

Research Update: Caltrans Risk-Based Seismic Design (CT-RBSD) for Bridges

25th March 2025

Presented By –

Farzin Zareian

Banatao Auditorium, Berkeley, CA March 25-26 2025 PEER Annual Meeting

Prof. Saiid Saiidi and Prof. Norm Abrahamson | Project Advisory Board

Sharon Yen, Mark Mahan, Tony Yoon, Amir Malek, Sam Ataya, Ashraf Ahmed, Toorak Zokaie, Christian Unanwa | Team

Chief for the Office of Earthquake Engineering Analysis and Research

Chris Traina

Saurabh Singhal Graduate Student Investigator

Performance-Based Design

Sa

 $G(DS_i|Sa) =$

 $G(DS_i | DI_R) X f(DI_L | Sa)(dDI_L)$

 $G(DS_i|Sa)$

Damage State Fragility Curve

 $G(DS_i|Sa)$

Damage State Fragility Curve

225-yr

2

3

Sa

0

0

Caltrans Risk-Based Seismic Design (CT-RBSD)

Integrate fragility over hazard

5

 λ_{Sa}

4

$$\lambda_{DS_i} = \int_{1yr}^{2500yr} G(DS_i|Sa) d\lambda_{Sa}$$

 $P_{DS_i} in 75 years = 1 - \exp(-\lambda_{DS_i} \times 75)$

664 Locations

Data and Models

Bridge Column Geometric Parameters

Parameter	Cases
Column Height (ft)	20, 30, 40, 50
Axial Force	0.05f' _c A _g , 0.10f' _c A _g , 0.15f' _c A _g
Long. Reinf. Ratio (%)	1.0, 1.75, 2.5
Diameter (ft)	5, 6, 7, 8
Hoop Rebar Sizes	#5, #6, #7, #8
Hoop Spacings (in)	3, 4, 5, 6, 7, 8

(Total Column Designs ~800,000)

3 Representative Hazard Levels

Caltrans

_	Expected Unconfined Concrete Strength	5 ksi	
	Unconfined concrete compressive strain	0.002	
	Ultimate unconfined compressive strain	0.005	
	Expected Rebar Yield Strength	68 ksi	
_	Expected Rebar Yield Strain	0.0023	
	Hoop Ultimate Tensile Strain of Steel, PDCA	0.18	

**For generated hoop arrangement, confined concrete properties were estimated as per Mander's Model (1988)

664 Locations

Data and Models

Bridge Column Geometric Parameters

Parameter	Cases
Column Height (ft)	20, 30, 40, 50
Axial Force	0.05f' _c A _g , 0.10f' _c A _g , 0.15f' _c A _g
Long. Reinf. Ratio (%)	1.0, 1.75, 2.5
Diameter (ft)	5, 6, 7, 8
Hoop Rebar Sizes	#5, #6, #7, #8
Hoop Spacings (in)	3, 4, 5, 6, 7, 8

(Total Column Designs ~800,000)

Ground Motion Model

 ✓ Uniform Hazard Curve and Hazard Deaggregation from USGS Unified Hazard Tool 2018

 ✓ GM simulation algorithm by Razaeian et al. (2012) and Dabaghi et al. (2018)

8'-0"

Structural Model Validation

GMM Model Validation

Reference Models:

PGV: Abrahamson, N. and S. Bhasin (2020). "Conditional Ground-Motion Model for Peak Ground Velocity for Active Crustal Regions", Pacific Earthquake Engineering Research Center, October 2020, PEER report No. 2020/05

<u>Al</u>: Abrahamson, C., M. Shi, and B. Yang (2016). Ground-motion prediction equations for Arias Intensity consistent with the NGA-West2 ground-motion models, PEER Rept. 2016/05

<u>Duration</u>: Abrahamson and Silva (1996). Description and validation of the stochastic ground motion model, Pacific Engineering and Analysis Report, Nov 1996

<u>CAV</u>: Macedo, Abrahamson, and Liu (2020). New Scenario-Based Cumulative Absolute Velocity Models for Shallow Crustal Tectonic Settings, BSSA (2021) 111 (1): 157–172

Secondary IM	Primary IM	Conditioning IM
CAV	PGA	Sa(T ₁)
AI	PGA, Sa(1 sec)	Sa(T ₁)
PGV	Sa(T _{pgv})	Sa(T ₁)
D ₅₋₇₅	PGA	Sa(T ₁)
D ₅₋₉₅	PGA	Sa(T ₁)

*Lin, Ting, Stephen C. Harmsen, Jack W. Baker, and Nicolas Luco. "Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models." *Bulletin of the Seismological Society of America* 103, no. 2A (2013): 1103-1116.

Scaling is done as per Sa(T₁) (Conditioning IM)

Primary IM conditioned on Sa(T₁) using Conditional Spectrum*

Distribution of the Secondary IM using models

Do simulated and scaled GMs have the important secondary Intensity Measures (IM) that follow peer-reviewed models?

