OPPORTUNITIES AND CHALLENGES IN HIGH FIDELITY
SIMULATION FOR PLANNING DISASTER RECOVERY

Gregory Deierlein

Blume Professor of Engineering
Stanford University

with contributions and acknowledgements to many

PEER Annual Meeting
i J gf!r mmﬁbgfﬂnﬂjﬂg!;n:ﬁ; .I a n U ar y 1 6'1 7 ) 2 02 0 Tt lnux-\-B EARTHQUAKE ENGINEERING CENTER
PEER lume



Evolution of PBEE Concept
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Evolution of PBEE Concept
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Performance-Based Methodology

* Collapse & Casualties

Decision Variable I

* Direct Financial Loss

* Downtime

! Damage Measure I

Engineering Demand
Parameter

Intensity Measure

|

MAF of:
- collapse W(DV)=[[[G(DV | DM)| dG(DM| EDP)| dG(EDP|IM) | dA(IM)

-loss > $ Impact Performance (Loss) Models and Simulation Hazard
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Performance-Based Earthquake Engineering
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FEMA P-58 (2012) Performance Assessment of Buildings

Provides a methodology, basic building information,
response quantities, fragilities and consequence data
to evaluate the seismic performance of buildings

Procedures are probabilistic

Performance metrics:

Seismic Performance _ _
Assessment of Buildings - life safety risks
Volume 1 —Methodology
. - direct economic losses
FEMA P-58-1 / September 2012
& rEvia @ - downtime and indirect losses

Recommended Use —
v Evaluate performance of new and existing buildings

v Provide the basis for performance-based design of new buildings and
retrofit of existing buildings



TARGET STATES OF RECOVERY FOR SAN FRAMCISCO’S BUILDING AND INFRASTRUCTURE
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Simulation-Based Regional Risk/Resilience Assessment

CURRENT (e.g., HAZUS)
Empirical Models
Census Block Inventory
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describe the region
specify characteristics of buildings and infrastructure in the region

describe the hazard
specify the regional distribution of ground shaking, wind, or water

for each random region-hazard sample:
propagate uncertain characteristics of the regional assets and the hazard

for each asset in the region:

describe the asset

prepare a stochastic description of damage and loss for the asset

describe regional damage and direct losses
aggregate damages and losses in the region considering dependencies

estimate indirect regional consequences
describe regional consequences of infrastructure- and social disruption

simulate regional recovery
estimate the temporal and spatial variation in the recovery of communities

CW
create stochastic models for response, damage, and loss estimation "'A‘&

. . EE,
describe the event at the site A
specify hazard-consistent loads for response estimation
for each random asset-event sample:
propagate uncertainties in asset models and event description YEm

estimate asset response to the event e
describe the response with engineering demand parameters
estimate asset damage and its consequences PBE
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i NHERI
SimCenterv
Center for Computational Modeling and Simulation

SF Bay Area Regional Testbed Study

» M7.0 Hayward rupture modeled using SW4 [1]
» 1.84 M buildings were included in the simulation
» Building information is based on UrbanSim data
» Damage and Loss is based FEMA_ P58 LU [2]

» OpenSees structural analysis models are based on
MDOF_LU

» Run on DesignSafe HPC Resources e

» Example of Results: |
- Red-tagged buildings 141,400
- Net buildings damage ratio 5.6% e

Building Loss Ratio

[1] Petersson, N.A.; Sjogreen, B. (2017), SW4, version 2.0 [software], Computational Infrastructure of Geodynamics, doi: 10.5281/zenodo.1045297,
url:
[2] Zeng X., Lu X.Z., Yang T., Xu Z., "Application of the FEMA-P58 methodology for regional earthquake loss prediction"”, Natural Hazards (2016),
10.1007/s11069-016-2307-z


https://doi.org/10.5281/zenodo.1045297

SimCenter¥¥

Center for Computational Modeling and Simulation

High Resolution Models

Building parcel versus census block resolution of
damage and downtime

. ef;.{{ wn@g&& [Lontra Costa
il

g i

SimCenter Simulation USGS Haywired (2018)
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1 NHERI
SimCenterv
Center for Computational Modeling and Simulation

High Resolution Models

Parcel-level resolution enables unprecedented quantification of
engineered interventions for policy level decisions

San Ja|

SimCenter Simulation San Francisco Parcels



SimCenterv¥
Component Performance Toolbox e Conptorl Modelng ar st
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potable water
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PELICUN (PROBABILISTIC ESTIMATION OF LOSSES, INJURIES, &
COMMUNITY RESILIENCE UNDER NATURAL DISASTERS

OpenSource :: Multi-Fidelity :: Multi-Hazard



Economic Benefits of Cripple Wall Retrofit

iy PEERIMC EA isrvicvaxe PEER ANNUAL MEETING — JANUARY 2020



Limitations to “The Law of Averages”
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HAZUS Loss Function vs. Observed Data

Damage Ratio
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PEER-CEA Damage and Loss Assessment
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San Francisco — Tall Building Inventory

Structural System
I Steel Moment Frame

I RC Shear Wall (with or without dual system)
[ steel Braced Frame
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San Francisco - Tall Building Inventory
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e 69 “Pre-Northridge” Steel Moment Frame Buildings (>240 ft)
 Significant segment of SF's downtown commercial office space

e Major investment of building owners and tenants

Acknowledgement: City of San Francisco, Applied Technology Council



Simulation of Fracture Critical Beam-Column Connections
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Figure 3-31: Beam top flange fracture during 0.75% drift cycle in Specimen EC03
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Modes of Failure:

Flange Weld Fracture
* Brittle (< Fy)
e Ductile-Brittle
Shear Connection
e Bolt Shear
* Bolt Tearout
* Weld Fracture

Figure 3-36: Bolts failure at 3% dnft cycle in Specimen EC03

SAC Joint Venture Test



Re-Occupancy of Damaged Buildings

FEMA 352 -
Evaluation

— KIC
Oer =""/F(ay)
F(ag) =1.2+2a,  (bottom) I

F(ap) = 0.5+ 2a, (toP)

KIC,dynamic ~va CVN' E

Floor Damage Index:
D = | Z”: dj 0<D,..<0.5 Safetooccupyduring repair
i p = 4

D,..> 0.5 Potentially unsafe to occupy
during repair (advise owner)



Impediment of Building Cordons on Recovery

Impact on:
* Emergency Response
* Neighboring Buildings
e Recovery/Reconstruction
* Downtown Economy

I Buildings > 240ft
[CJFall Shadow
c:'t;‘;r:'g::;:::m lm}Cc::-rdcun Trigger: 25%, Extent: 1.5H, No Mitigation
| - — = - :
[l PUC/Clean Water . : i :
| @ Police y CE— 801
= If repairs started
% § 601 immediately
1Y E Without cordons
qE" 5 %0 contributions
£ to 1st year  Expected functionality over time,
S 207 josses with impeding factors
o
and cordons
0 . .

Data Sources: Critical Facilities, Building Footprints, and Streets from DataSF.org



Impeding Factors to “Functional Recovery”

& 02.09

SPUR

What are the minimum criteria to allow reoccupancy and
functional recovery of buildings?

- structural collapse safety & falling hazards

- occupant health and safety

What repairs are essential for occupancy & functional recovery?
structural

MEP systems (elevators, water, power, fire suppression)
architectural (partitions, doors, cladding, etc.)

T.Irhamst

- e
The Resilient City
Part 1: Before the disaster

/EEIID ) \
9 mo.
a0+ 2 mo. . . ]
-- impeding factors ---

193
200 [ . 108 o :
1B imaw aaw B

e T L e uﬁ":-" 9 & o™ oY ®

q’fﬁ’“ﬁ 050@6 R\ xdo"‘ P e ffxf‘f’“c} R ¢ @c}“‘-” ﬁﬂ“”‘“ﬁ
\_& % @;5 dpi ﬁ@ﬁ" CF"“ e rqd*g‘k

o {@(ﬁ@" Dﬂnﬂ‘ﬂ“ \ /

ATC 119 (Molina-Hutt, Hulsey, Yen, Hooper, Deierlein)




Distributed Systems

From Google Maps

Single Column Bent and Box Girder

Integrat

Single

column
Towards

Bearing, abutment,
and shear key

Towards
systems

* Foundation

J— system AN =
i Abutment spring I .[/
R (MyperbolicGapMatrial] |- |

Shoar ey sptoa A

e
Elastic beam-
Distributed translational and calumn alemant \'
rotational mass + gravity
load

*

3D Elastomeric bearing element

— Rigidlink & vertical support spring
3D Bond-slip zero-
"~ lengthsection
element
Fiber element with
aggregated flexure and ReinforcingSteel
shear sections DuctileFracture
Concrete02 w/
material
regularization
3D Bond-slip zero-
length section
element

e ¥ Soil-foundation spri
— T (Condensed springs based on
laterally-loaded pile foundation)

Detailed Component Models Linked
with Rigorous System Evaluation



Geotechnical Models

Ground-Foundation-Bridge
Computational Model

Humboldt Bay Bridge (Elgamal et al.)



Fugro Consultants (2012)

2D/3D Dynamic Finite Element Analysis

o '|¢ 1
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High-Fidelity Models
of Landslide Risk

Rathje, 2019 Joyner Lecture

Anchorage
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Geotechnical Model Calibration/ Validation

Single span
skew bridge
model with
seat-type
abutments

Uni- and biaxial
input motions

Soil Box
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Single span PLAN

skew bridge

model with
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abutments

AN

Uni- and
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input
motions

Buckle et al., Rathje et al.
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Downhole Testing
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Development & Validation of Models

 Material & Component Testing
 Bechmarking on Shared Community Models

 Data From Natural Hazard Disasters
— Strong Motion Sensors
— Optical Photos, SAR, LIDAR
— Twitter, News Feeds (natural language proc.)
— Reconnaisance: StEER, EERI
— Longitudinal Studies
e Final ?7?7??



Engineering for a resilient future

* Collapse & Casualties

+ Direct Financial Loss 400,000 = Predicted nsk

+ Downti
owntimes Predicted risk assuming
increased quality of all

Damage Measure new construction

Engineering Demand
Parameter

Intensity Measure

Mumber of buildings sustaining heavy damage

19890 1985 2000 2005 2010 2015 2020 2025 200




HAZARDS 1. Risk Landscape
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2. Hazards

CLIMATE e Ground Shaking

RESILIENCE

 Liquefaction

e Landslides
e Tsunami

* Flooding

e Fire

3. Risk/Consequence
4. Capabilities
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