

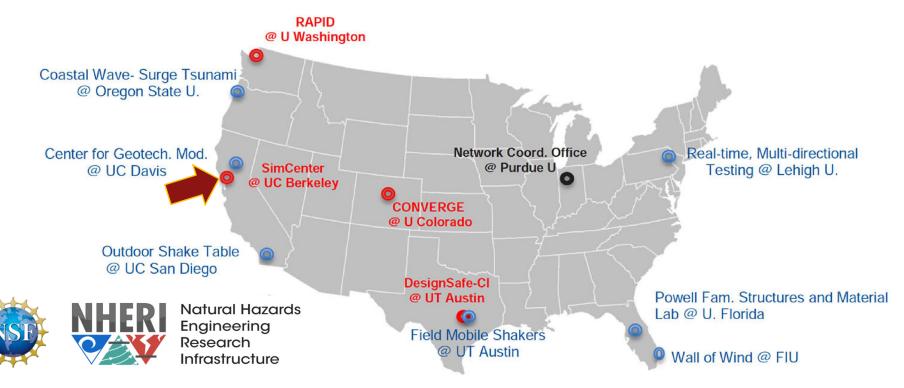
SimCenter tools for simulated ground motion utilization

Matt DeJong

PI & Co-Director of SimCenter Co-Director of CSI University of California, Berkeley

SimCenter Role:

Provide tools to allow researchers / practitioners to <u>feasibly</u> make use of simulated ground motions in computational workflows


Feasible = Easy access to:

- simulated ground motion data
- simulation models
- HPC resources

NSF NHERI – Large-scale Collaboration

- * Experimental facilities (7), Cyber-infrastructure, Field Reconnaissance, and Simulation Software
- Current project period: 2014-2025; future initiative (2026-2035) under development

Computational Modeling and Simulation Center

Advance the Nation's capability to **simulate the impact** of natural hazard events on structures, lifelines, and communities.

Create an open-source and extensible application framework, integrate existing tools and data, and develop new software to provide the **next-generation of regional disaster simulation tools**

Support researchers and practitioners with **education and training**, and connect them with high-performance computing resources.

The SimCenter Team

Directors

Matthew DeJong Gregory G. Deierlein

Senior Management

Frank McKenna Matthew Schoettler Adam Zsarnoczay

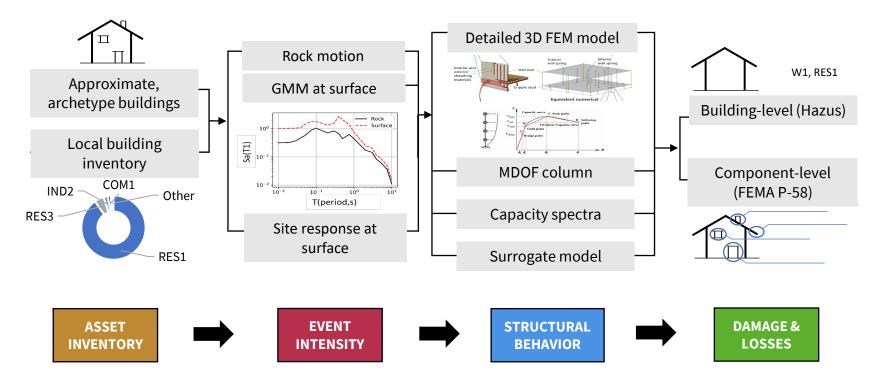
Co-Pls

Ahsan Kareem Laura Lowes Satish Rao

Developer Team Aakash Bangalore Satish Sang-ri Yi Stevan Gavrilovic Abiy Melaku Sina Naeimi Dafchahi Jinyan Zhao

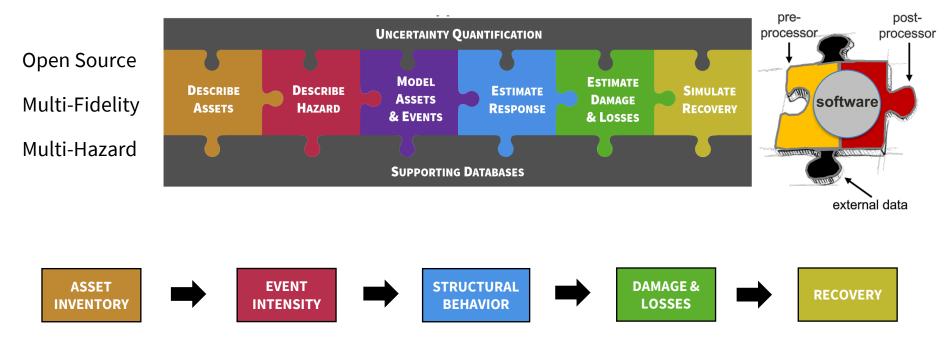
Faculty Domain Experts

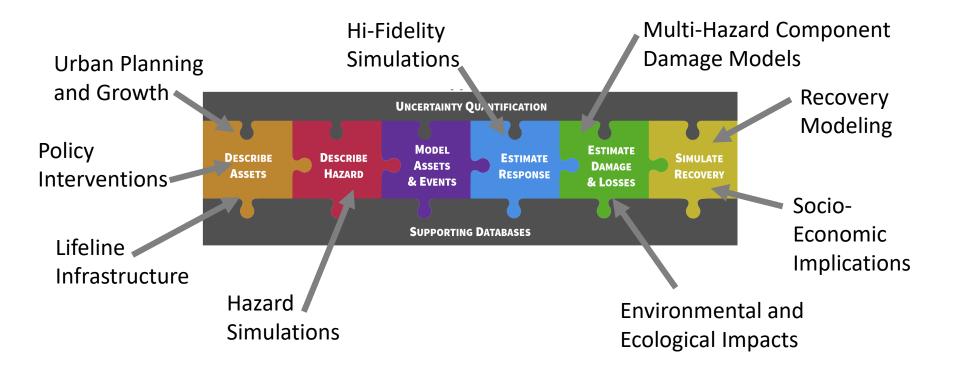
Pedro Arduino Jack Baker John Bray Henry Burton Joel Conte Rachel Davidson Ann-Margaret Esnard


Faculty Domain Experts cont.

