a slight over-prediction of the peak response at resonance due to a minor 
mismatch in damping between the two systems. 

Formulation of the nonlinear impedance spring is depicted in Figure 5.10. To begin, a 
pushover analysis of a model of the pile and soil was performed. Because nonlinear p-y springs 
were used, the pile-head versus lateral deformation relationship is nonlinear. A single PySimple3 
element was then formulated to approximately match the pushover curve as shown in the figure. 
A close match can easily be achieved given the flexible user control over the PySimple3 shape. 
Besides faithfully capturing the nonlinear pushover behavior of the pile–soil system, using a 
nonlinear impedance spring has an added benefit: the material and radiation damping that occur 
due to kinematic interaction are inherently captured by the pushover response (as long as the 
pushover analysis is performed at a velocity similar to the excitation velocity near the system 
f1̃,SDOFO). Hence by closely fitting the pushover curve with the nonlinear impedance spring, the 
effects of these damping mechanisms are included in the complete system response during the 
substructure analysis. 

Also shown in Figure 5.10 is an equivalent-linear impedance spring with secant stiffness 
defined by passing through the origin and the peak displacement of approximately 0.1 m. The 
magnitude of the pushover displacement to which the impedance springs were matched was 
chosen based on the outcome of the direct analysis, which showed that the peak pile-head 
relative displacement was about 0.1 m. Since the nonlinear impedance spring matches the 
pushover curve over both small and large deformation regions, the largest displacement to which 
it is defined is not a critical factor as long as it lies within the range of the subsequent analyses. 
On the contrary, the modulus of the equivalent-linear impedance spring is directly dependent on 
the displacement at which it is defined, complicating the fitting process. 

Furthermore, foundation damping must be modeled separately when using an equivalent-
linear impedance spring. To some degree, foundation damping is inherently captured by fitting 
the equivalent-linear spring to the nonlinear pushover curve since the nonlinear soil response 
implies non-zero hysteretic damping under cyclic loading, but it is difficult to quantify the extent 
to which this is the case. For these analyses, it was found that use of a dashpot in parallel to the 
impedance spring resulted in spurious behavior at frequencies other than the frequency for which 
the dashpot coefficient was defined. Instead, foundation damping was imposed as Rayleigh 
damping corresponding to β = 0.05 at 25 Hz and β = 0.22 at 3.9 Hz ≈ f1̃,SDOFO. Foundation 
damping at f1̃,SDOFO was computed using the following equations from NIST [2012]: 

1 3 3
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The results show that as the amount of period lengthening increases, the accuracy of the 
transfer functions computed with the NIST reduction factors decreases. For the mSDOFO = 10 Mg 
system (f1̃,SDOFO/ f1,SDOFO ≈ 0.75), the peak transfer function ordinate is under-predicted by about 
10%; for the mSDOFO = 25 Mg system (f1̃,SDOFO/ f1,SDOFO ≈ 0.55), the peak transfer function 
ordinate is under-predicted by about 20% and period lengthening is significantly underestimated. 
One of the reasons for this trend is that the NIST factors for estimating modulus reduction only 
depend on the magnitude of free-field excitation without consideration of the system properties 
such as mass, stiffness, and foundation flexibility because they are only intended to capture 
modulus reduction due to site response and not SSI. Since the amount of pile–soil interaction 
nonlinearity depends on all of these properties, a proxy for quantifying nonlinearity based only 
on ground-motion intensity is unlikely to provide a realistic estimate over a wide range of project 
conditions. 

The period-lengthening ratio (or equivalently, the frequency-shortening ratio (f1̃,SDOFO/ 
f1,SDOFO) could therefore by a more useful metric for quantifying whether or not the error 
introduced to the substructure method of analysis by neglecting pile–soil interaction nonlinearity 
is significant. The results presented above indicate that f1̃,SDOFO/ f1,SDOFO below about 0.75 could 
introduce significant errors to the substructure method, but a more comprehensive parametric 
study would be useful for refining this criterion. To make an accurate estimate of f1̃,SDOFO/ 
f1,SDOFO, pile–soil interaction nonlinearity should be considered. Even for superstructure dynamic 
analysis using equivalent-linear foundation impedance springs, nonlinear pile–soil interaction 
analyses should be conducted to define the equivalent linear impedance properties. 
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6 Example Applications of Transfer Function 
and Spectral Ratio Prediction Models 

In this chapter, the generalized kinematic pile–soil interaction transfer function and spectral ratio 
models developed in Chapter 4 will be compared to previously recorded empirical transfer 
functions and implemented for a bridge design scenario. This requires consideration of the 
effects of combined kinematic and inertia soil–structure interaction (SSI) discussed in Chapter 5. 

6.1 EMPIRICAL CASE STUDIES 

The empirical transfer functions for pile-supported buildings reported by Kim and Stewart 
[2003] and Givens et al. [2012] provide an opportunity to apply the predictive models developed 
for this study and investigate issues of combined kinematic and inertial SSI for real systems. The 
empirical transfer functions and attempts to replicate them in previous studies were originally 
discussed in §1.3.6.1. These case studies will be revisited in the following sections. 

6.1.1 Sendai, Japan, Site after Givens et al. [2012] 

This site consists of an instrumented four-story reinforced-concrete building and adjacent free-
field accelerographs located on the Tohoku Institute of Technology campus in Sendai, Japan. 
Multiple strong earthquakes have been recorded at the site. Transfer functions computed from 
these earthquakes show a significant reduction of the foundation motion (FM) relative to the 
free-field motion (FFM) over a frequency bandwidth of approximately 2.5 to 8 Hz. As reported 
by Givens et al. [2012], the reductions were observed to be approximately equal (Hu ≈ 0.5) for 
the M 7.1 2003 Off-Miyagi and M 9.0 2011 Tohoku earthquakes, despite significantly different 
recorded PGAs of 0.23g and 0.81g for the two earthquakes, respectively. This behavior is 
inconsistent with the notion that kinematic pile–soil interaction should result in lower values of 
Hu for stronger shaking due to greater modulus reduction of the soil. The original researchers 
hypothesized that the misfit between existing kinematic transfer function models and the 
empirical data could be due to ground-motion incoherence, and that perhaps nonlinear effects are 
not significant for kinematic interaction. 

