Surrogate Models of Highway Bridges for Regional-Scale Simulations of Transportation Networks

Greg Deierlein, Mia Lochhead, and Peter Lee Stanford University

> Kuanshi Zhong University of Cincinnati

PEER 2023 Annual Meeting

Seismic risk analysis of regional distributed transportation infrastructure to support planning for design, retrofit, and post-earthquake recovery

- Bridge design/modeling parameters and inventory data
- Regional earthquake ground motion hazard data
- Bridge response and damage assessment

Outline for Today

- Overview of supporting SimCenter tools
 - quoFEM, EE-UQ, R2D
- Surrogate modeling of bridge performance (quoFEM, EE-UQ)
 - Surrogate modelling methods: SAF-IDA, Gaussian Process, PLoM
 - Scope of design studies archetype bridge models
 - Training and assessment of surrogate models
- Regional simulation of bridges in highway network (R2D)
 - Characterization of ground motion hazard
 - OpenSees vs Surrogate
- Next Steps

SimCenter Computational Framework

$$v(DV) = \iiint G \langle DV | DM \rangle | dG \langle DM | EDP \rangle | dG \langle EDP | IM \rangle | d\lambda(IM)$$

Impact Performance (Loss) Models and Simulation Hazard

Computational Eco-system

Integration in SimCenter Software

UNCERTAINTY OUANTIFICATION

SUPPORTING DATABASES

Coupling: Quantification of Uncertainties & Optimization with FEM, including capabilities for surrogate modeling (GP, PLoM)

ANALYSI

Regional assessment of facilities and systems to natural hazards

Outline for Today

- Overview of supporting SimCenter tools
 - quoFEM, EE-UQ, R2D
- Surrogate modeling of bridge performance (quoFEM, EE-UQ)
 - Surrogate modelling methods: SAF-IDA, Gaussian Process, PLoM
 - Scope of design studies archetype bridge models
 - Training and assessment of surrogate models
- Regional simulation of bridges in highway network (R2D)
 - Characterization of ground motion hazard
 - OpenSees vs Surrogate
- Next Steps

Surrogate Model Alternatives

Site-specific Adjustment Framework for IDA (SAF-IDA)

- Log Linear (parametric) and local linear regression (piecewise parametric)
- Training coefficients/weights (w)
- Predict median/dispersion of independent performance metrics
- Models are expensive (and loose accuracy) for high-dimension datasets

Gaussian Process Regression (GP)

- Non-parametric
- Selecting the covariance function (*K*) and training its hyper-parameters
- Predict median/dispersion
- Expensive for high-dimension/large-size datasets (sparse GP can improve)

Probabilistic Learning on Manifolds (PLoM)

- Non-parametric
- Training its diffusion-map hyper-parameters (β , ε)
- Predict correlated samples directly
- Efficient for high-dimension correlated datasets

Simulation of RC Bridge Pier: EQ Duration Effects

Zhong et al. (2023), "Accounting for Ground Motion Duration in Performance-Based Evaluation and Design of Bridge Columns". PEER Report

9

Site-specific Adjustment Framework for IDA

Spectral Shape

Adjust structural response from IDA to account for:

- Spectral Intensity, Sa(T1)
- Spectral Shape, SaRatio $(T_S,T1,T_L)$
- Significant Duration, D_{S5-75}

Zhong, K., Chandramohan, R., Baker, J.W., Deierlein, G.G. (2021), "Site-Specific Adjustment Framework for Incremental Dynamic Analysis (SAF-IDA), *Earthquake Spectra*

SAF-IDA: Ground Motions and Model Training Data

Using the statistics to develop limit-state fragility functions:

- CDT: curvature-based component damage thresholds (*Mangalathu, 2017*)
- First bar fracture
- 50% bars fracture
- Collapse

SAF-IDA: Collapse Capacity

Validation w/Multi-Stripe Analysis (MSA)

Bridge Surrogate Models - PLoM

PLoM: IDA Training Parameters and Data

Bridge Surrogate (PLoM) – Illustrative Results

Strain range at column tip vs. Sa Calculated at Bakersfield SITE for TWO return periods (Sa, SaRatio, and Duration)