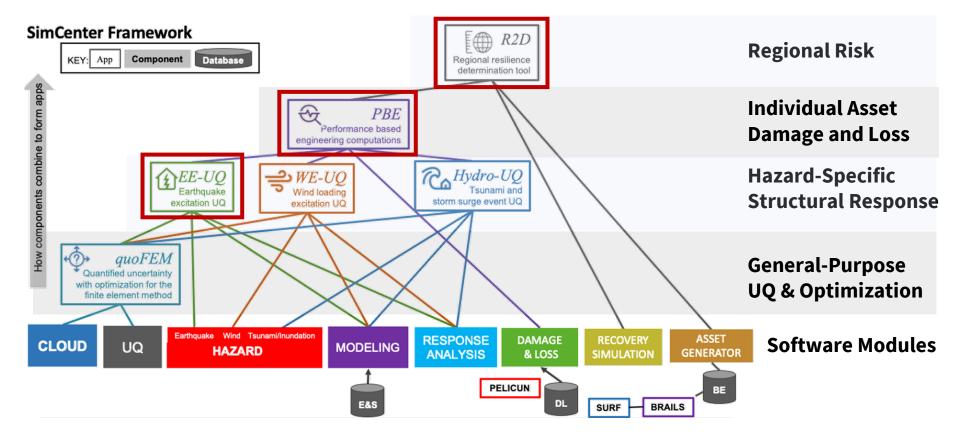
Dimitris Giovanis Cathernie Gorle Sanjay Govindjee Andrew Kennedy Tracy Kijewski-Correa Patrick Lynett Peter Mackenzie-Helnwein Michael Motley Kenichi Soga Michael Shields Seymour Spence Alexandros Taflanidis Ertugrul Taciroglu Stella Yu

Unifying Simulation Platform

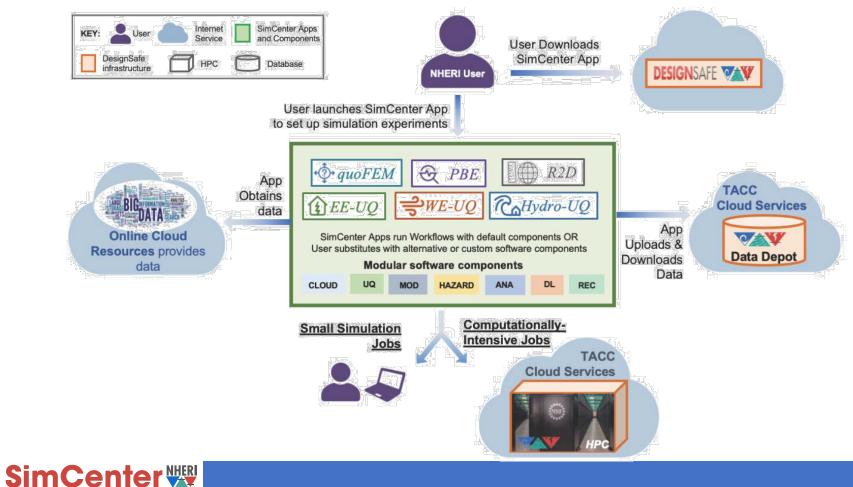

Foster large-scale collaboration in the Disaster Science community Facilitate transition from local to regional scale, multi-hazard studies


SimCenter Application Framework

Foster large-scale collaboration in the Disaster Science community Facilitate transition from local to regional scale, multi-hazard studies



Framework for Multi-Disciplinary Collaboration



SimCenter – Desktop Applications

Integration with Online Resources

EE Desktop Application for Earthquake Engineering (EE-UQ)

EE-UQ V3.2

Integrates UQ applications of quoFEM, Earthquake Loading Applications, Building Model Generators with analysis application to determining response of building to earthquake loading

UQ Problem Types:≈

Sampling Sensitivity Reliability Surrogate Modeling (new features)

Hazard (Earthquake):

Stochastic Motions PEER NGA Search with target spectrum Site Response with Random Fields

Modeling (Building):

OpenSees

Nonlinear Shear Spring (MDOF) Steel Building Design & Build (AutoSDA) Concrete Building Design & Build Multi-Model Surrogate

SimCenter

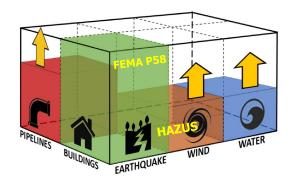
Response:

OpenSees Multi-Model

Load Generat	tor PEER NO	A Records			0	
Target Spect Type Latitude Longitude Edition Visi0 Return Pert	Uniform Hazard Spectrum (378775 -122.273 2014 v4.2.0 (Dynamic) 259 (Stiff Soli D)	USOS NSHMP)	Namber of Record Selection 1 Pault Type All Type Pulse All Moghtude 5.0 Distance 0.0 V330 E0.0 D5-95 International Sector	pes 3 80 60.0 km 300.0 m/k sec	• Marr = Marr + Std. D	Regions Spects In: # Sear-St. Dr. # Target # Selected
Output Direc Output Direc Ground Moti Acceleration	ion Components	н		Choose	100	
Suite Average RSN 1	•	Arithm Station Magnitu		Herizontal 1 File VALL.I_J-ELC180AT2 RSN	Spectral Accel	M
rforming Record Selecti	RUN Ion on Results from PEER NGA West 2 Database ions from PEER NGA West 2 Database		RUN at DesignSafe	Program Output	GET from DesignSafe	Dát.

PBE **Desktop Application for Performance Assessment**

...



PBE v3.0

Performance-Assessment of Buildings and Infrastructure Components Multi-Hazard and Multi-Fidelity (PELICUN library of damage and loss models)

Damage & Loss (using PELICUN):

Building-level assessment (e.g., HAZUS) Component-level assessment (e.g., FEMA P58) Supports external response estimation Customizable damage & loss models

					UQ	Dama	age and	Loss Assessm	ient	Pelic	un		•		
erfor	mance Based	Engineering	Application		GI	Ass	set D	emands D	amage Lo	isses					
						Ge	eneral In	formation			Databases				
					SIM	Nu	imber of s	Stories		4	Component Vulne	erability: User	Defined		Export DB
	94754.9					Pla	an Area			15000	3 - Live Expert Ti	os - 2022 Febru	arv/custo	m fragility DB.	csv Choose
					EVT	Oc	cupancy	Type Comm	ercial Office	-					
						Co	mponer	nt Assignmen	t						
	70458.8				FEM		Load	Save	l						
	at a				RV	Av	ailable in	DB: B.10.	31.001	-	Add	Add All			
	1500 Jie de 16162.7					Δ.	signed:	B 20	22.031		emove R	emove All			
	repr			1.1	DL		scription:						: laminat	ed. Glass Type:	Annealed, Details: 1/-
			1.1		RES						rame clearance =				
	21866.5		- Sections	Same	NL3	De	mand typ		nterstory Drift R	tatio					
		1.11	SHEWE	Q 20.52		Bk	ock size:	30 SF							
	0.000		1.	9 W. T		Ad	lditional ir								
	-2429.6	1.9					Unit	Location(s)				Distribution		COV Comme	
							ft2	1	1	5040	168	lognormal	• 0.		stick-built curtain wal
							ft2	1	2	3360	112	lognormal	• 0.		stick-built curtain wal
	*	inhabitants	collapsed?	red tagged?			ft2	24	1	4680	156	lognormal	• 0.		stick-built curtain wal
	12	10.0	0.0	0			ft2	24	2	3120	104	lognormal	• 0.	3 Midrise :	stick-built curtain wal
	13	40.0	0.0	0											
	14	10.0	0.0	0											
	15	3	0.0	0		RUN			RUN at Desig	nSafe	GET	from Design	Safe		Exit
	RUN														
														Exit	

R2D Desktop Application for Regional Simulation

R2D V2.1

Create and run complex workflows for regional simulation of natural hazards to facilitate research in disaster risk management and recovery.

Asset definition

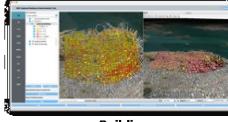
csv files GIS files

Hazard definition

Regional Site Response User-supplied earthquake and hurricane grids Raster-defined earthquake, hurricane, and tsunami intensity fields Earthquake scenario simulation Hurricane wind field simulation

Response, Damage and loss

FEM simulations of response HAZUS and other fragility models User-provided fragility functions



Multiple Hazards

Earthquakes

Multiple Assets

Buildings

Hurricanes

Tsunamis

Lifelines

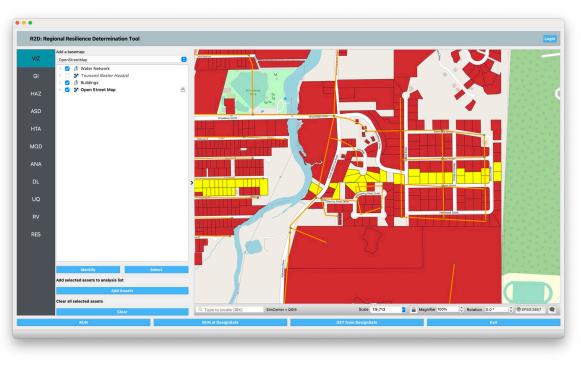
R2D Desktop Application for Regional Simulation

R2D V2.1

Create and run complex workflows for regional simulation of natural hazards to facilitate research in disaster risk management and recovery.

Asset definition

csv files	
GIS files	

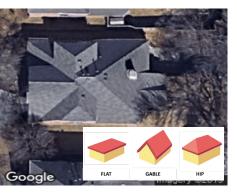

Hazard definition

Regional Site Response User-supplied earthquake and hurricane grids Raster-defined earthquake, hurricane, and tsunami intensity fields Earthquake scenario simulation Hurricane wind field simulation

Response, Damage and loss

FEM simulations of response HAZUS and other fragility models User-provided fragility functions

High-Res Inventories – Computer Vision – BRAILS



Elevations & Window Area

Occupancy Class

Number of Floors

Roof Shape

BRAILS: Building Recognition using AI at Large Scale

- Detect building features
- Library of AI models and approaches
 - semantic segmentation
 - classification (multi-class transformer)
 - object detection
- Seeded with trained models for several common building features.
- Validated with field reconnaissance and ZTRAX

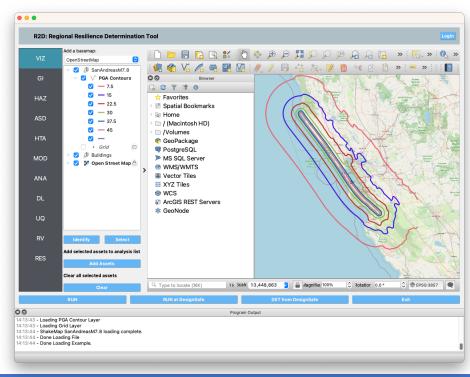
R2D Desktop Application for Regional Simulation

R2D V2.1

Create and run complex workflows for regional simulation of natural hazards to facilitate research in disaster risk management and recovery.

Asset definition

csv files GIS files


Hazard definition

Regional Site Response User-supplied earthquake and hurricane grids Raster-defined earthquake, hurricane, and tsunami intensity fields Earthquake scenario simulation Hurricane wind field simulation

Response, Damage and loss

FEM simulations of response HAZUS and other fragility models User-provided fragility functions

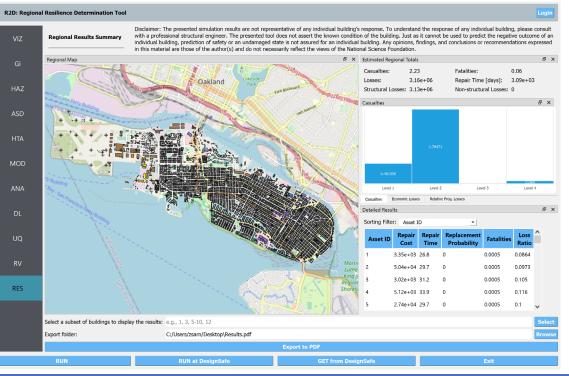
R2D Desktop Application for Regional Simulation

R2D V2.1

Create and run complex workflows for regional simulation of natural hazards to facilitate research in disaster risk management and recovery.