Further details regarding the site are presented in Figure 6.1 and Figure 6.2 based on 
information presented by Mikami et al. [2006], Givens et al. [2012], and from discussions with 
Professor Atsushi Mikami [personal communication, 2015]. The building’s lateral-force resisting 
system consists of shear walls in the transverse (narrow) direction and concrete moment frames 
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The substructure modeling approach presented in the previous chapter has been applied 
to this case study for the 2011 Tohoku earthquake recording originally reported by Givens et al. 
[2012]. The modeling steps are summarized as follows: 

 The generalized transfer function model for fixed-head piles presented in 
§4.4.3 was used to predict a kinematic pile–soil interaction transfer function 
relating foundation-input motion (FIM) to FFM in the absence of 
superstructure inertia (i.e., FIM/FFM transfer function). This kinematic model 
considers only pile effects and not base slab averaging. 

 The recorded FFM was convolved with the predicted kinematic FIM/FFM 
transfer function to produce a FIM for subsequent dynamic analysis. 

 A beam-on-dynamic-nonlinear-Winkler-foundation (BDNWF) model of the 
pile embedded in the subsurface profile shown in Figure 6.2 was constructed 
in OpenSees. Nonlinear pile–soil interaction was modeled using p-y curves 
defined by the PySimple3 material. A “pushover test” of this pile was 
simulated to produce a nonlinear pushover curve (e.g., see Figure 5.10) 
relating lateral force imposed at the pile head to lateral displacement. 

 The structure was idealized as a pile-supported SDOFO with height 9.4 m and 
mass 75 Mg. The mass is based on four 38.5 m  28.5 m above-grade floors 
supporting an assumed uniform dead load of 5 kPa, evenly distributed to the 
24 piles. The height corresponds to the centroid of the above-grade floors as 
shown in Figure 6.1. The SDOFO-pile model represents a single pile and its 
tributary mass, but the response of this system is assumed to approximately 
represent the entire structure. 

 The flexible-based period of the building is reported by Mikami et al. [2006] 
as 0.43 s (f1̃,SDOFO = 2.35 Hz) based on system identification techniques. The 
SDOFO with mass = 75 Mg and height = 9.4 m described above was added to 
the OpenSees pile-soil model. After specifying an initial trial value for fixed-
base period f1,SDOFO, from which SDOFO column stiffness was computed 
using Equations (5.1) and (5.2), the eigen command was used to compute 
f1̃,SDOFO of the combined SDOFO-pile–soil system. Using 2.35 Hz as the target 
f1̃,SDOFO, the fixed-base frequency was adjusted until a good match was 
achieved using f1,SDOFO = 2.45 Hz (0.41 sec). This finding suggests that period 
lengthening was relatively insignificant, which is reasonable given the 
relatively flexible structure and stiff subsurface. Note that this calibration step 
would not have been possible if only the building period were known without 
information about its mass and stiffness. 

 The pile and p-y springs in the OpenSees model were replaced with a single 
macroelement impedance spring calibrated to fit the nonlinear pushover curve. 
This nonlinear spring was modelled using the PySimple3 material. Rayleigh 
damping was specified as 10 and 5% at frequencies of 2.35 and 25 Hz, 
respectively. 
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6.1.2 Lancaster, California, Site after Kim and Stewart [2003]. 

This site consists of a five-story pile-supported hospital building in Lancaster, California. During 
the 1994 M 6.7 Northridge earthquake, a free-field sensor located 360 ft (110 m) away from the 
building recorded a PGA of 0.071g. The Lancaster site is included in a database of 57 structure 
and adjacent free-field recordings compiled by Stewart and Stewart [1997] for empirical 
evaluation of SSI. Kim and Stewart [2003] reanalyzed 16 of the buildings that were pile-
supported and found that the Fan et al. [1991] elastic model generally under-predicted reductions 
in foundation-level motions (FM) relative to FFM. In many of these cases, including the 
Lancaster site, a base–slab averaging model by Veletsos et al. [1997] modified with an 
empirically adjusted factor to approximate ground motion incoherence, foundation flexibility, 
and wave inclination effects was found to provide a better fit to the measured transfer functions. 
The authors concluded that interaction between shallowly embedded or surface foundation 
elements dominated the foundation motion, and that piles played an insignificant role. Given the 
relatively stiff soil (estimated VS ≈ 210 to 370 m/sec) and flexible B = 20-in. (51 cm) piles at the 
Lancaster site, this hypothesis is consistent with the findings of the present study. 

Re-evaluation of the Lancaster site therefore had two goals: (i) to compare the kinematic 
model from this study to the measured transfer function, for which a poor match was expected; 
and (ii) determine if including inertial SSI effects provides a better match to the measured 
transfer function as was the case for the Sendai site. 

Further details of the building and site are presented in Figure 6.4 and Figure 6.5 based 
on original documentation presented in Stewart [1996] and Stewart and Stewart [1997], with 
additional information from Stewart et al. [1999], Kim [2001], and Kim and Stewart [2003]. The 
building was designed circa-1986 with steel moment frames serving as the lateral force resisting 
system in both building directions. Steel columns are supported by B = 20-in. (51 cm) drilled 
shafts ranging in length between 15 and 50 ft (4.6–15.2 m). Although not stated explicitly in the 
original documentation, based on the building layout shown in Figure 6.4 and typical design 
practices it assumed for the purpose of this analysis that each column is supported directly by an 
individual pile. The first floor of the building is not embedded below the ground surface. Fixed-
base and flexible-base first-mode periods are reported by Stewart et al [1999] as 0.69 and 0.73 
sec, respectively, corresponding to a relatively small period-lengthening value of 1.06. These 
values and the transfer functions computed below correspond to the building transverse 
direction, which is roughly east-west (see Figure 6.4). Subsurface conditions consist of 
interbedded medium-dense to dense silty sand and medium-stiff to very stiff silty clay. The unit 
weights and estimated shear-wave velocity profile shown in Figure 6.5 were used to define the 
subsurface profile for the transfer functions computed for the present study. 

