Input Ground Motions in TBI Guidelines and Case Studies

Yousef Bozorgnia (PEER) C.B. Crouse (URS) Jonathan P. Stewart (UCLA) Farzin Zareian (UCI) FER September 10, 2011

SEAOSC

Guidelines Recommendations for PSHA

- For experienced PSHA developers/users only
- Use QA'd software
- Account for alternate seismic source parameters and GMPEs (epistemic uncertainty)

GMPEs Recommended for Shallow Crustal Western U.S. Earthquakes NGA GMPEs (2008)

- Abrahamson & Silva
- Boore & Atkinson
- Campbell & Bozorgnia
- Chiou & Youngs
- Idriss
- See EERI Spectra Journal (Feb. 2008, v. 24, no. 1)

GMPEs Recommended for Subduction Earthquakes

- Atkinson & Boore (2003) Site Class B, C, D
- Crouse (1991) Soil
- Youngs et al. (1997) Soil and Rock
- Zhao et al. (2006) Soil Classes I IV and Hard Rock

Deterministic "Cap" for MCE Calculation

- Required per ASCE 7 Ch 21
- Provides a deterministic "cap" near major faults
- Use same GMPEs & weights as used in PSHA
- Different sources may be most critical at short and long periods

SFSI for MCE (optional)

- Linear springs and dashpots model soil
 -foundation interaction
- Input motion same at all points along foundation

3. Ground Motion Selection and Modification

- Identify controlling earthquakes
- Select representative ground motions
- Modify ground motion records to become compatible with target spectrum

Seismological Simulation of Synthetic Ground Motions Can produce realistic-appearing wave forms Need for calibration Some broadband methods are inadequately validated or have biases

selection and scaling (Chapter 5 of TBI Guidelines)

- N \geq 7 (N limited by \$ and time)
- Use hazard deaggregation \rightarrow controlling EQs

Jummary of recommendations on ground motion

- CMS use several → to cover higher models
 Do not use one CMS for only fundamental period
- Scaling (constant or spectral matching)
- Simulated synthetic ground motions (M \geq ~ 8)
 - Advantages: large magnitude, long duration and basin effects
 - Disadvantages: verification issues, access to quality simulations
- Peer Review Important

Challenges

- Significance of several modes of vibration in response of tall buildings
- Similar ground motions for all structures
- Five hazard levels: 25 to 5000 Return Period
- Relatively large number of motions (<u>15</u> <u>sets per hazard level</u>) are required to have a reasonable estimate of dispersion in EDP

Record Selection and Scaling

- Used a subset of PEER NGA database (no aftershocks)
- Only two recordings from any single event were selected
- No restriction on Magnitude
- R_{min} & R_{max} at 0.0 and 100.0 Km
- Min and Max shear wave velocity = 180 and 1200 m/s
- Low-pass filter cutoff frequency of the selected motions are less than 0.1 Hz (longer than 10 sec)

Summary of Selected and Scaled Motions for Case Studies

- 5 sets of 15 ground motion records representing hazard levels from 25 year return period to ≈5000 year return period are selected for the purpose of loss estimation
- Ground motion are matched to the target spectrum for the location of the buildings. (meets code requirements, and similar to procedures used by engineering seismologists)
- Same ground motions are used for all buildings
- For the very low probability hazard level (OVE) a combination of recorded and simulated motions is used

PEEF