Asset definition

csv files	
GIS files	


Hazard definition

Regional Site Response User-supplied earthquake and hurricane grids Raster-defined earthquake, hurricane, and tsunami intensity fields Earthquake scenario simulation Hurricane wind field simulation

Response, Damage and loss

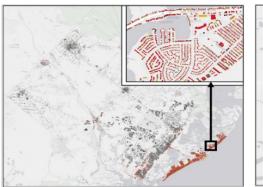
FEM simulations of response HAZUS and other fragility models User-provided fragility functions

SimCenter – Regional Testbeds

Proof of concept

Benchmark & verify methods

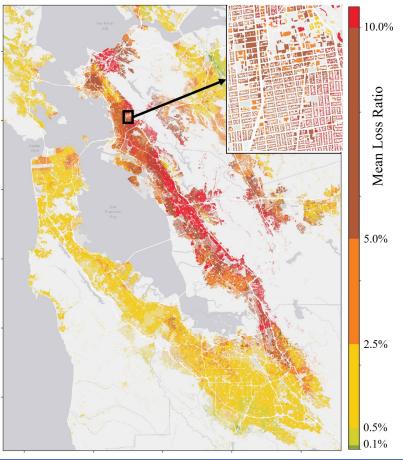
Engage researchers and users


Identify gaps & opportunities

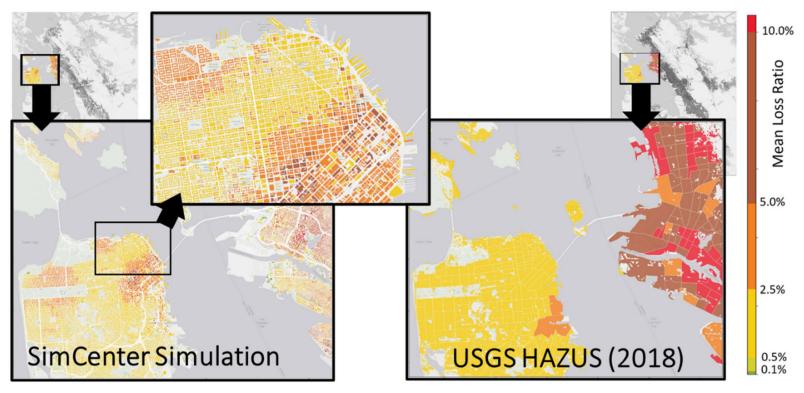
Establish data standards

SF Bay Area – EQ Scenario

Anchorage – EQ Hindcast


Atlantic City – Hurricane Scenario

San Francisco Bay Area M7.0 Earthquake Testbed


- M7.0 earthquake in the SF Bay Area Hayward fault – physics–based simulation (LLNL-SW4)
- **High-resolution building inventory** 1.84 million buildings with footprint & main features
- Building-specific structural analyses OpenSees idealized MDOF response models Hazus earthquake damage and loss models
- Uncertainty Quantification uncertainty in buildings, damage, and losses 25 realizations capture possible outcomes
- High-Performance Computing DesignSafe HPC (Stampede2 at TACC) embarrassingly parallel: 2 hr runtime using 10K cores

San Francisco Bay Area M7.0 Earthquake Testbed

High Resolution Modeling: Parcel-level resolution enables unprecedented quantification of *engineered interventions for policy level decisions*

R2D Earthquake hazard definition options in R2D

Option 1: User-specified ground motions

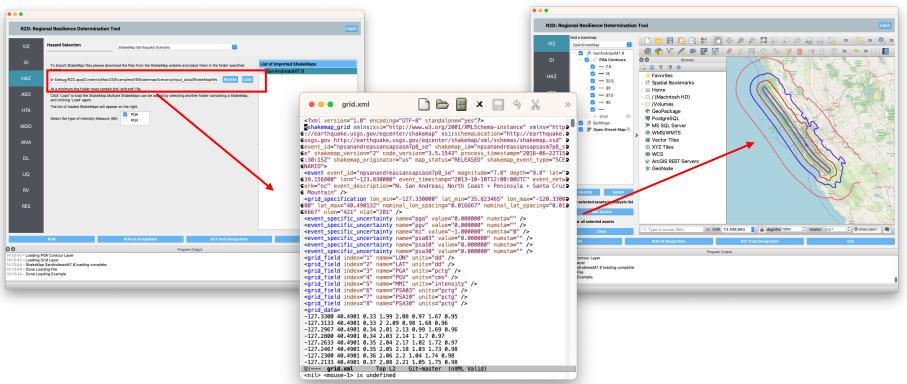
Users prepare an Event Grid file to define site locations and a group of Site Record files, which contains the Intensity Measures or Time History record at the sites.

•••		-				GP_file	Longitude Lat	itude	
R2D: Reg	ional Resilience Determination Tool	000	< > records		∷ □	site_2716.csv	-149.892 61.	219	
		Favorites	Name	 Date Modified 	Size Kind	site 2738.csv	-148.885 63.	389	
VIZ	Hazard Selection User Specified Ground Motions	AirDrop	EventGrid.csv	Oct 18, 2023 at 2:49 PM	386 bytes com	eite 8016 cev	-149.864 61.	192	
		 Recents 	site_2716.csv	Oct 18, 2023 at 2:49 PM	17 bytes com				
GI	Event File Listing Motions 2DbuildTest-Debug/R2D.app/Contents/MacOS/Examples/E2MDOFBuildingResponse/input_data/records/EventGrid.csv Browse	🗛 Applicati	site_2716.json	Oct 18, 2023 at 2:49 PM Oct 18, 2023 at 2:49 PM	481 KB JSOI 17 bytes com		-149.91 61.	- Event (srid -	file
114.7	Folder Containing Motions d/build-R2D-R2DbuildTest-Debug/R2D.applContents/MacOS/Examples/E2MDOFBuildingResponse/input. data/records	Documents		Oct 18, 2023 at 2:49 PM	2 MB JSO	site_8027.csv	-149.889 61.		····c
HAZ	Units of Event Input File	Desktop	site_8016.csv	Oct 18, 2023 at 2:49 PM	17 bytes com	site_8030.csv	-149.806 61.	.179	
ASD	TH_file Meters per second squared	Ownloads	site_8016.json	Oct 18, 2023 at 2:49 PM Oct 12, 2023 at 2:49 PM	2.7 MB JSOI	site_8036.csv	-149.966 61.	.178	
		Creative	site_8021.csv	Oct 18, 1023 at 2:49 PM	17 bytes com 2 MB JSOI	site 8037.csv	-149.985 61.	.156	
HTA			site_8027.csv	Oct 18, 2013 at 2:49 PM	17 bytes com	cite 8038 cev	-149.883 61.	218	
		iCloud	site_8027.json	Oct 18, 2023 at 2:49 PM	2 MB JSOI	-	-149.003 01.		
MOD		Locations	site_8030.csv	Oct 18, 2023 at 2:49 PM Oct 18, 2023 at 2:49 PM	17 bytes com 1.9 MB JSOI	O Ø site		([†]) Open with Visual Studio	o Codo
ANA		OneDrive	site_8036.csv	Oct 18, 2023 at 2:49 PM	17 bytes com		2710.json	Open with visual studio	5 Code
		Box	site_8036.json	Oct 18, 2023 at 2:49 PM	2 MB JSOI	{ "name": '	2716"		
DL		Tags	site_8037.csv	Oct 18, 2023 at 2:49 PM Oct 18, 2023 at 2:49 PM	17 bytes com 2 MB JSON	"dT": 0.0	05,		
		Red				"data_x": 0.000	62005.		
UQ		● 红色	📓 Macintosh HD > 🛅 Use	ers > 🛅 jinyanzh > 🛅 Desktop > 🚞	SimCen 🔪 🥅 R2DExa > 🚞	0.000	30842, 67245.		
RV						-0.0	34336,		
						-0.01	18999		
RES					× 1	-0.03	24339, 198449999999999	9998,	
							66695, 1368,		
						0.022	449,		C 11
						0.019	879.	Site Record	file
	RUN RUN at DesignSafe GET from DesignSafe Exit					0.00			
0 0 13:59:11 - Loading v	Program Output isualization for 4095 assets					-0.0	37041,		
13:59:12 - Done loa 13:59:12 - A total of	ding assets 5 buildings are selected for analysis					-0.07	4888000000000	001,	
13:59:12 - Done Loa						-0.06	6453, 52114,		
						-0.05	5663,		
						-0.06			

R2D Earthquake hazard definition options in R2D

Option 1: User-specified ground motions (cont'd)

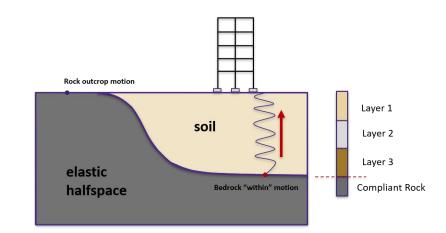
R2D has a regional ground motion simulation tool to predict ground motion maps from earthquake rupture forecasts, ground motion prediction equations, and spatial correlation models.


• • •					
	Sites Earthquake Rupture Scenario Selection Ground Motion Models Record Selection	_	Sites Earthquake F	Rupture Scenario Selection Ground Motion Models Record Selection	
Earthquake Rupture	OpenSHA ERF		Intensity Measure		_
	Openan in Kin		Type: Spectral Accelerations (SA)	Periods: 0.01,0.02,0.05,0.1,0.2,0.5,1.0,2.0,3.0,4.0,5.0,7.5,10.0	
OpenSHA	WGCEP (2007) UCERF2 - Single Branch				_
			Ground Motion Prediction Equation		
Rupture Offset (km)	5		Type: Chiou & Youngs (2014)		3
Floater Type	Along strike & centered down dip	0	Spatial Correlation		
Background Seismicity	Include	0	Inter-event	Baker & Jayaram (2008)	0
Treat Background Seismicity As		<u> </u>	Spatial Correlation Model: Intra-event		
Probability Model	Poisson		Spatial Correlation Model:	Markhvida et al. (2017)	3
Maximum Distance (km) 200 Maximum Magnitude 10					
Minimum Magnitude 2.5	Forecast Ruoture Scenarios			Close	
✓ Earthquake Ru ✓	Aap				
	Close				

R2D Earthquake hazard definition options in R2D

Option 2: Import from ShakeMap Scenario

Users prepare a ShakeMap Grid (.xml) file that defines a grid and the intensity measures at each grid point.

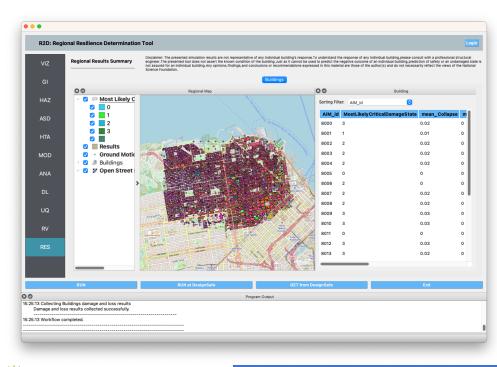

🏶 SimCenter 🕎

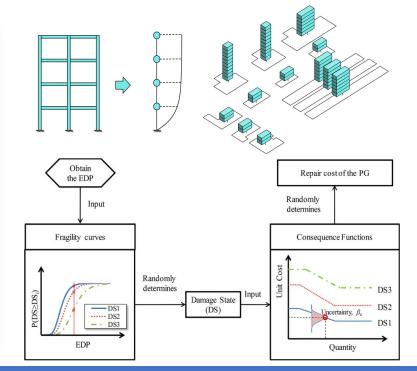
R2D Earthquake hazard definition options in R2D

Option 3: Regional Site Response

Users provide ground motion records at the bedrock level and compute the ground surface response with one-dimensional response analyses using OpenSees.

	Hazard Selection	Regional Site Response	0	
	Site		Vs30 Model	
	Single Location Grid	of Locations O Scattering Locations	Type: CGS/Wills Vs30 (Wills et al., 2015) 🖸
HAZ	Site File: (.csv) /model/SiteM	odelData.csv Browse	Specified Vs30 values are inferred	
ASD	Sites to Analyze 0-4	Advanced Filter Clear Selection	Bedrock Depth Model (if DepthToRoc	k not provided by users)
HTA	id Longitude	Latitude Vs30 DepthToRock	Type: SoilGrid250 (Hengl et al., 2017)	0
ПА	0 -122.3283	37.784 225.6 22.14896 E		
MOD			Fetch Site	Data
ANA	Soil Model			
ANA	Modeling Script imCenterBuild	l/build-R2D-R2DbuildTest-Debug/R2D.app/Conte	nts/MacOS/Examples/E10SiteResponse/input_data/m	odel/FreeField3D_Drytcl Browse
	Input Motions			
	Event File Listing Motions ild/	build-R2D-R2DbuildTest-Debug/R2D.app/Content	s/MacOS/Examples/E10SiteResponse/input_data/input_	utMotions/EventGrid.csv Browse
UQ	Folder Containing Motions p/S	mCenterBuild/build-R2D-R2DbuildTest-Debug/R2	D.app/Contents/MacOS/Examples/E10SiteResponse/i	nput_data/inputMotions Browse
	Units of Event Input File			
RES	TH_file Gravitational const factor Unitless (scalar)	ant (g)		
- NEO		RUN at DesignSafe	GET from DesignSafe	Exit
	RUN	Kon at Designaare		

