

RI Re	view Project	(10 individual models)
Cluster	Model Type	Models
1	Single Corner Brune Source	Silva et al (2002) - SC-CS-Sat* Silva et al (2002) - SC-VS* Toro et al (1997) Frankel et al (1996) * Treated as one model for calculation of weights
2	Complex/Empirical Source ~R ⁻¹ Geometrical spreading < 70 km	Silva et al (2002) DC – Sat A08'
3	Complex/Empirical Source ~R ^{-1.3} Geometrical spreading < 70 km	AB06' PZT11
4	Finite Source /Green's Function	Somerville et al. (2001); slightly different models for rifted and non-rifted

Legacy Median Candidate GMPEs **EPRI Review Project GMMs** Model Included Comments Name and year A08p Atkinson (2008, 2011) No Superseded AB06p Atkinson and Boore (2006, 2011) No Superseded FEL Frankel (1996) No Superseded PZT Pezeshk, Zandieh and Tavakoli (2011) Superseded No SDCS Silva et al. (2003), double corner Superseded No Expired, poor fit below M5, SEL01NR Somerville et al (2001), non-rift No limited period range Expired, poor fit below M5, SEL01R Somerville et al (2001), rift No limited period range Silva et al. (2003), single corner SSCCSS No Superseded constant stress Silva et al. (2003), single corner No SSCVS Superseded variable stress TEL Toro et al. (1997), middle continent No Superseded Will perform comparison checks with final GMMs 6 **W**P

Approach	Constraints	Extrapolation	Title (Authorship), chapter number in PEER [2015]	Short name(s)
Point-Source (PS) Stochastic (FAS-based)	PS model, published GS & Q models, NGA-East database	PS model	2. Point-Source Stochastic-Method Simulations of Brain Source Stochastic-Method Simulations of Brain Source (D.M. Boore)	
	PS model, broadband inversion of NGA-East database	PS model	3. Development of Hard Rock Ground-Motion Models for Region 2 of Central and Eastern North America (R.B. Darragh, N.A. Abrahamson, W.J. Silva, and N. Gregor)	1CCSP 1CVSP 2CCSP 2CVSP
2S Referenced Empirical	PS model used to develop generic WUS GMM, hybrid empirical adjustment	Generic GMM adjusted to CENA data	4. Regionally-Adjustable Generic Ground-Motion YA1 Prediction Equation based on Equivalent Point-Source Simulations: Application to Central and Eastern North America (E. Yenier and G.M. Atkinson)	
Hybrid Empirical (FAS- and PSA-based)	Published sets of CENA and WUS PS models	WUS host region	 Ground-Motion Prediction Equations for Eastern North America using a Hybrid Empirical Method (S. Pezeshk, A. Zandieh, K.W. Campbell, and B. Tavakoli) 	PZCT15_M1SS PZCT15_M2ES
Finite-Fault Simulations (PSA-based)	FF model, NGA-East database	FF model	 Ground-Motion Predictions for Eastern North American Earthquakes Using Hybrid Broadband Seismograms from Finite-Fault Simulations with Constant Stress-Drop Scaling (A. Frankel) 	Frankel
			 Hybrid Empirical Ground-Motion Model for Central and Eastern North America using Hybrid Broadband Simulations and NGA-West2 GMPEs (A. Shahjouei and S. Pezeshk) 	SP15
Traditional Empirical (PSA-based)	NGA-East database	Intensity	 Empirical Ground-Motion Prediction Equations for Eastern North America (M.N. Al Noman and C.H. Cramer) 	ANC15
		Imposed spectral shape	9. Ground-Motion Prediction Equations for the Central and Eastern United States (V. Graizer)	Graizer
Referenced Empirical PSA-based)	NGA-East database	GMM host region (WUS)	10. Referenced Empirical Ground-Motion Model for Eastern North America (B. Hassani and G.M. Atkinson)	HA15
AS-RVT-PSA Empirical	NGA-East database	PS and FF models for scaling, global GMs for extrapolation of duration model	11. PEER NGA-East Median Ground-Motion Models (J. Hollenback, N. Kuehn, C.A. Goulet and N.A. Abrahamson)	PEER_GP PEER_EX

NGA-East SMSIM Model Suite

- SMSIM: consistent underlying approach for PS stochastic simulations
- Generate (6) ground motion tables using SMSIM with different models for geometric spreading (GS) and Q

Model	GS and Q Model	
B_a04	Based on GS/Q from Atkinson 2004	
B_a95	Based on GS/Q from Atkinson 1995	
B_ab14	Based on GS/Q from Atkinson and Boore 2014	
B_bca10d	Based on GS/Q from Boore, Campbell and Atkinson 2010, model d	
B_bs11	Based on GS/Q from Boatwright and Seekins (2011)	
B_sgd02	Based on GS/Q from Silva, Gregor and Darragh (2002)	

