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Learning from Instrumented Structures

If a structure is instrumented it offers a UNIQUE opportunity to improve
and validate of analytical models, but also to learn about the fragility of
foundations, structures and nonstructural components.

I was sort of dragged into Earthquake Engineering on Sept 19, 1985,
almost 35 years ago, and I believe we don’t do enough of this. We don’t
instrument enough structures, we don’t study enough those that are
instrumented, etc.

For 20 years now I have been a strong advocate of structural
instrumentation and serve in advisory committees in ANSS/USGS and
CSMIP and I try to learn as much as possible on the ultimate test: real
structures subjected to real earthquakes.
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Early attempts to learn about damping in buildings

Four-Story RC Building on 
Commercial St in Los Angeles 

J.L. Alford and G.W. Housner, 1953

Hollywood Storage Building
Oct 1993 Long Beach Aftershock
R.R. Martel and M.P. White, 1951 

Bank of America Bldg, San Jose
J.A. Blume and L. Jacobsen, 1935
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There is a need for new improved damping recommendations for the seismic
analysis of buildings that provide guidance on some of these questions.
Instrumented buildings offer a UNIQUE opportunity to answer this kind of
questions.

7

A common approach to initiate this learning is to pose questions

• Is it adequate to model damping as viscous damping?

• Should I use modal damping or Rayleigh damping ?

• If modal damping, same damping ratio for all modes?

• What value should I use?

• It is height dependent?

• Same value for steel and reinforced concrete?

• Same value for all lateral resisting systems?

• How about damping in higher modes?

• Is damping amplitude-dependent?

Sample of questions that I’ve asked my self
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“In wind applications, damping ratios of 1 percent and 2
percent are typically used in the United States for steel and
concrete buildings at serviceability levels, respectively,
while ISO (1997) suggests 1 percent and 1.5 percent for
steel and concrete, respectively."

(Source: Commentary ASCE 7-10)

Apparent dichotomy on damping in buildings

Damping for Wind Loading

𝜉"#$% ≪ 𝜉'()*+,-(.' ?
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(Source: ASCE 7-10)

Apparent dichotomy on damping in buildings

Damping for Seismic Loading

𝜉"#$% ≪ 𝜉'()*+,-(.' ?
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Myth: Tall Buildings have 2.5% damping

Damping for Seismic Loading

(Source: PEER, 2010)
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Examples of Buildings Analyzed
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Examples of Location of Instrumentation of Buildings Analyzed

Tall buildings are typically instrumented at four or more levels
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?
BUILDINGGROUND MOTION

RECORDED 
RESPONSE

• We use a parametric system identification technique in the time domain
Basics of how we do it:

OPTIMIZATION: Minimize the error between the recorded and predicted responses

COMPUTED 
RESPONSE

Mathematical Model

Inferring damping ratios from recorded motions
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52-Story Office Building in downtown LA (NS Direction)Example
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52-Story Office Building in downtown LA (NS Direction)Example
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Example
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Results from 14 tall buildings

2014 LATBSDC, 2010 PEER TBI

For buildings with heights larger than 150 m (490 ft) all inferred damping 
ratios are smaller than currently recommended values of 2.5% except for 
one building that has sloshing dampers in the transverse direction.
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• Number of recorded seismic responses:  1335

• Total number of buildings:   154

• Total number of earthquakes: 117

• Total number of reliable data points :  1038

Buildings analyzed

(After Cruz and Miranda; 2017, 2018)

Comparison of size of dataset with what was used as basis for PEER’s TBI v1.0
• ATC-72: 86 
• This study: 1038

Complete dataset
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Building Height Fundamental Period Aspect Ratio

Damping Ratio in the First Translational Mode
We have now expanded the study to more than 154 buildings most of which have recorded several 
earthquakes for more than 1,000 data points on damping ratios

2014 LATBSDC 
2010 PEER TBI
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Proposed simplified equations:
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Damping Ratio in the First Translational Mode
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1980 Livermore Earthquake
Viscous ?
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Evaluation of amplitude dependence

(After Haviland, 1979)

We have known for at least 50 years that damping ratio is amplitude dependent.

(After Kuroiwa and Jennings, 1979)
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Is damping amplitude dependent?
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• El Segundo - 14S
• Showing results for the first mode only

24

N-S Direction

E-W Direction

Evaluation of amplitude dependence

26 TIMES MORE AMPLITUDE

32 TIMES MORE AMPLITUDE
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Is damping amplitude dependent?
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Northridge 1994
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• Los Angeles - 52S
• Showing results for the first mode only

25

Evaluation of amplitude dependence

19 TIMES MORE AMPLITUDE

17 TIMES MORE AMPLITUDE
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Is damping amplitude dependent?

26

Evaluation of amplitude dependence

(After Cruz and Miranda, 2016)
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Is damping amplitude dependent?

Evaluation of amplitude dependence

With exception of extremely small levels of deformation, practically no amplitude
dependence was observed with changes in amplitude of x10, x30.
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Is damping amplitude dependent?

Evaluation of amplitude dependence
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Steel Concrete

𝜉5*''6 < 𝜉89$8)'*' ?
Influence of primary structural material

x x
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𝜉5*''6 < 𝜉89$8)'*' ?
Influence of primary structural material

x

There is no statistical difference between damping ratios in steel and reinforced concrete buildings.
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𝜉:;<=5 = 𝜉:>=5 ?
How about the role of the lateral resisting system

x

This observation is consistent with previous observations with wind loading by Prof. Kiewisky-Correa at ND.
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Is Rayleigh Damping really a good model ?

• Originally proposed by John W. Strutt (Lord Rayleigh) in 1877

• Damping matrix proportional to [M], [K] or a linear combination of these two that allows
uncoupling the equations of motion

• Most commonly used damping model

BUT IS IT REALISTIC OR ADEQUATE ?
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Evaluation of Rayleigh Damping



2020 PEER Annual Meeting, January 16-17, 2020 UC Berkeley E. Miranda & C. Cruz

𝜉$[%]

𝑓$[𝐻𝑧]

34

Damping Ratio as a Function of Frequency

52-Story Office Building in downtown LA (NS Direction)
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(After Cruz and Miranda, 2017)

Results from many buildings
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(After Cruz and Miranda, 2017)

Results from many buildings
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(After Cruz and Miranda, 2017)

Results from many buildings
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Summary and Conclusions
• Damping ratios decrease with increasing building height;

• Consistent with wind loading studies, once we exceed a very small level of lateral
deformation, we don’t see much (any?) amplitude-dependent damping.

• Primary structural material (e.g. steel vs RC) does not show any statistical significant
difference but lateral resisting system in some cases lead to different damping ratios;

• The damping ratios we are obtaining are very similar to those reported in the wind
literature for large amplitude wind loading;

• Damping ratios increase linearly with frequency and this applies to both the fundamental
modes and higher modes, but its not quite a stiffness proportional damping;

• No evidence of mass-proportional damping was found, so we do not recommend the use
of Rayleigh damping;

• SSI plays a major role in understanding damping ratios in buildings, in particular
radiation damping, explains:

1. Why viscous damping works very well uuhuhuhuhuhhuhuhuhuhuhuhuhuuh
(this is consistent with Lysmer & Kuhlemeyer, 1969);

2. Reduction of damping ratio with increasing height (or T1 or H/R);
3. Increase in damping ratio with increasing frequency
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My photo a couple of weeks ago from Yerba Buena Island

Eduardo Miranda, 2020

Thank you for your attention !

Our next test bed…