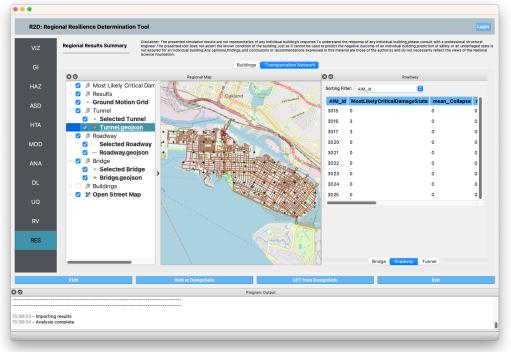


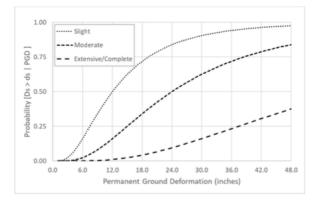


R2D Application of the ground motions

Application 1: Building safety assessment

Building level performance assessment using Intensity Measures or story level performance assessment using multi-degree of freedom OpenSees models and ground motion Time History records.

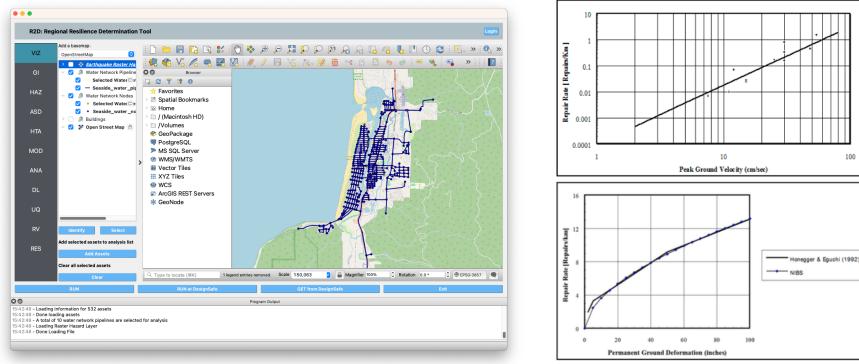




R2D Application of the ground motions

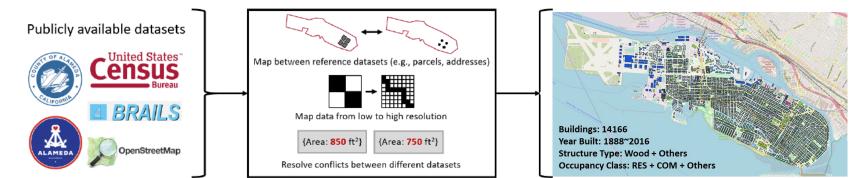
Application 2: Transportation infrastructure safety assessment

High-level performance assessment using ground motion Intensity Measures and FEMA's Hazus fragility curves for highway bridges, tunnels, and roadways.



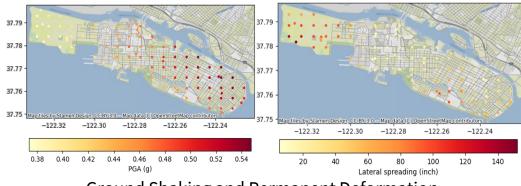
R2D Application of the ground motions

Application 3: Water pipeline infrastructure safety assessment


High-level performance assessment using ground motion Intensity Measures and FEMA's Hazus fragility curves for water pipeline, pumps and tanks.

Interdependency - Alameda Case Study

High-Fidelity Building Inventory



Bassman T.J., Zsarnóczay A., Saw J., Wang S., Deierlein G.G., "High-Fidelity Testbed Development for Regional Risk Assessment in Alameda, California", 12th NCEE, 2022

Inventory Generation Tools

SimCenter W

Ground Shaking and Permanent Deformation

Transportation & Water Infrastructure

Modeling Functional Recovery

Functional Recovery: A Conceptual Framework with Policy Options

A white paper of the Earthquake Engineering Research Institute December 6, 2019

Executive Summary

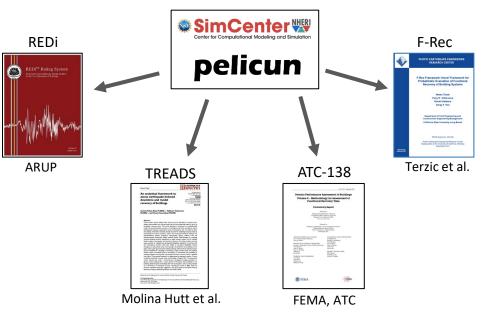
Earthquake-existant design, especially as required by building codes, has always been primarily about safety. Over the last few years, policymakers and advocates have begun calling for "better than code" seismic design (Pederal Register, 2016; San Francisco, 2016; NRT, 2017).

A productive way to think about this goal is to envision codes and standards written to achieve not only safety, but also acceptable recovery times. The recent NERRP neurhorization, which EERI supported and helped to drift, does this. It calls for FEMA and NIST to convene experts to recentened "receiptes for ins the built environment and critical infrastructure to reflect performance poals stated in to reoccupancy and functional recovery time" (42 U.S.C. 7705(b); Senate Bill 1768, 2018)

tharization cites two milestance on the post-outbranks timeling The NetWOP resummentance cores were mainteness on the poor-entrupase timetime: recompany and functional recovery. For a building, the first mitisteness recoveryins; it is the builty to re-enter, take shelter, and begin the recovery plane safely (SPUR, 2012). Functional recovery is the next militatone; it marks the restoration of building services as needed to support a significant measure of the building's intended prearthquade use (Borawitz, 2011). Similarly, for infrastructure systems functional recovery marks the restoration of the system's services as needed to allow users to resume most of their pre-earthquake activities (Davis, 2019a; 2019b).