8 🌵

Model and Reference	Geometric Spreading G(R)	What is "R"? ¹	Attenuation exp(-pfR/Qb)	Applicable Range ²
B_ab95 Atkinson and Boore [1995]	$\begin{split} G(R) &= \begin{cases} R^{-1}, & R \leq 70 \text{ km} \\ C_0 R^0, & 70 \text{ km} < R \leq 130 \text{ km} \\ C_1 R^{0.5}, & R > 130 \text{ km} \\ \end{cases} \\ C_0 &= (1/70), C_1 = (130^{0.5}/70) \end{split}$	R = R _{hyp}	Q(f) = 680f ^{0.36} b = 3.8 km/s	4.0 ≤ M ≤ 7.25 10 ≤ R ≤ 500 km 0.5 ≤ f ≤ 20 Hz
B_sgd02 Silva et al. [2002]	$\begin{split} G(R) &= \begin{cases} R^{(a+b(M-6.5))}, & R \leq 80 \ km \\ C_0 R^{0.5(a+b(M-6.5))}, & R > 80 \ km \end{cases} \\ a &= 1.0296, \ b = -0.0422, \ C_0 = 80^{-0.5(a+b(M-6.5))} \end{split}$	R = R _{hyp}	Q(<i>f</i>) = 351 <i>f</i> ^{0.84} b = 3.52 km/s	4.5 ≤ M ≤ 8.5 1 ≤ R ≤ 400 km 0.1 ≤ f ≤ 100 Hz
B_a04 Atkinson [2004]	$\begin{split} G(R) &= \begin{pmatrix} R^{-1.3}, & R \leq 70 \ \mathrm{km} \\ C_0 R^{0.2}, & 70 \ \mathrm{km} < R \leq 140 \ \mathrm{km} \\ C_1 R^{0.5}, & R > 140 \ \mathrm{km} \\ \end{pmatrix} \\ C_0 &= (70^{0.2}/70^{1.3}), \ C_1 = C_0 (140^{0.5}) / 140^{0.2}) \end{split}$	R = R _{hyp}	Q(f) = max(1000, 893f ^{0.32}) b = 3.7 km/s	4.4 ≤ M ≤ 6.8 10 ≤ R ≤ 800 km 0.05 ≤ f ≤ 20 Hz
B_bca10d Boore et al. [2010]	G(R) = R ⁻¹ all R	R = R _{PS}	Q(f) = 2850 b = 3.7 km/s	4.4 ≤ M ≤ 6.8 10 ≤ R ≤ 800 km 0.05 ≤ f ≤ 20 Hz
B_bs11 Boatwright and Seekins [2011]	$G(R) = \begin{cases} R^{-1}, & R \le 50 \text{ km} \\ G_0 R^{0.5}, & R > 50 \text{ km} \end{cases}$ $C_0 = (50^{0.5}/50)$	R = R _{hyp}	Q(f) = 410f ^{0.5} b = 3.5 km/s	4.4 ≤ M ≤ 5.0 23 ≤ R ≤ 602 km 0.2 ≤ f ≤ 20 Hz
B_ab14 Atkinson and Boore [2014]	$\begin{split} G(R) &= \begin{cases} 10^{7/C_{1/2}} R^{-1.3}, & R \le 50 \text{ km} \\ C_0 R^{0.5}, & R > 50 \text{ km} \end{cases} \\ T_c &= \begin{cases} 1 - 1.429 \log_{1.6}(f), & 1Hz < f < 5Hz \\ 1 - 1.429 \log_{1.6}(f), & 1Hz < f < 5Hz \end{cases} \\ C_{1/7} &= \begin{cases} 0.2 \cos\left[\frac{\pi}{2} \left(\frac{6\pi}{3}\right)\right], & R \le h \\ 0.2 \cos\left[\frac{\pi}{2} \left(\frac{6\pi}{3}\right)\right], & h < R < 50 \text{ km} \end{cases} \\ h &= focal depth (km), C_c &= (50^{25}/50^{1.3}) \end{cases} \end{split}$	R = R _{PS}	Q(f) = 525f ^{0.46} b = 3.7 km/s	3.5 ≤ M/ ≤ 6 10 ≤ R ≤ 500 km 0.2 ≤ f ≤ 20 Hz

Screening Process Compute and tabulate model predictions for **M**4.5, 5.5, 6.5, 7.5 R=20 km, 50 km, 100 km, 200 km • 0.1 Hz \leq f \leq 100 Hz • At a minimum, models need to exhibit appropriate behavior across this subset of key magnitudes and distances. Higher level of importance was given to the spectral shape than to the absolute level of the response. Features seen in the spectra need to behave in a physically consistent and defendable manner => different does not automatically mean inappropriate • Throughout the model building process, behavior of seed GMMs was continually checked to ensure results are appropriate, understandable, and defendable. 10

Model	Comments
B_a04	Use as is.
B_a95	Use as is.
B_ab14	Use as is.
B_bca10d	Use as is.
B_bs11	Use as is.
B_sgd02	Use as is.
DASG 1CCSP	Possible bias of low-frequency (f < 1Hz) spectra particularly for larger magnitudes (M>6), similar to that seen for WUS SC models. Developers recommend only using f > 1 Hz.
DASG 1CVSP	Possible bias of low-frequency ($f < 1Hz$) spectra particularly for larger magnitudes (M>6), similar to that seen for WUS SC models. Developers recommend only using $f > 1$ Hz.
DASG 2CVSP	Use as is.
DASG 2CCSP	Use as is.
YA15	Relative drop in response around 50 Hz (not considered an issue by TI-Team). Use as is.
PZCT15_M1SS	Use as is.
PZCT15_M2ES	Use as is.
Frankel	Rough spectral shape due to limited simulations (not considered an issue by TI-Team). Use as is.
SP15	Use as is.
ANC15	Possible bias in magnitude scaling at low-frequencies due to use of intensity data. Fixed h term doesn't extrapolate well with magnitude. Developers recommend not including this model as a seed model.
Graizer	Spectral peak occurs around 3-5 Hz for all magnitudes and distances, much lower than expected for CENA site conditions of Vs=3000 m/s and kappa=0.006 s. Recommend using only 0.2 < f < 5 Hz.
HA15	Magnitude scaling exhibits features inherent to the reference model (BSSA14), cannot be ruled out for CENA with present set of observations. Use as is.
PEER_EX	Magnitude scaling at low-frequency suggests possible bias. Developers recommend only using f > 2 Hz.
PEER GP	Use as is.

