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The objective Is to provide the prompt

actionable data for post-event response

Immediate data to

Rapid real-time measurements inform response decisions

with reliable data transmission
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Interstory drift is an essential

earthquake demand parameter
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The challenges of accurately measuring
interstory drift have been well documented

Critical Assessment of Interstory Drift Measurements
Derek A. Skolnik, M.ASCE'; and John W. Wallace, M.ASCE?

Abstract: Interstory drift, the relative translational displacement between two consecutive floors, is an important engineering demand
parameter and indicator of structural performance. The structural engineering community would benefit well from accurate measurements
of interstory drift, especially where structures undergo inelastic deformation. Unfortunately, the most common method for obtaining
interstory drift, double integration of measured acceleration, is problematic. Several issues associated with this method (e.g., signal
processing steps and sparse instrumentation) are illustrated using data from shake table studies and two extensively instrumented build-
ings. Some alternative contact and noncontact methods for obtaining interstory drift are then presented.

“Interstory drift, the relative translational displacement between two
consecutive floors, is an important engineering demand parameter

and indicator of structural performance. The structural engineering
community would benefit well from accurate measurements of

interstory drift, especially when structures undergo inelastic deformation.
Unfortunately, the most common method for obtaining interstory drift,
double integration of measured acceleration is problematic”




The concept - exploit the physics of light
for direct, broad-band drift measurement
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Inexpensive light-sensitive diodes are

at the heart of our sensor concept

Sweeping laser beam
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Generation 1 - a prototype sensor

for proof of concept
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Testbed #1 - a motion table for generating

realistic interstory drifts was developed
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Prototype sensor measurements

demonstrated excellent drift measurement
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Testbed #2 - a simple laboratory

scale frame structure

El Centro motion test




Generation 2 - an integrated
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Testbed #3 - the DOE Office of Nuclear Safety
supported a larger 3D test at UNR in 2017
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Drift measurements -

ground truth versus DDPS

Floor 3 Drift
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Generation 3 - a deployable sensor based

on value engineering and lessons learned

Simplicity
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Discovery — a diffuse laser is much better

than a sharply focused laser

Generation 2 Generation 3




Four sensors were deployed in Wang Hall

at Berkeley Lab in September 2019
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The sensors have continuously

operated very reliably for 14 months

Automated email delivery of data
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Hardware for the first prototype of a new bi-
axial sensor version has been completed
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Orbit plot for 20 story building

subjected to strong near-field motions
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Another use case - we have tested the optical

sensor concept as an agile laboratory sensor
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There is the potential to deploy as part
of the soil box system diagnostics

Soil Box relative motion < >



