

Surrogate Modeling of Highway Bridges for Regional Earthquake Simulations of Transportation Networks

Mia Lochhead, Kuanshi Zhong Jeonghyun (Peter) Lee & Gregory Deierlein

with contributions by Sanjay Govindjee, Sang-ri Yi & Jinyan Zhou

Motivation

How do we carry out regional seismic risk assessments of bridge networks while capturing the characteristics of individual bridges?

Motivation

How do we carry out regional seismic risk assessments of bridge networks while capturing the characteristics of individual bridges?

High-dimensional problem

- Various structural design parameters (height, size, axial load, concrete strength)
- Site ground motion characteristics (*intensity, duration, frequency content*)

Response predictions

- Bridge structural response (drift, curvature, damage)
- Collapse probabilities

Distributions, not single values Nonlinear

For one regional earthquake scenario...

- up to 26.5 cpu-hr for a single bridge model
- 2100+ bridges in the Bay Area
- 100+ selected ground motion runs

and we need to repeat this for multiple scenarios

Use PLoM (Probabilistic Learning on Manifolds) to create surrogate model

• Generates learned dataset that preserves original data structure

Why PLoM?

- Mapping joint distribution of input parameters to joint distributions of output responses (preserves correlations)
- No prescribed distribution assumption (flexible for nonlinear data structure)
- Implemented in SimCenter's quoFEM & EE-UQ applications

Zhong, K., Navarro, J. G., Govindjee, S., & Deierlein, G. G. (2023). Surrogate modeling of structural seismic response using probabilistic learning on manifolds; EESD Soize, C., & Ghanem, R. (2016). Data-driven probability concentration and sampling on manifold; Jl. Computational Physics Soize, C., & Ghanem, R. (2020). Physics -constrained non -Gaussian probabilistic learning on manifolds; International Jl. for Numerical Methods in Engineering

Workflow

Training design space

Goal: Create a wide design space that can capture both variability in the structural parameters and ground motion characteristics

Frequency content, Sa ratio [-]

Training design space

Goal: Create a wide design space that can capture both variability in the structural parameters and ground motion characteristics

Preliminary observations

- The predictions are heavily affected by the two key PLoM hyperparameters ϵ_{db} and ϵ_k
 - ϵ_{db} : threshold for selecting diffusion-based components (how centralized)

ϵ_k: kernel parameter for localization (how clustered)

Hyperparameter calibration approach

Data exhibit localized nonlinear correlation at different Sa intensity levels

Optimal values (ϵ_{db} , ϵ_k) are found for varying Sa intensities (Lee et al., 2023)

Hyperparameter functions are developed (via GM binning method)

- Collapse: **f**_{H,Col}(Sa)
- Structural response: **f**_{H,EDP}(Sa)

Validation study (ground truth -- multi-stripe analyses)

Test the model using 3 sample bridges, each placed at 3 sites with distinct GM characteristics

Collapse probabilities

Collapse probabilities

Annual collapse rate per structure and site (×10⁻⁵)

Structural response

 Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)
- Most predictions fall within the K-S test "pass" boundary (green band)

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)
- Most predictions fall within the K-S test "pass" boundary (green band)
- Checks are carried out for
 ✓ (a) 3 bridges

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)
- Most predictions fall within the K-S test "pass" boundary (green band)
- Checks are carried out for
 ✓ (a) 3 bridges
 ✓ (d) 3 sites

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)
- Most predictions fall within the K-S test "pass" boundary (green band)
- Checks are carried out for
 - ✓ (a) 3 bridges
 - ✓ (d) 3 sites
 - ✓ (e) 6 intensity levels

- Kolmogorov–Smirnov (KS) test to evaluate the PLoM prediction as a "pass" or "fail"
- Plot distance between PLoM prediction and test data (blue dots)
- Most predictions fall within the K-S test "pass" boundary (green band)
- Checks are carried out for
 - ✓ (a) 3 bridges
 - ✓ (d) 3 sites
 - ✓ (e) 6 intensity levels
 - ✓ (f) 2 responses/stripe

Key Contributions

Developed a **PLoM surrogate model** to predict structural responses given

Structural design parameters (bridge-specific)

Ground motion characteristics (site-specific)

Proposed a **systematic procedure for training and prediction** using PLoM Hyperparameter calibration embedded within the model

Validated the model using a grid of various bridge designs across three California sites

Reduced computational demand compared to conventional nonlinear modeling 0.04% of OpenSees computational cost after training

Comparison with alternative surrogate models

SURROGATE MODELS

Implementation in R2D for Regional Simulations

Ongoing work:

- publish & document surrogate models in R2D library
- testing, validation & comparison to other models
- extension/training to other bridge configurations