The procedures for computing the purely kinematic FIM/FFM transfer function and 
combined SDOFO-pile FM/FFM transfer function are the same as for the Sendai site and so will 
not be repeated here. The exception is that the system identification work done by Stewart [1996] 
provides some parameters for the Lancaster site that had to be estimated for evaluating the 
Sendai case. These are the equivalent-SDOFO height (40 ft) and fixed-base period (0.69 sec). As 
for the Sendai site, the building is modelled as a SDOFO supported by a single pile, where the 
mass of the SDOFO represents the estimated tributary mass supported by a single pile in the real 
structure. Using the same assumed uniform dead load of 5 kPa distributed over the floor plans 
shown in Figure 6.4, this resulted in an equivalent SDOFO mass of 145 Mg. The 50-ft pile length 
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The following list summarizes how the parameters needed as inputs for the coefficient 
prediction models were defined based on information obtained from the construction plans and 
other references: 

 The effective flexural rigidity (i.e., considering the reduced moment of inertia 
due to concrete cracking) was estimated from the following expression from 
AASHTO [2009] for concrete-filled steel structural members: 

0.4 c c
eff s s s

s

E A
EI E I I

A

 
   

 
       (6.1) 

in which E, I, and A are the Young’s modulus, moment of inertia, and 
cross-sectional area, respectively, and the subscripts c and s denote 
concrete and steel. The steel shell has a wall thickness of 1 in. (25.4 mm) 
and an assumed Young’s modulus of 29,000 ksi (200 GPa). The concrete 
has a design strength of 3.6 ksi and assumed modulus of 3420 ksi (23.6 
GPa). EIeff computed using these parameters and the appropriate values of 
I and A in the above equation is 28,100 MN·m2. This value was also 
checked with a moment-curvature analysis, which showed good 
agreement. 

 Active length La was computed as 50 ft (15.4 m; about 8 times the pile 
diameter) using the iteration process described in §1.3.3. Based on this length, 
λLa and VS,La were computed as 0.079 ft-1

 (0.26 m-1) and 606 ft/sec (185 
m/sec), respectively. The λLa calculation was based on EIeff and Ke computed 
from the shear-wave velocities and unit weights given above, an assumed 
Poisson’s ratio of 0.35, and δ = 3.0 (for free-head piles) as described in §2.3. 

 The frequency f0 as defined by Rathje et al. [2004] computed from the design 
acceleration response spectrum is 2.05 Hz. This parameter describes the 
frequency corresponding to the predominant energy of the spectrum as 
discussed in §4.5.2. In order to meet the period spacing criterion established 
by Rathje et al., the spectrum was resampled on a log-evenly spaced period 
axis. 

 From the preceding terms, 0

,

0.043
a aL S L

f

V

 
  

 
 

 Time-averaged shear-wave velocity over the full pile length is 656 ft/sec (200 

m/sec), thus 
,

,

0.93aS L

S L

V

V

 
  

 
 

 The maximum spectral ordinate is max 1.37
PSA

g

 
 

 
 

The last three parameters in the above list are the inputs to the spectral ratio coefficient 
prediction models for free-head piles presented in §4.5.3. Using the coefficients predicted by 
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7 Conclusions and Recommendations for 
Engineering Practice 

A comprehensive parametric study of the influence of kinematic pile–soil interaction on 
foundation-input motions (FIM) by means of nonlinear numerical analysis has been presented. 
The analysis approach consisted of performing one-dimensional ground response analysis to 
define free-field motions, which were subsequently imposed on a beam-on-nonlinear-dynamic-
Winkler-foundation model of a pile or pile group. The free-field ground surface motion (FFM) 
and top-of-pile “foundation-input motion” (FIM) computed from these results were then used to 
compute transfer functions and spectral ratios for use with the substructure method of seismic 
analysis. A total of 1920 parametric combinations of different pile sizes, soil profiles, and ground 
motions were analyzed. 

Results of the study show significant reductions of the FFM due to kinematic pile–soil 
interaction occur for stiff, large-diameter piles in soft soil, which could result in a favorable 
reduction in design demands for short-period structures. Simulations of a 3  2 pile group 
subjected to incoherent ground motions showed that group effects further reduce the FIM 
relative to the FFM in comparison to an equivalent single pile—but typically by less than 10%— 
and only over a limited frequency range. Still, the simulations performed for this study confirm 
this trend, and it is likely that consideration of ground-motion incoherence over a larger spatial 
extent, such as the footprint of a building supported on a piled-raft foundation, could be more 
significant. The tools for generating incoherent motions based on the work of Ancheta and 
Stewart [2015] described in §3.7.3 could be used for this purpose for future studies. 

The key parameters controlling kinematic pile–soil interaction are: 

 Pile head-fixity condition 

 Pile-to-soil stiffness contrast 

 Variations in soil stiffness over the pile length 

 Nonlinear soil behavior due to pile–soil interaction, which depends on relative 
pile-to-soil stiffness contrast, and due to free-field ground response 

 Radiation damping 

 Variable frequency content of the free-field excitation, as opposed to harmonic 
excitation at a single frequency 
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The first three items in the above list have long been recognized from the results of 
elastic studies (e.g., Flores-Berrones and Whitman [1982], Fan et al. [1991], and Anoyatis et al. 
[2013]). The key differences between simplified elastic solutions and the nonlinear results 
computed for the more realistic conditions considered herein are caused by the latter three 
factors, including time-varying coupling and interference of these factors that is not captured 
when linear superposition is assumed. 

The primary motivation for performing this study was to overcome the limitations of 
idealistic assumptions that have been employed in previous studies, such as linear-elastic 
material behavior, drastically simplified stratigraphy, and harmonic oscillations in lieu of real 
ground motions. In order to capture the important influence of more realistic conditions such as 
material nonlinearity, subsurface heterogeneity, and variable frequency-content ground motions, 
a set of models for predicting transfer functions and spectral ratios was developed through 
statistical regression of the results from this parametric study. 

The results presented in Chapter 4 demonstrate that elastic solutions are approximately 
coincident with the average results of this study, but fail to capture the variability that is possible 
when more realistic subsurface conditions and ground motions are used along with explicit 
consideration of nonlinearity. While this suggests that elastic solutions provide a reasonable first-
order approximation of behavior, it also means that they would over-predict the reduction in 
free-field ground motion due to kinematic pile–soil interaction roughly half of the time. A 
method that produces an erroneous prediction in the unsafe direction (i.e., an “un-conservative” 
estimate) half the time is generally unacceptable for engineering practice. A robust design 
approach should include measures for predicting the amount of variability that is anticipated due 
to realistic conditions. 

Although a comparison to elastic analytical solutions provides a good means for checking 
that the results of this study fall within reasonable bounds (which has been confirmed), the 
importance of this comparison should not weighted too heavily. Significant effort has been made 
to model realistic conditions for this study, which often represent a significant departure from the 
assumptions used in elastic analytical solutions; hence, it is expected that the results will differ. 
The large amount of variability exhibited by the results of this study should not be viewed as a 
negative outcome, but rather a reflection of the amount of variability that should be anticipated 
for real system behavior. 

