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Subsurface Monitoring
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Measurement Sparsity, