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Dependence on use of simulations

3(Bradley et al. 2017)



Validation and utilization guidance

Bradley et al. (2017)
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‘Validation matrix’ for simulation utilization



‘Conventional’ validation for individual 
earthquake events
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2010-2011 Canterbury and 
2016 Kaikōura earthquakes
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Bradley (2018)



2010-2011 Canterbury and 
2016 Kaikōura earthquakes

All simulations utilize the same methodology and input 
parameters, with only rupture models and simulation 

domain varying between events
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Bradley (2018)



Simulation method summary

• Graves & Pitarka hybrid broadband approach
– f=1Hz transition frequency
– GP10,15,16 rupture generators used

• LF wavefield computed using 3D NZ Velocity 
model with ~20 sedimentary basins (100m 
spatial grid). No modification for shallow site 
effects

• HF wavefield using 1D VM. Vs30-based 
empirical site response (or 1D site response 
analysis)

8



Observed ground motions

Bradley et al (2017)
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Observed and simulated motions

Bradley et al 
(2017)
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Observed and simulated response spectra

Bradley et al (2017)
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Response spectra residual distribution
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Bradley et al (2017)



Inferences?

How much of the misfit between observations 
and prediction is due to an imperfect simulation 
methodology, or crustal & rupture models, or 
incorrect parameter values?
-> Without multiple events, and multiple 
recordings at specific sites, it is not possible to 
differentiate
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Validation against small-, moderate-, and large-
magnitude NZ events
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Potential validation events
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M-Depth distribution NZ CMT catalogue

Crude delineation for 
illustration

Approximately 
850 events useful 

for simulation 
validation in NZ



Validation: M3.5-5 events

• 479 EQs
• 5218 GMs
• 212 stations
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Lee et al. (2020; EQS)
Lee et al. (2021; in review)



Validation: M5-7 events

• 75 EQs
• 2042 GMs
• 220 stations

17Lee et al. (2021; NZSEE conference)



Validation: M6-8 with event-specific finite faults

14 EQs
– 2003, ‘07, ‘09 Fiordland (3) 
– 2010-11 Canterbury (3)
– 2013 Cook Strait (2)
– 2016 Kaikōura

• For largest/complex 
events, rupture 
uncertainty tends to 
dominate simulation 
uncertainty – limiting 
validation inferences
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(unpublished)



Residual partitioning via ME regression
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Overall performance (M3.5-5 events)

• NZ-wide dataset

20
Lee et al. (2021; in review)



Overall performance (M3.5-5 events)

NZ-wide dataset Canterbury only
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Sigma values ~10% 
lower due to better 
input data etc.

Lee et al. (2020; EQS)
Lee et al. (2021; in review)

Total residual standard deviations



Spatial variation in model performance
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Lee et al. (2021; in review)



Spatial variation in model performance:
Between—event residuals
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Lee et al. (2021; in review)



Correlation with stress parameter studies
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Lee et al. (2021; in review)



Spatial variation in model performance:
Site-specific residuals
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Lee et al. (2021; in review)
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Site-specific residuals: site grouping

Lee et al. (2021; in review)



Simulation validation with site-specific 1D 
response analysis
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Uncoupled approach to site-specific 
response analysis
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de la Torre et al. (2020)



Bias-adjusted site-specific residuals
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Improvements where site 
response is pronounced

No difference, and sometimes 
worse performance, for other sites

de la Torre et al. (2020)



Simulation validation with explicit uncertainty 
incorporation and propagation
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Incorrect ‘target’ for comparison

• Aiming for simulations to have a similar 
residual variance to empirical predictions is 
not the correct ‘target’
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Bradley et al (2017)



Simulations with explicit uncertainties

• The residual variance in multiple simulation 
realizations should be such that normalized 
residuals confirm to a standard normal 
distribution
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Neill et al. (2021)



Uncertainty study in Canterbury
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Neill et al. (2021)



Normalized residual variance

Residual normalized 
by simulation sigma
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Variance with 12 parameter 
uncertainties is approx. 1.5x too small

Neill et al. (2021)



Parametric and modeling uncertainties

35Baker, Bradley, 
Stafford (2021)



Interaction of uncertainties in validation
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Parametric uncertainty:
• Correlation between parameters
• Epistemic uncertainty in values inferred 

from observations

Modelling uncertainty:
• Misfit to observations
• Avoid double counting contribution from 

propagated parameter uncertainty

Baker, Bradley, Stafford (2021)



Staged approach toward validation with 
explicit uncertainty incorporation
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Neill et al. (2019)



Summary
• Validation is essential for demonstrating the 

predictive capability of simulations
• Requires a systematic and comprehensive 

approach considering many events and stations
– Validation should be on the same datasets used for 

development/calibration of empirical GMMs
– Need to untangle simulation vs. source, 

crustal/velocity, site modelling methodologies
– Expect pronounced regional variations in predictive 

capability (particularly due to crustal/site modelling 
quality)

• Explicit treatment of simulation uncertainties, 
and their validation, is a critical element toward 
the direct use of simulations in PSHA
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Thank you for your attention
https://sites.google.com/site/brendonabradley/
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Software workflow and Integration
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Logic trees for model uncertainty

41

• Simulation-based ground motion prediction incorporated in 
logic tree along with empirically-based predictions

• Predictive capability of modelling alternatives drives model 
weight

Baker, Bradley, Stafford (2021, Cambridge University Press)