The results of the numerical analyses performed for this study are likely skewed slightly 
in the direction of under-predicting kinematic pile–soil interaction, which is to say that the 
computed transfer function ordinates are slightly above what may be anticipated for real 
behavior. Reductions in free-field motions computed in this study thus error slightly on the safe 
side in a design sense. This judgment is based on the effects of assumptions made when defining 
two of the modeling parameters as discussed subsequently: (i) radiation damping and (ii) using a 
value of δ = 3.0 for free-head piles. 

Radiation damping manifests as an increase in stiffness for dynamic p-y curves (see 
§3.4.4). Increases in soil stiffness, which correspond to a decrease in pile-to-soil stiffness 
contrast, result in less kinematic interaction. For example, Figure 4.18 showed that radiation 
damping effectively outweighed the effect of p-y softening due to soil nonlinearity. The models 
used herein to define dashpot coefficients for radiation damping are from elasticity-based 
solutions that assume perfect radiation of stress waves to infinity through homogeneous elastic 
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media. For more realistic heterogeneous subsurface conditions, radiation damping may be a less 
efficient mechanism of energy dissipation than assumed by these models. Some portion of the 
energy due to stress waves generated at the pile–soil interface could be reflected back by other 
piles, adjacent structures, or geomaterial impedance contrasts. Hence, it is likely that the 
influence of radiation damping is over-predicted in this study, but because this results in a 
decrease in kinematic pile–soil interaction, it is considered acceptable. Experimental 
measurements of these effects could provide justification for reducing the magnitude of radiation 
damping employed in future studies. 

It is worth noting that conventional deep foundation design based on static or pseudo-
static methods does not take damping into consideration. Ignoring damping is usually a 
reasonable assumption for typical design applications in which soil is relied upon to provide 
resistance to loads generated in the superstructure and transmitted to the ground through 
foundations. For example, because ignoring the contribution of radiation damping to dynamic p-
y stiffness effectively results in a softer curve, estimates of lateral pile displacements due to 
superstructure lateral loads would be expected to exceed the real behavior. Thus a safe design 
can be developed by assuring that the predicted displacements are within tolerable limits. 

For free-head piles, the assumption of zero rotational restraint at the pile head is an 
oversimplification. For a system that can be represented by a SDOF oscillator, such as a sign 
pole supported on a single pile, complete lack of rotational restraint may be a reasonable 
approximation. But for the case of piles supporting a bridge bent, the tendency for the pile head 
to rotate due to free-field kinematic demands would be resisted by other bridge components via 
the connection between the top of the bent and the superstructure. For example, consider 
rotations in the longitudinal direction of the bent foundations shown in Figure 6.8, which would 
be resisted by the bent-to-deck connection and the abutment stiffness. This connection was found 
to play an important role in resisting kinematic lateral spreading demands by Turner et al. 
[2016]. Likewise this factor could play an important role in influencing pile behavior during 
transient kinematic loading and affect the transfer of the foundation input motion to the 
superstructure. The most significant impact of this restraint would be to limit rotations of the pile 
near the ground surface, which should result in a smaller value of Winkler coefficient δ. Recall 
that δ = 3.0 was used for free-head piles to account for the increases shear resistance mobilized 
in the soil due to pile rotation, while δ = 1.0 was used for the fixed-head piles, which undergo 
less rotation and thus exert predominantly compressive stresses in the direction of loading. 
Hence, the value of δ = 3.0 used in this study for free-head piles may result in an overestimate of 
p-y stiffness and aa corresponding underestimate of kinematic interaction for cases where 
significant restraint against rotation is provided by the superstructure, even if restraint is not 
provided at the ground surface elevation. 

7.1 PREDICTIVE MODELS AND LIMITATIONS 

Models for predicting transfer functions and spectral ratios were presented in §4.4 and §4.5. 
These models represent a means for predicting kinematic pile–soil interaction with consideration 
of nonlinear behavior, realistic subsurface condition, and real ground-motion characteristics 
without the need to perform dynamic analysis of a pile–soil system. Input parameters for the 
predictive models are computed from the type of information typically known for real projects, 
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and are consistent with the type of seismic design that will be performed. For example, the 
spectral ratio prediction equations use terms defined from the free-field response spectrum, while 
the transfer function prediction equations use terms defined from a free-field acceleration time 
series. 

For design applications, a reasonable first-order approximation of pile-group behavior 
could be estimated by reducing transfer functions predicted using the single-pile prediction 
models by an additional 5% at frequencies beyond the corner frequency. Because of the 
idiosyncratic nature of the group results, for critical projects, modeling of the type used for this 
study would be more appropriate than this rough approximation. Alternatively, group effects 
could be ignored due to their relatively insignificant contribution to kinematic pile–soil 
interaction. 

Caution should be exercised when applying the transfer function and spectral ratio 
prediction models to conditions falling outside the bounds considered in this study. In particular, 
the kinematic pile–soil interaction behavior predicted by the models may differ significantly 
from actual behavior for: 

 Sites with a strong ground response effect caused by an abrupt impedance 
contrast occurring over the length of the pile or a stiff layer overlaying a 
significantly soft layer. 

 Sites with time-averaged shear-wave velocity over the length of the pile (VS,L) 
significantly below 100 m/sec, which could result in soil nonlinearity during 
site response and due to pile–soil interaction that is beyond the amount of 
nonlinearity captured in this study. 

 Cases of ground failure such as liquefaction, significant cyclic softening of 
cohesive soils, or permanent ground displacements. 

For these cases, the nonlinear modeling approach used to generate the results for this 
study would be more appropriate than applying the generalized transfer function or spectral ratio 
predictions models. 

7.2 REINTERPRETATION OF EMPIRICAL CASE STUDIES 

Empirical transfer functions computed from pile-supported structures instrumented at the 
foundation level and adjacent free-field recordings were reported by Kim and Stewart [2003], 
Mikami et al. [2006], and Givens et al. [2012]. These studies found that elastic kinematic pile–
soil interaction transfer function models (e.g., Fan et al. [1991]) did not provide a good match to 
empirical observations, while in some cases, base–slab averaging models considering ground-
motion incoherence provided a better match (e.g., see Kim and Stewart [2003]). Based on these 
findings, the researchers posed questions as to whether consideration of ground-motion 
incoherence in combination with an improved kinematic interaction model would provide a 
better match to the empirical observations. 