- Four locations, with V_{S30} = 259 m/sec:
 - Eureka (Latitude = 40.790, Longitude = -124.179)
 - Oakland (Latitude = 37.800, Longitude = -122.280)
 - LA Downtown (Latitude = 34.050, Longitude = -118.259)
 - San Diego (Latitude = 32.724, Longitude = -117.158)
- Three hazard levels : 225-year, 975-year, and 2475-year return period with 51 ground motions each.
- Two sets of columns with the natural period of 1 sec and 2 sec.
- Top three event scenarios (E1, E2, E3) obtained from hazard deaggregation by the USGS tool.

GMM Model Validation

Reference Models:

PGV: Abrahamson, N. and S. Bhasin (2020). "Conditional Ground-Motion Model for Peak Ground Velocity for Active Crustal Regions", Pacific Earthquake Engineering Research Center, October 2020, PEER report No. 2020/05

<u>Al</u>: Abrahamson, C., M. Shi, and B. Yang (2016). Ground-motion prediction equations for Arias Intensity consistent with the NGA-West2 ground-motion models, PEER Rept. 2016/05

<u>Duration</u>: Abrahamson and Silva (1996). Description and validation of the stochastic ground motion model, Pacific Engineering and Analysis Report, Nov 1996

<u>CAV</u>: Macedo, Abarahamson, and Liu (2020). New Scenario-Based Cumulative Absolute Velocity Models for Shallow Crustal Tectonic Settings, BSSA (2021) 111 (1): 157–172

Secondary IM	Primary IM	Conditioning IM
CAV	PGA	Sa(T ₁)
AI	PGA, Sa(1 sec)	Sa(T ₁)
PGV	Sa(T _{pgv})	Sa(T ₁)
D ₅₋₇₅	PGA	Sa(T ₁)
D ₅₋₉₅	PGA	Sa(T ₁)

*Lin, Ting, Stephen C. Harmsen, Jack W. Baker, and Nicolas Luco. "Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models." *Bulletin of the Seismological Society of America* 103, no. 2A (2013): 1103-1116. Scaling is done as per Sa(T₁) (Conditioning IM)

Primary IM conditioned on Sa(T₁) using Conditional Spectrum*

Distribution of the Secondary IM using models

- 1. Assessing the Significance of Secondary IMs in Column Response
- 2. Comparing SecIM Distributions with Peer-Reviewed Models
- 3. Validating Individual Ground Motion SecIMs Against Peer-Reviewed Distributions
 - Preliminary analysis suggested that PGV is the only significant <u>Secondary IM</u>
 - Use GMs with
 - Mean PGV within 25%-75%
 confidence interval of model mean
 PGV
 - All PGV values fall between 5%-95% confidence interval

CT-RBSD Demand Tool

Case II – LA, Height = 30 ft, Diameter = 5 ft, Axial Load = 0.14 f'_cA_g , Long. Reinf. = 22 - #11, Hoop = #8 @ 6"

Case II – LA, Height = 30 ft, Diameter = 5 ft, Axial Load = 0.14 f'_cA_g , Long. Reinf. = 22 - #11, Hoop = #8 @ 6"

Case II – LA, Height = 30 ft, Diameter = 5 ft, Axial Load = 0.14 f'_cA_g , Long. Reinf. = 22 - #11, Hoop = #8 @ 6"

Case II – LA, Height = 30 ft, Diameter = 5 ft, Axial Load = 0.14 f'_cA_g, Long. Reinf. = 22 - #11

Caltrans

Further Understanding Caltrans Bridge's "Risk"

Further studies under CT-RBSD to compare Caltrans bridge behavior with the Single Column study

- "Archetype" Bridge Study: Design bridges per Caltrans standard; investigate the demand maps and estimated risk
- "100 Real Bridge" Study: Develop model of 100 real bridges and assess risk

Further Understanding Caltrans Bridge's "Risk"

Estimate with tuning parameter as 'Axial Load' and 'Reinforcement Ratio'

The following references were used for assumptions required to estimate realistic bridge parameters:

- AASHTO LRFD Bridge Design Specifications 8th edition, 2017
- Caltrans Bridge Design Manual
- Caltrans Seismic Design Criteria v2.0, 2019
- Refined Bridge Deck Design and Analysis (PEER Project, PEER-Bridge TO2)

Summary

• CT-RBSD highlights:

 $\odot Streamlined$ by auxiliary tools (maps).

 $\odot\mbox{Capable}$ of computing the risk of all damage states.

 Capable of designing for any risk value as desired by the stakeholders.

- Bridge columns designed using RTGM-ARS + SDC 2.0 arrive at a risk of ~1% ~3.5% for incipient collapse (DS5) in 75 years.
- Future studies will help determine the threshold risk for future design codes.

○ Archetype Bridge Study.

 $\odot The \ \mbox{``100 Real Bridge'' Study}$

Thank You