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Motivation

How do we carry out regional seismic risk assessments of bridge networks                                     
while capturing the characteristics of individual bridges?
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National Bridge Inventory
Ref: Homeland Infrastructure Foundation-Level Data (HIFLD) USGS M7.0 Hayward Rodgers Creek Scenario,

M6.8 Earthquake HayWired Scenario, …
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Response predictions

• Bridge structural response         
(drift, curvature, damage )

• Collapse probabilities
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High-dimensional problem

• Various structural design parameters 
(height, size, axial load, concrete strength)

• Site ground motion characteristics 
(intensity, duration, frequency content)
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For one regional earthquake scenario…

• up to 26.5 cpu-hr for a single bridge model

• 2100+ bridges in the Bay Area

• 100+ selected ground motion runs

and we need to repeat this for multiple scenarios

Direct Simulation
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Direct Simulation
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Use PLoM (Probabilistic Learning on Manifolds) to create surrogate model
• Generates learned dataset that preserves original data structure

Why PLoM?
• Mapping joint distribution of input parameters to joint distributions of output responses (preserves correlations)

• No prescribed distribution assumption (flexible for nonlinear data structure)

• Implemented in SimCenter’s quoFEM & EE-UQ applications
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PLoM Surrogate

Zhong, K., Navarro, J. G., Govindjee, S., & Deierlein, G. G. (2023). Surrogate modeling of structural seismic response using probabilistic learning on manifolds;  EESD
Soize, C., & Ghanem, R. (2016). Data-driven probability concentration and sampling on manifold; Jl. Computational Physics
Soize, C., & Ghanem, R. (2020). Physics‐constrained non‐Gaussian probabilistic learning on manifolds;  International Jl. for Numerical Methods in Engineering

Challenge
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Bridge Model Database

Grid Ground Motion 
Set

• Structure parameters (XS)
• Intensity measures (XGM)
• Response EDP (XR)

• Collapse Sa (XC)

Training Data: XTrain

Site & Bridge Info

GM Characteristics

• Intensity Sa*(1s)

• Specral shape SaRatio

• Duration DS5-75

Structure Param.

• Axial load ratio

• Reinforcement ratio

• Rebar grade

Target Predictors: ZTar

Hyperparameter Functions

• Diffusion maps εk and εdb

• As functions of Sa(1s)
• Collapse: fH,Col(Sa)

• Response: fH,EDP(Sa)

GM intensity 
binning

Partition & Amplify Data

• Partition the training data 

by ±3-σ bounds

• Amplification (optional)

PLoM Constraints

• Mean vector of target GM 

characteristics & Structure 

Params (mS, mGM)T

Compute hyperparameters

•  fH,Col(Sa*) and fH,EDP(Sa*)

Prediction Setup: ε(ZTar)

Training 
procedure

Prediction 
procedure

IDA
PLoM(XTrain, ε)
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Workflow
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Output

• Structural response 

• Collapse fragility 

PLoM(XTrain, ε)
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Training design space

Goal: Create a wide design space that can capture both variability in the structural parameters 
and ground motion characteristics

Scale using 
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…
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Training design space

Goal: Create a wide design space that can capture both variability in the structural parameters 
and ground motion characteristics

Bridge response (XR) Collapse probabilities (XC)

Increasing earthquake intensity
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For each of the ~670 bridges, we get 

• Drift & curvature demands
• Rebar fracture indices
• Damage states

Likelihood of bridge collapse

One ground motion out of 56
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Preliminary observations

• The predictions are heavily affected by the two key PLoM hyperparameters 𝜖𝑑𝑏 and 𝜖𝑘

• 𝜖𝑑𝑏 : threshold for selecting diffusion-based components (how centralized)

▪ 𝜖𝑘 : kernel parameter for localization (how clustered)
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Hyperparameter calibration approach
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Data exhibit localized 
nonlinear correlation at 
different Sa intensity levels 
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Optimal values (𝜖𝑑𝑏, 𝜖𝑘 ) are found for 
varying Sa intensities (Lee et al., 2023)
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Hyperparameter functions are 
developed (via GM binning method)
• Collapse: fH,Col(Sa)
• Structural response: fH,EDP(Sa)
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Validation study (ground truth -- multi-stripe analyses)
Test the model using 3 sample bridges, each placed at 3 sites with distinct GM characteristics
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Generate 600 points of test data 
(100 GM x 6 return periods) 
for each bridge/site combination
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Validation results

Collapse probabilities
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Structure 1 Structure 2 Structure3

MSA PLoM MSA PLoM MSA PLoM

Site 1 5 8 13 11 9 10

Site 2 6 6 15 14 9 11

Site 3 17 24 37 42 26 40

Annual collapse rate per structure and site (×10-5)



Structural response

• Kolmogorov–Smirnov (KS) test 
to evaluate the PLoM 
prediction as a “pass” or “fail”
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Structural response

• Kolmogorov–Smirnov (KS) test 
to evaluate the PLoM 
prediction as a “pass” or “fail”

• Plot distance between PLoM 
prediction and test data
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• Kolmogorov–Smirnov (KS) test 
to evaluate the PLoM 
prediction as a “pass” or “fail”
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✓ (d) 3 sites
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Structural response
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Structural response
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to evaluate the PLoM 
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• Plot distance between PLoM 
prediction and test data

     (blue dots)

• Most predictions fall within the 
K-S test “pass” boundary

     (green band)

• Checks are carried out for
✓ (a) 3 bridges
✓ (d) 3 sites
✓ (e) 6 intensity levels
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Key Contributions

Developed a PLoM surrogate model to predict structural responses given

Structural design parameters (bridge-specific)

Ground motion characteristics (site-specific)

Proposed a systematic procedure for training and prediction using PLoM

Hyperparameter calibration embedded within the model

Validated the model using a grid of various bridge designs across three California sites

Reduced computational demand compared to conventional nonlinear modeling

0.04% of OpenSees computational cost after training

𝜖𝑑𝑏, 𝜖𝑘 
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Comparison with alternative surrogate models

Gaussian Process Model (GP)     

Generates a learned 

dataset that preserves 

the original data 
structure

Defines response 

distributions over 

functions of input 
variables

Best linear fit through 

the data found by 

minimizing mean 
squared error

Multivariate Log Linear Regression

Probabilistic Learning on Manifolds (PLoM)

SURROGATE MODELS
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Implementation in R2D for Regional Simulations

Generate Correlated 

Ground Motion 

Realizations

Interrogate Surrogate 

Model to Extract 

Performance

Bridge Information
(National Bridge Inventory)

Assess Bridge Response 

& Damage

Ongoing work:
 - publish & document surrogate models in R2D library
 - testing, validation & comparison to other models
 - extension/training to other bridge configurations
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