As shown in §6.1, the trends exhibited by the empirical transfer functions are dominated 
by inertial interaction. Simulations using the substructure modeling approach that included a 
SFOFO to represent the structure provided a close match to the observed behavior near the first-
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mode period of the system. The improved kinematic transfer function model developed herein 
produced a predicted kinematic transfer function that was not significantly different from 
previous kinematic models, suggesting that the ability or lack thereof to accurately capture 
kinematic interaction was not critical for interpreting these cases; it was more important to 
consider the combination of inertial and kinematic effects. The original researchers recognized 
that inertial effects are present in the recorded foundation-level motions; therefore, they focused 
their efforts on interpreting kinematic effects at frequencies away from the fundamental 
frequency of the structures. Combined kinematic-inertial analysis methods or closed-form 
analytical methods give the opportunity to study both effects simultaneously, which can be 
particularly useful when evaluating case studies. 

Further issues related to the combined effects of inertial and kinematic interaction were 
explored in Chapter 5. These findings, along with the lessons learned from revisiting the case 
studies, highlight the fact that when superstructure inertia is present, the foundation motion (FM) 
differs from the FIM corresponding to a pile that does not support a structure. To compute a 
FM/FFM transfer function for comparison to empirical transfer functions requires performing a 
dynamic analysis of a structural model (e.g., a SDOF oscillator) subjected to the FIM, e.g., using 
the substructure method. This requires knowing enough information to form a reasonably 
accurate structural model beyond just knowing the structure’s period. 

7.3 FUTURE RESEARCH NEEDS 

In addition to the transfer function and spectral ratio models presented herein, the analytical 
framework that is used to generate the results can be used to investigate further complexities. 
Likewise, future improvements to numerical modeling methods such as improved p-y curves can 
be incorporated. 

The work performed for this study made it apparent that the following factors are 
important research topics in the field of pile dynamics that need further exploration: 

 P-y-θ springs that explicitly consider pile rotation (applies to conventional 
static loading as well). 

 Better quantification of δ through theoretical and rigorous numerical modeling 
approaches as well as experimental measurements. 

 Better quantification of the p-y curve’s ultimate resistance for sand based on 
rigorous theory and validated with experiments and rigorous three-
dimensional numerical studies. 

 Group analyses considering spatially-variable (incoherent) ground motions 
over the footprint of a typical building. Whereas group effects were relatively 
minor for the pile group layout considered here, which represents a typical 
bridge bent substructure, the larger footprint of a building could result in a 
greater group-averaging effect and further kinematic reduction of free-field 
motions. 

 The analyses performed here decoupled free-field ground response from pile–
soil interaction for computational efficiency. In a real system, because soil 
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nonlinear behavior due to these two effects occurs simultaneously, it is 
difficult to predict their combined effects a priori without a coupled 
simulation. A limited number of couple numerical analyses and/or 
experimental data specifically targeted at studying the combined effects of 
nonlinearity due to ground response and kinematic pile–soil interaction would 
be helpful for validating the results of this study. 

 Experimental measurements of kinematic pile–soil interaction; especially 
measurements of radiation damping. 

 Thorough recommendations on the combination of inertial and kinematic 
soil–structure interaction effects, especially as affected by system 
nonlinearity. 
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APPENDIX A SITE PROFILES FOR KINEMATIC 
PILE–SOIL INTERACTION 
ANALYSIS 

A.1 INTRODUCTION 

Stratigraphy and soil properties for the six sites used for baseline pile kinematic soil–structure 
interaction analyses are presented below. Each of the six sites is based on CPT data, including 
seismic shear-wave velocity measurements obtained from the United States Geological Survey’s 
(USGS) CPT database website9. Note that several of the VS30 values presented on the USGS 
website are incorrect based on the data provided; the correct values are given in the site 
descriptions below. Soil properties presented in Appendix A were interpreted from CPT data in a 
manner consistent with routine practice following the methods of Mayne et al. [2009] and 
Robertson [2012] unless otherwise noted. 

The stratigraphy has been slightly modified from conditions encountered during CPT as 
explained below in order to avoid significant impedance contrasts that would result in a strong 
site response effect. Analyses were also performed with these impedance contrasts left in the 
profiles to evaluate their influence on the pile kinematic response. Below the maximum depth of 
the CPT explorations, the profiles were extended such that they exceeded the maximum pile 
depth considered for the analyses (L = 60 m) and reached a shear-wave velocity of 760 m/sec to 
be consistent with the input motions. The soil properties of these additional layers were 
computed based on stiffness versus depth scaling relationships as described in the main text. 

The following sections briefly summarize the geologic setting and stratigraphy of each 
site. 

A.2 SITE 1 

Site 1 is based on USGS CPT-ALC014, located on Alameda Island near the Alameda entrance to 
the Posey Tube tunnel that connects Alameda to Oakland, California. The original profile has 
been modified by removing the stiff layer at a depth of 22–23 m so that there is a relatively 
smooth increase in stiffness with depth. Layer properties of the idealized soil profile are 

                                                 
 
9 http://earthquake.usgs.gov/research/cpt/  
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presented the table below. Groundwater was estimated at a depth of 1.2 m below the surface 
during the CPT but is considered to be at the ground surface for the idealized profile used for 
analyses.The VS30 of the idealized profile presented below is 111 m/sec. The VS30 computed using 
the actual data is 123 m/sec. 
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Table A.1 Site 1 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

VS  OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 
1 clay 0 2 16.5 90 N/A 1.5 0.54 12 15 
2 clay 2 2 16.5 90 N/A 1.4 0.53 12 15 
3 clay 4 2 16.5 95 N/A 1.3 0.52 15 15 
4 clay 6 2 16.5 95 N/A 1.2 0.50 18 15 
5 clay 8 2 16.5 100 N/A 1.1 0.49 20 15 
6 clay 10 2 16.5 100 N/A 1.0 0.47 22 15 
7 clay 12 2 16.5 105 N/A 1.0 0.47 25 15 
8 clay 14 2 17 110 N/A 1.0 0.47 28 15 
9 clay 16 2 17 115 N/A 1.0 0.47 32 15 

