California's Earthquake Early Warning System (CEEWS) Benefit Cost Assessment

PEER Researcher's Meeting August 15, 2024

Presented by: Sharyl Rabinovici, PhD

Sharyl Rabinovici Consulting srabinovici12@gmail.com 650-207-6544

Sharyl Rabinovici, Ph.D. EEW Expert

Amarnath Kasalanati, PhD Project Specialist

Selim Gunay, PhD Project Specialist

Laurie Johnson, Ph.D. EEW Expert

Jeri Sawyer, M.S. Economist Dan Acland, PhD Economist

External Advisors:
Dr. Keith Porter
Dr. Sarah McBride

Berkeley Public Policy
The Goldman School

CEEWS BCA Research Questions & Objective

- 1. Who, what, and how do Californians experience EEW benefits and costs?
- 2. Where, when, and how often will these benefits and costs occur?
 - → Identify high potential opportunities to increase system reach and impacts

CEEWS BCA Knowledge Progression

2016

PEER + consultants Scope: Build Framework

- * Literature Scan
- * 14 Sector Focus
- * 24 User interviews
- * BCA concepts & framework

California Governor's Office of Emergency Services

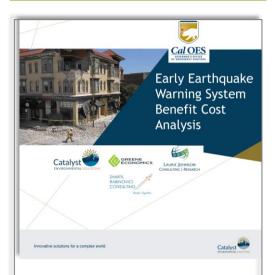
California Seismic Safety Commission

Pacific Earthquake Engineering Research Center

California Earthquake Early Warning System Benefit Study

PEER – Pacific Earthquake Engineering Research Center
Laurie A. Johnson, Sharyl Rabinovici, Grace S. Kang, and Stephen A. Mahin

CALIFORNIA GOVERNOR'S OFFICE OF EMERGENCY SERVICES
3650 Schriever Avenue
Mather, California 95655


and and CALIFORNIA SEISMIC SAFETY COMMISSION 1755 Creekside Oaks Drive, Suite 100 Sacramento, California 95833 www.seismic.ca.eov

CSSC Publication 16-04 PEER Report No. 2016/06 July 29, 2016 2019-2020

RFP: Catalyst + consultants

Scope: Operationalize w/#s

- * Best available data and assumptions
- * 11 use cases evaluated
- * Excel-Based BCA Tool
- * Quantitative BCA Ratios

2024 - This Project

PEER + SRC subconsultants

Scope: "Update & Uptake"

- * Scan for & incorporate new data & experiences
- * Operator & user interviews
- * Update BCA ratios
- * Identify needs & recommend opportunities to increase uptake and impact

Outline

- ☑ Research team
- Project context
- CEEWS BCA goals
- Approach
- Getting the findings used

Integrated Study Elements & Stages

Qualitative Assessment

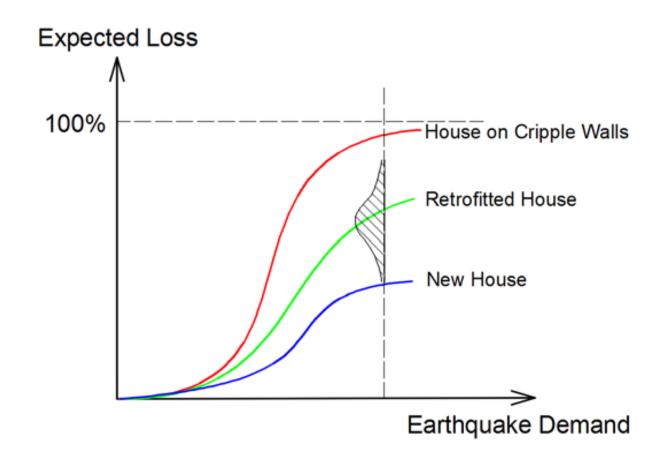
Quantitative Assessment

Preliminary Findings

Stakeholder Workshop

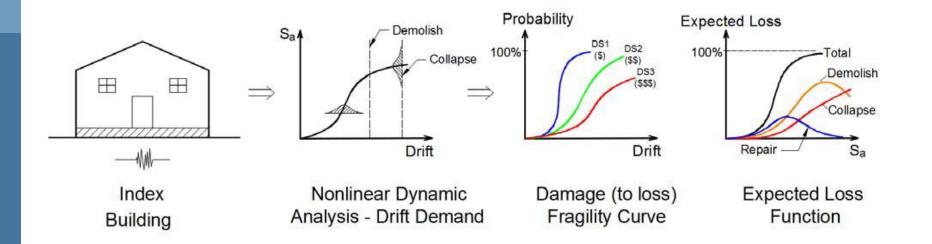
Final Insights & Recommendations Report

BCA Strategy Crafted to Address Program Needs


Benefit Cost Ratio (BCR)

Overarching value ("One Big Number")

Focus on high-confidence estimation



Estimating Potential EEW Benefits: A Fragility Curve Analogy

Estimating Potential EEW Benefits: The Fragility Curve Analogy

Mappable Units of Analysis

- people
- · track segment
- school

Outcome States & Benefit Metrics

- Injury severity
- PTSD
- Damage

Probabilities
With and
Without
EEW

- Warning time required
- · % risk reduction

Valuation of Expected Benefits

- · Cost of illness
- Earthquake likelihood

Use Cases and Units of Analysis Requirements

- Geographically-locatable unit of analysis
- Clear EEW delivery pathway
- Risk reduction mechanism and required response time
- Types of benefits
- Types and timing of costs

