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q Importance of subsurface monitoring

q Distributed fiber optic sensing

o Distributed strain sensing applications
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on using distributed fiber optic sensing for subsurface monitoring

q Concluding remarks
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Subsurface Monitoring

Mita (1999)
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Measurement Sparsity, Inference Uncertainty, and Inaccessibility

• Sparse point sensors (e.g., strain gauges, accelerometers) do not provide

continuous field measurement, can result in large uncertainties, and are not

optimized for long-term monitoring.

• Vision and remote sensing-based methods

cannot help much with monitoring of

inaccessible/deep subsurface infrastructure

and subsurface monitoring.
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• Fiber optic sensing-based methods have

been long explored as a promising sensing

candidate for health monitoring of civil

infrastructure.
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Point Sensors

Fiber Optic Sensors

Can distributed fiber optic sensing provide

robust solutions for subsurface monitoring?
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Distributed Fiber Optic Sensing

Stork et al. (2020)

● Distributed fiber-optic sensing technologies measure light backscattered from every

point along a continuous fiber

● Changes in the environment around the fiber (temperature, strain) will alter the

scattering profile - The cable is the sensor
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Zhan et al. (2019)

Distributed fiber-optic sensing

converts conventional fiber-

optic cables into massive arrays

of strain, temperature and/or

vibration sensors.



Brillouin-Based and Rayleigh-Based Distributed Sensing

Brillouin-Based Sensing Rayleigh-Based Sensing

Measurement Brillouin frequency shift Rayleigh phase shift

Temporal 
Sampling Typically, minutes mHz to kHz

Sensitive to Strain
(and Temperature)

Dynamic Strain 
(and Temperature)

Gauge length
(spatial averaging) Typically, 1 m Typically, 1 -10 m

Spatial Sampling < 1 m < 1 m

DAS can provide:

● Increased sensitivity

● Increased temporal resolution >> possibility to measure dynamic processes
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Monsberger et al. (2020)



Brillouin-Based Distributed Strain Sensing Applications

Cheng-Yu et al. (2017)Soga and Luo (2018)

Pile Monitoring

Tunnel Monitoring Slope Stability 
Monitoring

Temperature 
Monitoring

Cheng-Yu et al. (2017)Cheng-Yu et al. (2017)
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Rayleigh-Based Distributed Acoustic Sensing (DAS) Applications

Jin et al. (2017)

Strain monitoring of 
hydraulic fracturing

Micro-seismic 
detection

Baird et al. (2020) Correa et al. (2020)

Active source 
imaging

Tele-seismic 
earthquake detection

Lindsey et al. (2017)

Ambient noise 
near-surface imaging

Ajo-Franklin et al. (2019)
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Earthquake & Deformation Monitoring Along the Same Array

Subsidence due to 
permafrost thaw

Lindsey et al. (2017) Rodriguez Tribaldos et al. (2018)

Strain Rate Strain
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Lab-scale Sand Box Testing on Optical Fiber Cables

Thomas et al. (2021)
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Soil Box Testing & Modeling: A New Opportunity to 
Build Confidence on Using Distributed Fiber Optic Sensing 

in Lab- and Real-scale Problems

Objective 1
Advanced Instrumentation Solutions 
& Lab-Scale Subsurface Monitoring  

Objective 2
Real-Scale Subsurface 
Monitoring Solutions

LBNL BioEPIC Building (Courtesy of David McCallen) 
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Amplifi
ca

tio
n

6.55 m

4.6 m

Soil Box Dynamic Characteristics
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Free field response (no structure) Scattered field response (with structure)

Soil Box Dynamic Characteristics (plane-strain approximation)
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Typical Point Sensors for Lab-Scale Instrumentation of
Soil-Structure Interaction Problems

Quantities of Interest:

● Structure deformation and strain

● Soil deformation and strain

Potentiometer

Accelerometer

Bender Element

Strain Gauge

● Strain dependent soil properties

● Soil-structure interface characteristics
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Exemplar Instrumentation (Centrifuge Testing)

Seylabi et al. (2016)
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Exemplar Instrumentation (Centrifuge Testing)

Bender Elements

Accelerometers

Seylabi et al. (2016)
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Bending strain?

Hoop strain?

Scattered strain and 
particle vibration?

Potential Fiber Optic Sensing Instrumentation Layout

Propagation 
velocity?

Interrogation 
Units
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We need to perform systematic numerical and experimental feasibility studies

to answer the following research questions:

● Spatial & temporal resolutions in different environments

● Possible designs to resolve different components of the strain tensor

● Consistency with point sensor measurements

● Soil-cable-structure coupling effects and strain transfer mechanisms

● Embedment, densification, and soil nonlinearity effects

● Integrity and resistance to large deformations and damages

● Required numerical modeling techniques

● Real-scale deployment challenges and opportunities for long-term/real-

time monitoring

Research Questions 
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Concluding Remarks

Courtesy of David McCallen

?
Hayw

ard Fault
~ 0.3 km from the fault
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Concluding Remarks

Thank you for your attention!

✓

Towards robust solutions for subsurface vibration and deformation monitoring