10 clay 18 2 17 120 N/A 1.0 0.47 35 15 
11 clay 20 2 17 125 N/A 1.0 0.47 39 15 
12 clay 22 2 17.5 130 N/A 1.0 0.47 42 15 
13 clay 24 2 17.5 140 N/A 1.0 0.47 46 15 
14 clay 26 2 17.5 145 N/A 1.0 0.47 50 15 
15 clay 28 2 17.5 160 N/A 1.0 0.47 53 15 
16 clay 30 2 18 200 N/A 1.0 0.47 57 15 
17 sand 32 2 19 220 38 1.0 0.38 201 0 
18 sand 34 2 19 224 38 1.0 0.38 215 0 
19 sand 36 2 19 228 38 1.0 0.38 230 0 
20 sand 38 2 19 231 38 1.0 0.38 244 0 
21 sand 40 2 19 234 38 1.0 0.38 258 0 
22 sand 42 2 19 237 38 1.0 0.38 273 0 
23 sand 44 2 19 241 38 1.0 0.38 287 0 
24 sand 46 2 19 244 38 1.0 0.38 302 0 
25 sand 48 2 19 246 38 1.0 0.38 316 0 
26 sand 50 2 19 249 38 1.0 0.38 330 0 
27 sand 52 2 19 252 38 1.0 0.38 345 0 
28 sand 54 2 19 254 38 1.0 0.38 359 0 
29 sand 56 2 19 257 38 1.0 0.38 373 0 
30 sand 58 2 19 259 38 1.0 0.38 388 0 
31 sand 60 2 19 262 38 1.0 0.38 402 0 
32 sand 62 2 19 264 38 1.0 0.38 416 0 
33 sand 64 2 19 266 38 1.0 0.38 431 0 
34 sand 66 1 19 300 38 1.0 0.38 434 0 
35 sand 67 1 19 350 38 1.0 0.38 441 0 
36 sand 68 1 19 400 38 1.0 0.38 448 0 
37 sand 69 1 19 450 38 1.0 0.38 456 0 
38 sand 70 1 19 500 38 1.0 0.38 463 0 
39 sand 71 1 19 550 38 1.0 0.38 470 0 
40 sand 72 1 19 600 38 1.0 0.38 477 0 
41 sand 73 1 19 650 38 1.0 0.38 484 0 
42 sand 74 1 19 700 38 1.0 0.38 492 0 
43 sand 75 1 19 760 38 1.0 0.38 499 0 
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A.3 SITE 2 

Site 2 is based on USGS CPT-SCC069, which is located on the southern margin of the San 
Francisco Bay near San Jose, California. The surficial materials are classified as fine-grained 
Holocene alluvial fan and overbank flood deposits. Deeper layers may be marine sediments. 
Groundwater is at a depth of 2 m. The VS30 of the idealized profile presented below is 192 m/sec. 
The VS30 computed using the actual data is 172 m/sec. The difference is a result of modifications 
made to the upper 14 m of the idealized profile to remove stiff layers overlying soft layers. The 
“stiff over soft” condition is considered in Site “2a” as described in the main text, which is closer 
to the conditions measured in the field. 
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Table A.2 Site 2 properties for DEEPSOIL analysis. 

Layer Material 
type 

Depth 
top 

Thickness Unit 
weight 

Vs Friction 
Angle 

OCR K0 Shear 
Atrength 

PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 clay 0 2 17 120 N/A 7.4 0.73 37 15 

2 clay 2 1.5 17 130 N/A 5.3 0.60 44 15 

3 clay 3.5 5.5 17 145 N/A 3.1 0.44 61 30 

4 clay 9 3.5 17 165 N/A 3.4 0.45 73 15 

5 clay 12.5 1.5 17 190 N/A 4.0 0.49 86 15 

6 clay 14 2 18 206 N/A 3.9 0.48 96 15 

7 clay 16 1.5 18 222 N/A 3.6 0.46 96 10 

8 sand 17.5 1.5 18 251 37 3.4 0.40 127 0 

9 clay 19 2.5 18 273 N/A 2.8 0.40 96 20 

10 clay 21.5 2.5 18 276 N/A 2.6 0.38 101 15 

11 clay 24 2 18 285 N/A 2.7 0.39 110 15 

12 clay 26 2 18 302 N/A 3.4 0.43 143 15 

13 clay 28 2 18 306 N/A 4.4 0.48 188 15 

14 clay 30 2 18 315 N/A 4.3 0.47 197 15 

15 clay 32 2 18 318 N/A 4.1 0.46 201 15 

16 clay 34 2 18 321 N/A 4.0 0.45 205 15 

17 clay 36 2 18 324 N/A 3.8 0.44 210 15 

18 clay 38 2 18 328 N/A 3.7 0.43 214 15 

19 clay 40 2 18 331 N/A 3.6 0.42 218 15 

20 clay 42 2 18 334 N/A 3.4 0.42 223 15 

21 clay 44 2 18 337 N/A 3.3 0.41 227 15 

22 clay 46 2 18 340 N/A 3.3 0.40 231 15 

23 clay 48 2 18 343 N/A 3.2 0.40 235 15 

24 clay 50 2 18 346 N/A 3.1 0.39 239 15 

25 clay 52 2 18 349 N/A 3.0 0.38 243 15 

26 clay 54 2 19 343 N/A 2.9 0.38 248 15 

27 clay 56 2 19 346 N/A 2.9 0.37 252 15 

28 clay 58 2 19 349 N/A 2.8 0.37 257 15 

29 clay 60 2 19 352 N/A 2.7 0.36 261 15 

30 clay 62 2 19 355 N/A 2.7 0.36 266 15 

31 sand 64 2 19 400 38 2.6 0.38 444 0 

32 sand 66 2 19 450 38 2.6 0.38 458 0 

33 sand 68 2 19 500 38 2.5 0.38 472 0 

34 sand 70 2 19 550 38 2.5 0.38 487 0 

35 sand 72 2 19 600 38 2.4 0.38 501 0 

36 sand 74 2 19 650 38 2.4 0.38 516 0 

37 sand 76 2 19 700 38 2.4 0.38 530 0 

38 sand 78 2 19 760 38 2.3 0.38 544 0 
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A.3 SITE 3 

Site 3 is based off USGS CPT-MSC019, performed in point bar deposits in the Mississippi River 
Valley. Groundwater is at a depth of 4 m. The VS30 of the idealized profile presented below is 
208 m/sec. The VS30 computed using the actual data is 217 m/sec. 
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Table A.3 Site 3 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

atrength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 
1 sand 0 3 17 150 34 N/A 0.44 34 0 