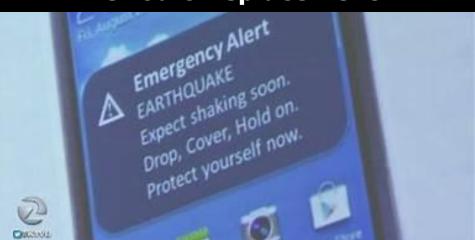
Types of Benefit\$ Considered

Reduced Death, Injuries, & PTSD

Reduced Property Damage

Prevention of Response Time Impediments

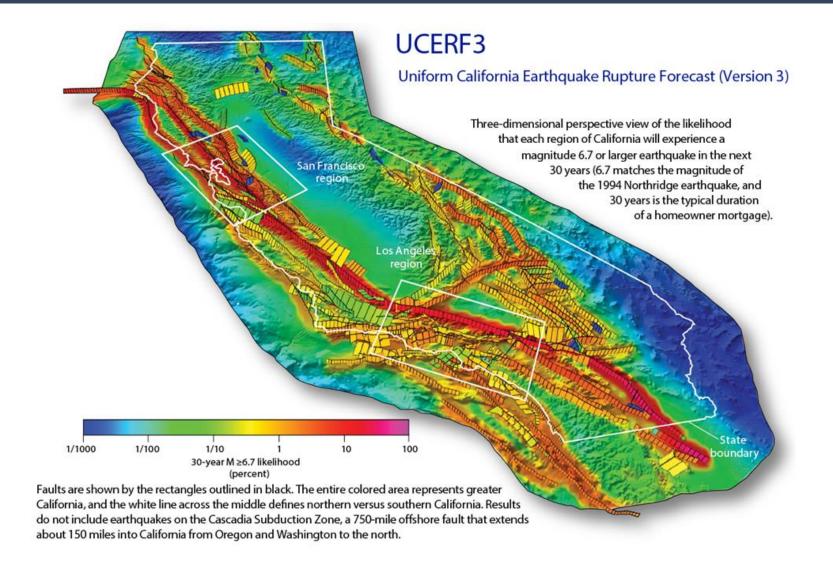
Utility Interruption Avoided

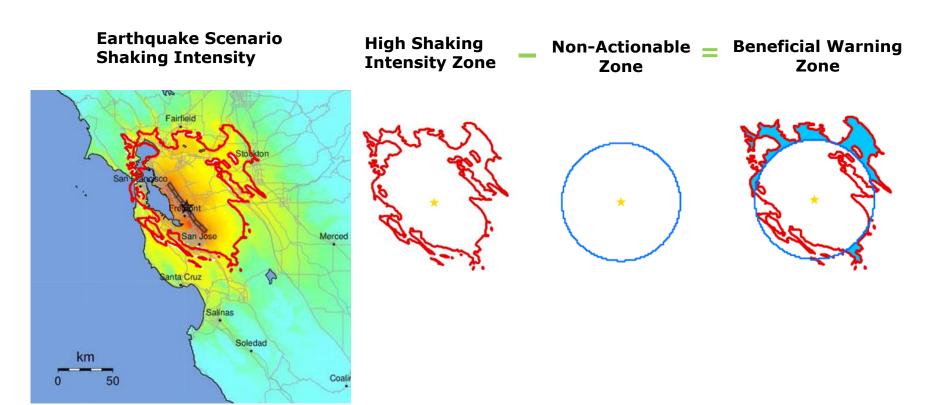

Use Cases by Types of Benefits Considered

Use Case	Mortality	Injuries & PTSD	Asset Damage	Response Time	Utility Services							
Mass Transit Control ♦		•	*									
Personal Protective Action Alerts:												
Smartphone		*										
School Public Address System		*										
Elevator Control				*								
Fire Station Doors				*								
Automatic Gas Shut-off			*	*								
Water Utility Control					*							

Cost\$ Considered

EEW Equipment: Installation & Periodic Replacement


Employee Training


Maintenance & Testing

Public Outreach & Education

Addressing Varied Earthquake Intensities, Probabilities and Locations

The Beneficial Warning "Footprint"

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	попе	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC (%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	-1	11-111	IV	V	VI	VII	VIII	1X	X+

Scale based upon Worden et al. (2012)

Process to Estimate Expected EEWB for a Use Case in a Region

- 1. Define a **region** of interest (e.g., the total geographical area of the nine counties in SFBA)
- 2. Map coordinates of all analysis units in the region
- 3. Use the **OpenSHA Intensity Measure (IM) calculation tool** and an in-house distance calculation tool to estimate IM, S-wave and warning arrival times for each earthquake (defined as a fault rupture) in **UCERF3** that affects the region

For each unit, if IM value >= harm threshold AND

S-wave arrival time >= Alert time + response time,

Count that unit as IN the "Beneficial Warning Zone"

Integrating the Qualitative Findings & Culminating Stakeholder Workshop

- Report out to and generate interaction among:
 - Private and non-profit end users (potential & current)
 - Researchers
 - USGS ShakeAlert partners
 - Vendors
 - LtOs

Methodological and Practical Contributions

- Comprehensive, clarified terminology
- Realistically mapped Beneficial Warning Zones
- Scalable, updatable benefit-cost metric equations
- High confidence BCR and NPV estimates
- Integrated qualitative and quantitative insights
- Increased stakeholder interaction and understanding

Thank you!

Sharyl Rabinovici srabinovici12@gmail.com 650-207-6544