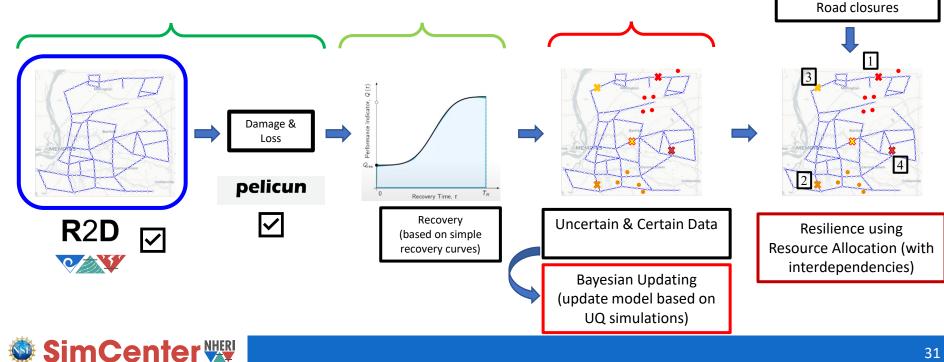
A working definition, suitable for both buildings and lifeline infrastructure, is pres follows: Functional recovery is a post-earthquake state in which capacity is sufficiently maintained or restored to support pre-earthquake functionality.

Thus, design for functional recovery means considering both safety and recovery time in design. When Thus, escaja ner transient recovery means considering som satery and recovery rime in ocelagi. writer centern recordinging or recovery items are usacceptable, higher performance goals might be set, resultin in changes to what and how we build. But in many cases, expected recordpancy or recovery times might already be adequate, in which cases "better than code" performance would mean enly that the recovery goals and expectations are better understood and more clearly conveyol.

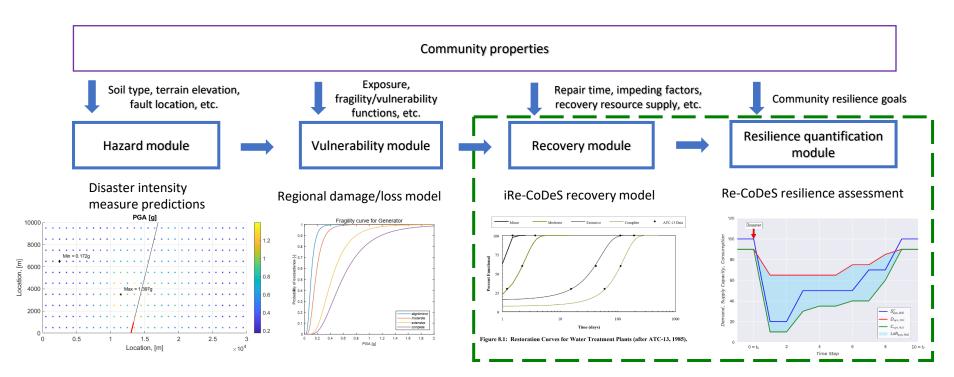

We recognize that a design shift for functional recovery will need to consider interdependencies between at least five physical systems that comprise the built environment and will involve four sets of linked bu largely independent issues.

- The costerns are
- Buildings, new and existing, serving all occupancies and uses
 Water and wastewater systems
- Energy systems
 Communication systems

FEMA P-2090/ NIST SP-1254 / January 2021



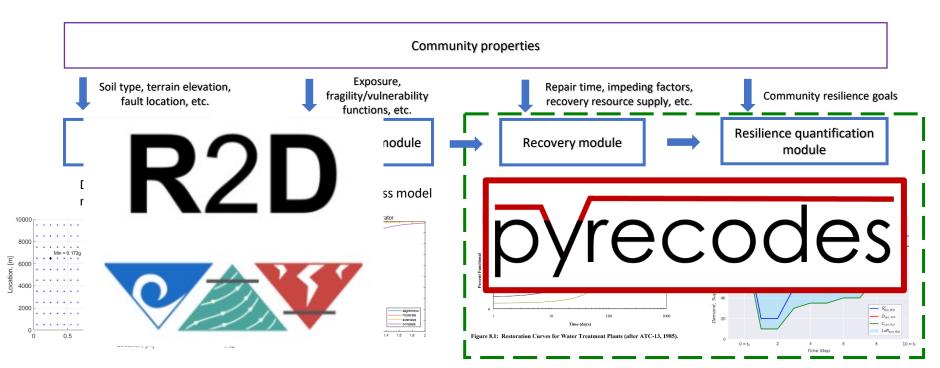
- Opportunities for comparisons and benchmarking ٠
- Recognize and leverage synergies in future development
- Open-source code supports both research and practice •


GOAL: D/L+R+UQ+Interdependencies

Tool to allocate resources post-event based on both certain and uncertain data and uncertainty in other parameters (i.e. known pipe/valve break) + OTHER INFRASTRUCTURE DAMAGE DATA

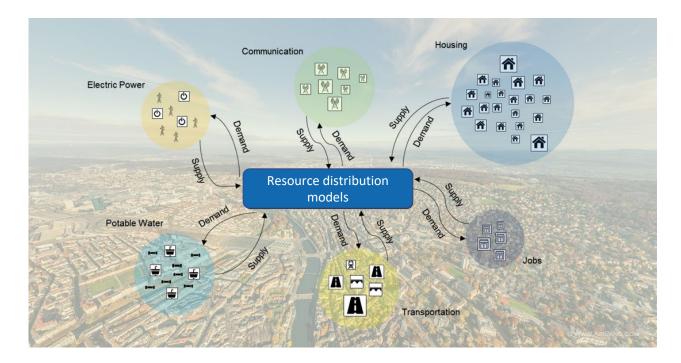
Building damage

iRe-CoDeS computational workflow: physics-based and modular

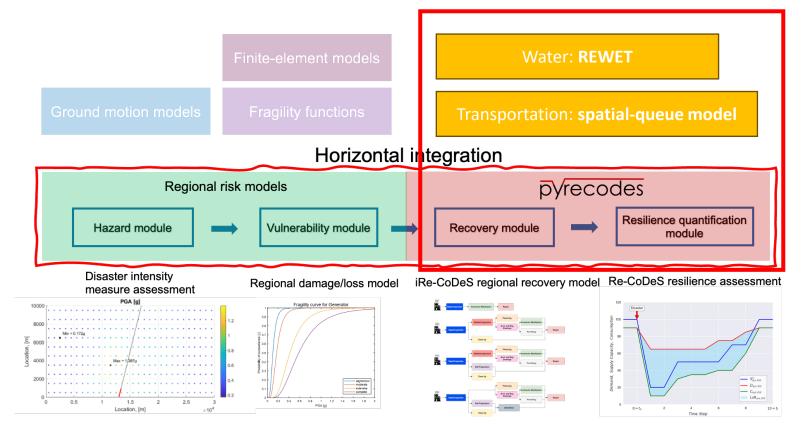


Blagojević, Kipfer, Didier, Stojadinović (2020) Probability-based Resilience Assessment of Communities with Interdependent Civil Infrastructure Systems. Proceeding of the 17th World Conference on Earthquake Engineering. Sendai, Japan.