2 sand 3 3 17 160 34 N/A 0.44 65 0 

3 sand 6 2 17 170 34 N/A 0.44 72 0 

4 sand 8 3 17 185 36 N/A 0.41 98 0 

5 sand 11 2 17 205 40 N/A 0.36 118 0 

6 sand 13 1 17 220 39 N/A 0.37 118 0 

7 sand 14 2 18 235 40 N/A 0.35 141 0 

8 sand 16 2 18 225 42 N/A 0.33 164 0 

9 sand 18 2 18 233 42 N/A 0.32 182 0 

10 sand 20 2 18 240 42 N/A 0.32 197 0 

11 sand 22 2 18 280 42 N/A 0.33 209 0 

12 sand 24 2 18 265 42 N/A 0.33 222 0 

13 sand 26 2 18 285 42 N/A 0.34 235 0 

14 sand 28 2 18 290 42 N/A 0.33 251 0 

15 sand 30 2 19 295 42 N/A 0.33 269 0 

16 sand 32 2 19 299 42 N/A 0.33 286 0 

17 sand 34 2 19 303 42 N/A 0.33 302 0 

18 sand 36 2 19 307 42 N/A 0.33 319 0 

19 sand 38 2 19 311 42 N/A 0.33 336 0 

20 sand 40 2 19 315 42 N/A 0.33 352 0 

21 sand 42 2 19 319 42 N/A 0.33 369 0 

22 sand 44 2 19 322 42 N/A 0.33 385 0 

23 sand 46 2 19 326 42 N/A 0.33 402 0 

24 sand 48 2 19 329 42 N/A 0.33 418 0 

25 sand 50 2 19 332 42 N/A 0.33 435 0 

26 sand 52 2 19 335 42 N/A 0.33 451 0 

27 sand 54 2 19 338 42 N/A 0.33 468 0 

28 sand 56 2 19 341 42 N/A 0.33 484 0 

29 sand 58 2 19 344 42 N/A 0.33 501 0 

30 sand 60 2 19 347 42 N/A 0.33 518 0 

31 sand 62 2 19 350 42 N/A 0.33 534 0 

32 sand 64 2 19 352 42 N/A 0.33 551 0 

33 sand 66 2 19 400 42 N/A 0.33 567 0 

34 sand 68 2 19 450 42 N/A 0.33 584 0 

35 sand 70 2 19 500 42 N/A 0.33 600 0 

36 sand 72 2 19 550 42 N/A 0.33 617 0 

37 sand 74 2 19 600 42 N/A 0.33 633 0 

38 sand 76 2 19 650 42 N/A 0.33 650 0 

39 sand 78 2 19 700 42 N/A 0.33 667 0 

40 sand 80 2 19 760 42 N/A 0.33 683 0 
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A.4 SITE 4 

Site 4 is based off USGS CPT-CHN007, performed in Pleistocene barrier-beach ridge deposits 
near Charleston, South Carolina. Groundwater is estimated to be at a depth of 2.5 m. The VS30 of 
the idealized profile presented below is 253 m/sec. The VS30 computed using the actual data is 
261 m/sec. 
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Table A.5 Site 4 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 
Top 

Thickness 
Unit 

weight 
Vs 

Friction 
Angle 

OCR K0 
Shear 

Strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 sand 0 2 17 170 35 1.0 0.43 24 0 

2 sand 2 3 18 200 35 1.0 0.43 55 0 

3 clay 5 1.5 17 170 N/A 3.1 0.45 44 15 

4 sand 6.5 3.5 18 210 32 1.0 0.47 75 0 

5 clay 10 1 18 215 N/A 3.4 0.46 68 15 

6 sand 11 3 18 255 35 1.0 0.43 105 0 

7 clay 14 1 18 210 N/A 2.7 0.40 73 15 

8 sand 15 5 18 260 35 1.0 0.43 146 0 

9 sand 20 2 18 335 32 1.0 0.47 131 0 

10 sand 22 2 19 365 32 1.0 0.47 142 0 

11 sand 24 2 19 380 33 1.0 0.46 158 0 

12 sand 26 2 19 420 33 1.0 0.46 172 0 

13 sand 28 2 19 440 34 1.0 0.44 190 0 

14 sand 30 2 19 447 36 1.0 0.41 220 0 

15 sand 32 2 19 453 36 1.0 0.41 233 0 

16 sand 34 2 19 460 36 1.0 0.41 247 0 

17 sand 36 2 19 466 36 1.0 0.41 260 0 

18 sand 38 2 19 472 36 1.0 0.41 273 0 

19 sand 40 2 19 477 36 1.0 0.41 287 0 

20 sand 42 2 19 483 36 1.0 0.41 300 0 

21 sand 44 2 19 488 36 1.0 0.41 314 0 

22 sand 46 2 19 493 38 1.0 0.38 352 0 

23 sand 48 2 19 498 38 1.0 0.38 366 0 

24 sand 50 2 19 503 38 1.0 0.38 380 0 

25 sand 52 2 19 508 38 1.0 0.38 395 0 

26 sand 54 2 19 512 38 1.0 0.38 409 0 

27 sand 56 2 19 517 38 1.0 0.38 423 0 

28 sand 58 2 19 521 38 1.0 0.38 438 0 

29 sand 60 2 19 525 38 1.0 0.38 452 0 

30 sand 62 2 19 529 38 1.0 0.38 466 0 

31 sand 64 2 19 533 38 1.0 0.38 481 0 

32 sand 66 2 19 550 38 1.0 0.38 495 0 

33 sand 68 2 19 600 38 1.0 0.38 510 0 

34 sand 70 2 19 650 38 1.0 0.38 524 0 

35 sand 72 2 19 700 38 1.0 0.38 538 0 

36 sand 74 2 19 760 38 1.0 0.38 553 0 
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A.5 SITE 5 

Site 5 is based on USGS CPT-ALC046, which is located in the east San Francisco Bay in 
Albany, California, about 1 km from the Bay margin. The surficial materials are classified as 
Holocene alluvial fan and natural levee deposits. Groundwater is at a depth of 2.1 m. The profile 
generally consists of 18 m of soft to medium-stiff clay overlying stiff clay. The VS30 of the 
idealized profile presented below is 301 m/sec. The VS30 computed using the actual data is 305 
m/sec. 
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Table A.5 Site 5 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 clay 0 2 17 205 N/A 48.2 1.81 166 15 

