Advances and Challenges since Northridge Earthquake

Geotechnical Earthquake Engineering Accomplishments & Challenges

Jonathan D. Bray, Ph.D., P.E., NAE

Faculty Chair in Earthquake Engineering Excellence University of California, Berkeley

1994 Northridge EQ: 57 people killed

Seismic Site Effects

Santa Monica Freeway Damage at La Ciénaga

Liquefaction Led to Fires & Loss of Fire Suppression Capabilities

Earth/Waste Structure & Slope Performance

Tapo Canyon Liquefaction-Induced Tailings Dam Failure (picture from Y. Moriwaki)

Oll Waste Fill Performance

Pacific Palisades Slope Failure

Geotechnical Earthquake Engineering

Accomplishments & Challenges

Geotechnical Earthquake Engineering

Post-Earthquake Reconnaissance

Google EarthTM

Central Business District, Christchurch, New Zealand

UAVs Survey Damage Effectively

Flyover of 2014 S Napa EQ Fault - Z-Q Chen & M Chen of UMKC

80 high-resolution 4000 x 3000 pixel images provide 2.4 cm/pixel detail

Ground-Based LIDAR

LIDAR scan inside Building S37 in CentrePort Wellington showing deformation around buried seawall from 2016 Kaikoura EQ (LIDAR survey by M. Olsen in Cubrinovski and Bray 2017)

19 SEP 2017 M7.1 Mexico EQ

Videos of Mexico City Building Responses

From E. Rathje, UT, Design-Safe

Geotechnical Earthquake Engineering

Liquefaction

Liquefaction Triggering Seed et al. 1985

Clean Sand

Silty Sand

SPT used primarily

New Case History Data Led to New Relationships

Robertson & Wride (1998)

Moss et al. (2006)

Boulanger & Idriss (2014)

CPT used primarily

Renewed Focus on Effects of Liquefaction

Liquefaction-Induced Building Movements

2011 Tohoku, Japan EQ (M_w = 9.1) Tokimatsu et al. (Ashford et al. 2011)

FTG7 Building – Deformation Mechanisms & Estimates 2011 Christchurch EQ

Differential Settlements

Event	Calculated (mm)	Measured (mm)	
Darfield	5 – 10	-	
Christchurch	20 – 50	10 – 30	
13 June 2011	10 – 20	0 – 25	

Luque & Bray (2017) using FLAC with PM4Sand model (Boulanger & Ziotopoulou 2015)

Nonlinear Effective Stress Analyses used to Develop Simplified Procedure for Estimating Shear-Induced Settlement (Bray & Macedo 2017)

Challenge in Estimating Ejecta-Induced Settlement

Observed vs. Estimated Liquefaction Damage

Site Characterization Tools in Challenging Soil Deposits

Beyzaei et al. 2018

Enhanced CPT Characterization

in Thin Layers (Robertson & Fear 1995)

Use Inverse Filtering Procedure (Boulanger & DeJong 2018)

Measured

St. Theresa's: CPT 45485

Inverted

16

17

Liquefaction-Induced Ground Movements Effects NSF sponsored US-NZ-Japan Workshop PEER Report 2017/02

Cross-Cutting Research Priorities:

- 1. Case History Data
- 2. Integrated Site Characterization
- 3. Numerical Analysis
- 4. Challenging Soils
- 5. Effects and Mitigation of Liquefaction in the Built Environment and Communities

Geotechnical Earthquake Engineering

Seismic Slope Stability

Simplified Estimates of Seismic Slope Displacement (Makdisi & Seed 1978)

Few Motions Available in 1977: Performed Limited Number of Analyses &

Decoupled 'Shear-Slice' Model

Not True Upper & Lower Bounds

No Estimate of Uncertainty

Simplified Estimates of Seismic Slope Displacement (Bray & Rathje 1998)

More Motions Available in 1997: Hundreds of Analyses Performed & Coupled Nonlinear

Seismic Demand (k_{max}) Estimated & then Resulting Slope Displacements

Model

Ad Hoc Estimate of Uncertainty

Simplified Estimates of Seismic Slope Displacement (Bray & Travasarou 2007)

688 NGA-West Motions with 80 k_y & T_s Combinations: Over 55,000 Analyses Performed

&

Fully Coupled Nonlinear Model

Seismic Displacement Estimated Using S_a(1.5T_s), k_y, T_s & M_w

Captures Full Uncertainty due to Ground Shaking

Simplified Estimates of Seismic Slope Displacement (Bray & Macedo 2019 & Macedo et al. 2019)

Scenario & Full Probabilistic Procedures

6,711 NGA-West-2 Motions with 130 k_y & T_s Combinations: Nearly, 3,000,000 Analyses Performed

&

Fully Coupled Nonlinear Model

Seismic Displacement Estimated Using S_a(1.3T_s), k_y, T_s & M_w

Performance-Based Approach Captures Uncertainty due to All Key Factors

Geotechnical Earthquake Engineering

- 1994 Northridge EQ challenged our understanding of earthquake phenomena
- Advanced survey tools enable effective documentation of field case histories
- Capture liquefaction effects using enhanced characterization & numerical simulations
- Wealth of ground motion records is advancing many fields in EQ engineering including seismic slope stability