Blagojević, Kipfer, Didier, Stojadinović (2020) Scenario-based Resilience Assessment of Communities with Interdependent Civil Infrastructure Systems. Proceeding of the 17th World Conference on Earthquake Engineering. Sendai, Japan.

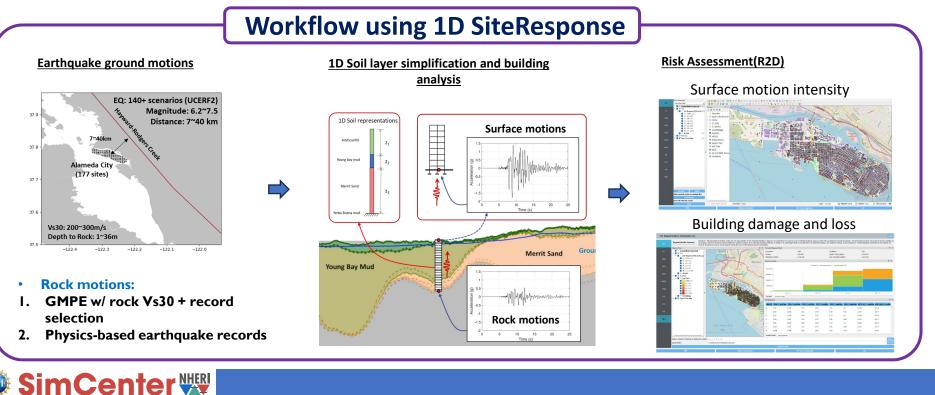

iRe-CoDeS computational workflow: physics-based and modular

pyrecodes is an open-source framework for regional disaster recovery simulation and disaster resilience assessment of interdependent systems.

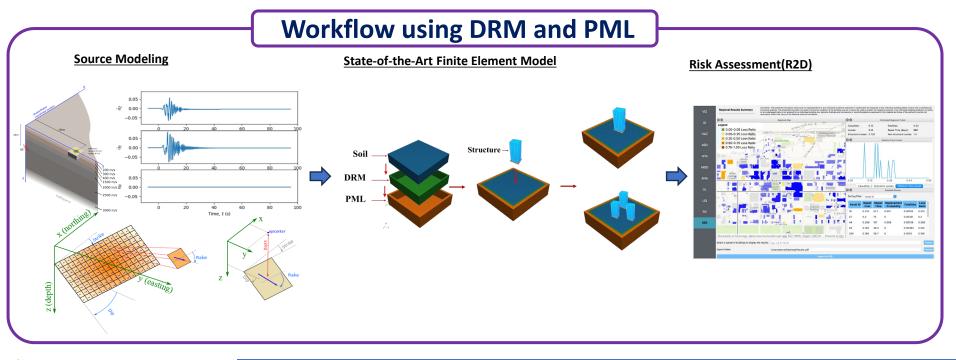

Component interdependencies simulated as a flow of resources and services

Blagojević, Hefti, Henken, Didier, Stojadinović (2022) Quantifying Disaster Resilience of a Community with Interdependent Civil Infrastructure Systems. Structure and Infrastructure Engineering.

Regional Resilience: integration and future development


Two Potential Workflows to integrate Simulated Ground Motions

- ID Site Response
- Domain Reduction Method (DRM)


Current R2D Worflow to include Site Response effects

- Coupling GMS, building inventory and damage and loss assessment
- Modular approach with flexible soil and structural model definition
- Conducting Risk Assessment in Research Area

Proposed R2D Workflow to include SiteResponse effects

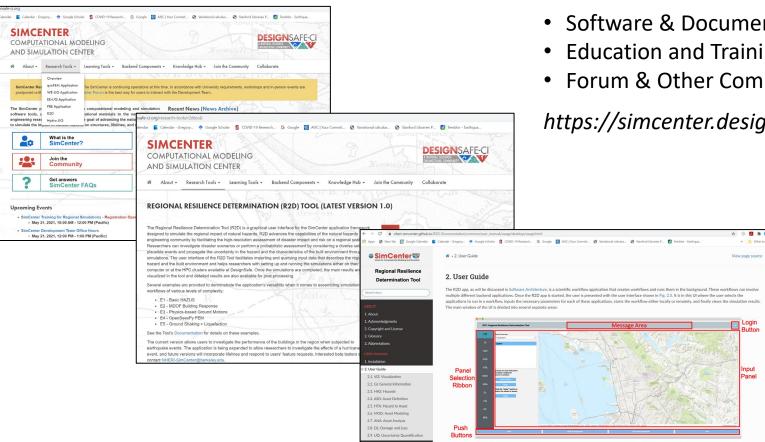
- Transition to Cutting-Edge Simulations that includes DRM and PML
- Exploring Source Rupture Modeling and Uncertainty
- Conducting Risk Assessment in Research Area

Use Cases for Simulated Ground Motions

1. Regional impact of earthquakes

- Broader Goal: Information for decisionmaking related to public policy, infrastructure operation and preparedness, retrofit mandates, urban planning
- Simulation Goal: Regional risk, evacuation, recovery/resilience
- Ground motions requirements:
 - Is spatially distributed mean response (PGA, PGV, PGD) enough?
 - How many simulated ground motion realizations?
- Soil modeling requirements:

imCenter 🚟


ID Site Response good enough? ... or just a useful first step?

- 2. Detailed earthquake response of specific structures
 - Broader Goal: Detailed seismic design or retrofit
 - Simulation Goal: Detailed asset performance quantification
 - Ground motions requirements:
 - Detailed time history with high spatial resolution at varying depth?
 - How many simulated ground motion realizations?
 - Soil modeling requirements:
 - Domain Reduction Method?

49

SimCenter Portal

🏶 SimCenter 🕎

- Education and Training Webinars
- Forum & Other Communication

https://simcenter.designsafe-ci.org/

SimCenter Role:

Provide tools to allow researchers / practitioners to <u>feasibly</u> make use of simulated ground motions in computational workflows

Feasible = Easy access to:

- simulated ground motion data
- simulation models
- HPC resources