2 clay 2 1 17 220 N/A 17.2 1.06 101 15 

3 clay 3 2 17 250 N/A 24.4 1.22 188 15 

4 clay 5 1 17 240 N/A 18.7 1.07 157 15 

5 clay 6 2 18 245 N/A 54.5 1.76 485 15 

6 clay 8 1.5 18 280 N/A 14.3 0.91 185 15 

7 clay 9.5 2.5 18 300 N/A 17.9 1.00 277 15 

8 clay 12 2.5 18 310 N/A 20.7 1.05 362 15 

9 clay 14.5 3.5 18 320 N/A 6.6 0.60 178 15 

10 clay 18 2 19 340 N/A 23.7 1.10 526 15 

11 clay 20 3 19 360 N/A 23.1 1.07 604 15 

12 clay 23 4 19 380 N/A 21.9 1.03 686 15 

13 clay 27 3 19 400 N/A 22.4 1.03 759 15 

14 clay 30 2 19 403 N/A 21.4 1.00 767 15 

15 clay 32 2 19 406 N/A 20.2 0.97 778 15 

16 clay 34 2 19 409 N/A 19.2 0.94 788 15 

17 clay 36 2 19 411 N/A 18.2 0.92 799 15 

18 clay 38 2 19 414 N/A 17.4 0.89 809 15 

19 clay 40 2 19 416 N/A 16.6 0.87 818 15 

20 clay 42 2 19 419 N/A 15.9 0.85 828 15 

21 clay 44 2 19 421 N/A 15.3 0.83 837 15 

22 clay 46 2 19 423 N/A 14.7 0.81 846 15 

23 clay 48 2 19 425 N/A 14.2 0.79 854 15 

24 clay 50 2 19 427 N/A 13.7 0.77 863 15 

25 clay 52 2 19 429 N/A 13.2 0.76 871 15 

26 clay 54 2 19 432 N/A 12.8 0.74 880 15 

27 clay 56 2 19 433 N/A 12.4 0.73 888 15 

28 clay 58 2 19 435 N/A 12.0 0.72 896 15 

29 clay 60 2 19 437 N/A 11.6 0.71 903 15 

30 clay 62 2 19 439 N/A 11.3 0.69 911 15 

31 clay 64 2 19 486 N/A 14.1 0.77 1117 15 

32 clay 66 2 19 488 N/A 13.7 0.76 1125 15 

33 clay 68 2 19 512 N/A 14.9 0.79 1238 15 

34 clay 70 2 19 534 N/A 16.0 0.81 1349 15 

35 clay 72 2 19 556 N/A 17.0 0.83 1458 15 

36 clay 74 2 19 576 N/A 18.0 0.86 1568 15 

37 clay 76 2 19 645 N/A 23 1 1963 15 

38 clay 78 2 19 704 N/A 28 1.1 2344 15 
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A.6 SITE 6 

Site 6 is based on USGS CPT-SBC109, performed in stiff granular alluvial fan deposits on the 
north side of the San Gabriel Mountains near Adelanto, California. Groundwater depth is 
assumed to be 4 m for analyses. The VS30 of the idealized profile presented below is 446 m/sec. 
The VS30 computed using the actual data to a depth of 18 m and then extrapolating to 30 m is 409 
m/sec. The increase between the idealized and measured VS30 values is the result of replacing the 
soft layers encountered during the CPT in the upper 4 m of the profile with stiffer layers to 
prevent a strong impedance contrast. Site “6a” includes these softer layers as described in the 
main text such that their influence on the pile kinematic response can be considered. 
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Table A.6 Site 6 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 sand 0 2 18 320 43 N/A 0.32 17 0 

2 sand 2 2 18 340 42 N/A 0.33 48 0 

3 sand 4 3 18 360 41 N/A 0.34 74 0 

4 sand 7 2 18 380 41 N/A 0.34 92 0 

5 sand 9 1 18 480 43 N/A 0.32 107 0 

6 sand 10 2 18 490 42 N/A 0.33 118 0 

7 sand 12 3 19 500 41 N/A 0.34 133 0 

8 sand 15 2 19 510 43 N/A 0.32 160 0 

9 sand 17 3 19 510 43 N/A 0.32 185 0 

10 sand 20 10 19 510 43 N/A 0.31 242 0 

11 sand 30 2 19 535 41 N/A 0.34 271 0 

12 sand 32 2 19 543 41 N/A 0.34 287 0 

13 sand 34 2 19 551 41 N/A 0.34 303 0 

14 sand 36 2 19 558 41 N/A 0.34 319 0 

15 sand 38 2 19 565 41 N/A 0.34 335 0 

16 sand 40 2 19 571 41 N/A 0.34 351 0 

17 sand 42 2 19 577 41 N/A 0.34 367 0 

18 sand 44 2 19 584 41 N/A 0.34 383 0 

19 sand 46 2 19 590 41 N/A 0.34 399 0 

20 sand 48 2 19 596 41 N/A 0.34 415 0 

21 sand 50 2 19 601 41 N/A 0.34 431 0 

22 sand 52 2 19 606 41 N/A 0.34 447 0 

23 sand 54 2 19 612 41 N/A 0.34 463 0 

24 sand 56 2 19 617 41 N/A 0.34 479 0 

25 sand 58 2 19 622 41 N/A 0.34 495 0 

26 sand 60 2 19 627 41 N/A 0.34 511 0 

27 sand 62 2 19 632 41 N/A 0.34 527 0 

28 sand 64 2 19 637 41 N/A 0.34 543 0 

29 sand 66 2 19 650 41 N/A 0.34 559 0 

30 sand 68 2 19 700 41 N/A 0.34 575 0 

31 sand 70 2 19 760 41 N/A 0.34 591 0 
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APPENDIX B A FRAMEWORK FOR FULL-SCALE 
EXPERIMENTAL MEASUREMENTS 
OF KINEMATIC PILE–SOIL 
INTERACTION 

Experimental data for validating kinematic pile–soil transfer function models is scarce and often 
includes superstructure inertia, making it difficult to isolate the kinematic effects. The authors 
are not aware of any full-scale tests in which kinematic pile–soil transfer functions have been 
measured experimentally and without a superstructure supported on the pile(s). 

In this appendix, a pilot experimental field test is briefly described. Although the results 
of the pilot test program do not necessarily provide a sufficiently accurate means for validating 
the models developed in Chapter 4, the approach is documented here in hopes that similar tests 
will be conducted in the future on a scale that does provide a means for validation. 

The basic field test setup is depicted in Figure B.1. The goal is to replicate the modeling 
approach used for the numerical study described in the previous chapters in which a pile is 
subjected to free-field excitation, and the pile head and free-field ground surface responses are 
recorded; experimental transfer functions can then be computed from these recordings. Since 
most piles are built to support structures, executing an experiment like this requires either 
gaining access to a construction site during the brief window between completion of the piles but 
prior to the beginning of superstructure construction, or the costly alternative of building a 
sacrificial test pile solely for the purpose of the experiment. 

Ideally, the vibration source should excite the free field to a level consistent with design 
earthquakes, but this would be difficult from a practical point of view. A more feasible approach 
is to measure small-strain soil behavior by exciting the ground with a shaker such as the type 
commonly used for geophysical testing methods like spectral analysis of surface waves (SASW). 
Ambient noise from traffic or other consistent sources could also provide enough energy to 
mobilize a small-strain response. 
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