Validation of ground-motion simulations using large datasets in New Zealand

Brendon Bradley, University of Canterbury, New Zealand

Ground motion simulation validation

Dependence on use of simulations

Validation and utilization guidance

'Validation matrix' for simulation utilization

Bradley et al. (2017)

'Conventional' validation for individual earthquake events

2010-2011 Canterbury and 2016 Kaikōura earthquakes

Bradley (2018)

2010-2011 Canterbury and 2016 Kaikōura earthquakes

All simulations utilize the same methodology and input parameters, with only rupture models and simulation domain varying between events

Bradley (2018)

7

Simulation method summary

- Graves & Pitarka hybrid broadband approach
 f=1Hz transition frequency
 GP10,15,16 rupture generators used
- LF wavefield computed using 3D NZ Velocity model with ~20 sedimentary basins (100m spatial grid). No modification for shallow site effects
- HF wavefield using 1D VM. Vs30-based empirical site response (or 1D site response analysis)

Observed ground motions

Observed and simulated motions

Observed and simulated response spectra

Response spectra residual distribution

How much of the misfit between observations and prediction is due to an imperfect simulation methodology, or crustal & rupture models, or incorrect parameter values?

-> Without multiple events, and multiple recordings at specific sites, it is not possible to differentiate

Validation against small-, moderate-, and largemagnitude NZ events

Potential validation events

Validation: M5-7 events

Validation: M6-8 with event-specific finite faults

14 EQs

- 2003, '07, '09 Fiordland (3)
- 2010-11 Canterbury (3)
- 2013 Cook Strait (2)
- 2016 Kaikōura
- For largest/complex events, rupture uncertainty tends to dominate simulation uncertainty – limiting validation inferences

Residual partitioning via ME regression

Overall performance (M3.5-5 events)

NZ-wide dataset

Overall performance (M3.5-5 events) Total residual standard deviations

NZ-wide dataset **Canterbury** only 1.0 1.0 (b) Simulation 1.2 1.2 Empirical 0.8 0.8 Total standard deviation, σ 1.0 1.0 Total standard deviation, σ 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0 4 0.4 Sigma values ~10% 0.4 lower due to better 0.2 0.2 0.2 0.2 Standard Sim, Old NZVM input data etc. Modified Sim, New NZVM 0.0 0.0 Empirical 10-1 101 ANA USA 10⁰ 0.0 0.0 10-1 10^{0} 10¹ S575 ACC 10-4 Vibration period, T (s) Vibration period, T (s)

Lee et al. (2020; EQS) Lee et al. (2021; in review)

Spatial variation in model performance

Lee et al. (2021; in review)

Spatial variation in model performance: Between—event residuals

Correlation with stress parameter studies

Lee et al. (2021; in review)

Spatial variation in model performance: Site-specific residuals

Site-specific residuals: site grouping

Simulation validation with site-specific 1D response analysis

Uncoupled approach to site-specific response analysis

Bias-adjusted site-specific residuals

29

Simulation validation with explicit uncertainty incorporation and propagation

Incorrect 'target' for comparison

 Aiming for simulations to have a similar residual variance to empirical predictions is not the correct 'target'

Simulations with explicit uncertainties

 The residual variance in multiple simulation realizations should be such that normalized residuals confirm to a standard normal distribution

Neill et al. (2021)

Uncertainty study in Canterbury

Neill et al. (2021)

Normalized residual variance

Parametric and modeling uncertainties

physics-based GMMs, and variable definitions related to the resulting ground-motion.		
	Aleatory variability	Epistemic uncertainty
Parametric	Event-to-event variation in source, path, and site-specific parameters of the model for future events (σ_{param}^2)	Uncertainty in the probabilistic description of model parameters (<i>e.g.</i> , mean, variance, and distribution shape for each parameter; and correlation among parameters) ($Var[\mu_{param}]$, $Var[\sigma_{param}^2]$)
Modeling	Unexplained variability between observations and simulations due to physical processes imperfectly represented (or omitted entirely) from the model; and chaotic processes that are inherently random (σ_{model}^2)	Uncertainty in the probabilistic description (<i>e.g.</i> , mean, variance, distribution shape) of the model due to the finite number of observations ($Var[\mu_{model}]$, $Var[\sigma^2_{model}]$)
Total	Inherent variability in the prediction of future events associated with variability in model parameters and limitations in the modeling approach itself ($\sigma_{\ln IM}^2$)	Uncertainty in the probabilistic description of both model parameters and model distribution due to finite observation and calibration data ($Var[\mu_{\ln IM}]$, $Var[\sigma_{\ln IM}^2]$)

Baker, Bradley,

Stafford (2021)

Parametric uncertainty:

- Correlation between parameters
- Epistemic uncertainty in values inferred from observations

Modelling uncertainty:

- Misfit to observations
- Avoid double counting contribution from propagated parameter uncertainty

Baker, Bradley, Stafford (2021)

Staged approach toward validation with explicit uncertainty incorporation

Neill et al. (2019)

Summary

- Validation is essential for demonstrating the predictive capability of simulations
- Requires a systematic and comprehensive approach considering many events and stations
 - Validation should be on the same datasets used for development/calibration of empirical GMMs
 - Need to untangle simulation vs. source, crustal/velocity, site modelling methodologies
 - Expect pronounced regional variations in predictive capability (particularly due to crustal/site modelling quality)
- Explicit treatment of simulation uncertainties, and their validation, is a critical element toward the direct use of simulations in PSHA

Thank you for your attention https://sites.google.com/site/brendonabradley/

Supported by:

Software workflow and Integration

Logic trees for model uncertainty

- Simulation-based ground motion prediction incorporated in logic tree along with empirically-based predictions
- Predictive capability of modelling alternatives drives model weight

Baker, Bradley, Stafford (2021, Cambridge University Press)