PLoM - Training/Calibration and Prediction

Train Data

- 1. Identify Input and Response Parameters ($13 = 4X_S + 3X_{GM} + 6X_R$)
- 2. Grid Ground Motions (7x7)
- 3. Perform IDA (600 IDA realizations, n ~12,000 analyses)

PLoM Response Predictions

- 1. Constrain input variables (mean, sigma; $6 = 4X_{S} + 3X_{GM}$)
- 2. Run PLoM (hyperparameters, control parameters)

Calibrate PLoM Hyperparameters (β , ϵ)

- 1. Assemble test data (selected set of MSA data)
- 2. Assume *hyperparameters*
- 3. Run PLoM and compare to test

Validation

16

- 1. Assemble validation data (comprehensive set of MSA data)
- 2. Run PLoM with calibrated hyperparameters
- 3. Compare to validation data

1e-05 + 0.1

0.2

0.5

1.0

Sa

2.0

5.0

13 x n

Importance of Hyperparameters

Poorly Fit Hyperparameters

When hyperparameters are not tuned well, the input distributions do not match (example Sa):

When input distributions do not match well, the response distributions do not match well (example CurvMaxTop)

Optimized Hyperparameters

Importance of Hyperparameters

Poorly Fit Hyperparameters

When hyperparameters are not tuned well, the input distributions do not match (example Sa):

When input distributions do not match well, the response distributions do not match well (example CurvMaxTop)

Optimized Hyperparameters

When hyperparameters are tuned well, the input distributions match (example Sa):

When input distributions match well, the response distributions match much better (example CurvMaxTop)

Validation Studies – Site & Bridge Specific Simulations

GM Parameters (X_{GM}): ≺

- Sa(T1)
- SaRatio
- Duration, Ds₅₋₇₅

Model Parameters (X_S): - Pier Slenderness (L/D)

- Axial Load Ratio (P/Po)
- Reinf. Ratio (As/Ag)
- Steel Fy

Response Quantities (X_R):

- Curvature (top/bot)
- Strain Range (top/bot)
- Fracture Index (top/bot)
- Collapse

Outline for Today

- Overview of supporting SimCenter tools
 - quoFEM, EE-UQ, R2D
- Surrogate modeling of bridge performance (quoFEM, EE-UQ)
 - Surrogate modelling methods: SAF-IDA, Gaussian Process, PLoM
 - Scope of design studies archetype bridge models
 - Training and assessment of surrogate models
- Regional simulation of bridges in highway network (R2D)
 - Characterization of ground motion hazard
 - OpenSees vs Surrogate
- Next Steps

Bridge Surrogate Models - PLoM

Trial Study – R2D

Archetype Bridge

12 Bridges - from NBI database:

- Single Pier 2 Span
- Built between 1970 and 1979
- Range of Vs₃₀

Haywired EQ Scenario:

M7, Hayward-Rodgers Creek

Response Simulations:

- OpenSees: NLRHA w/site specific GM's
- PLoM: site specific Sa, SaRatio, Ds5-75

R2D – Hazard Module

R2D - Earthquake Hazard Tool

HayWired scenario was "Hayward-Rodgers Creek"

HN+HS in the UCERF2 catalogue

Magnitude 7.05 (Rupture 4, Source 28)

Including correlations within and between EQ events - between periods (spectral shape)

- spatial between sites

Trial Study – OpenSees Simulations

OpenSees NLRHA X spectra realizations Y ground motions/spectra

Bridge Response Data (Curvatures)

Summary and Next Steps

- In Progress
 - Training and validation of PLoM surrogate model (EE-UQ)
 - Integration of bridge models into regional analysis (R2D)
- Future short to longer term
 - Seamless integration with bridge inventory data
 - Augment bridge inventory data (e.g., design features)
 - Exercise site/design specific OpenSees, SAF-IDA, PLoM, and GP(?)
 - Streamline surrogate modeling techniques and workflows
 - > Researchers/Developers -- training/calibration of new models
 - > Application Users -- bridge models for transportation network analyses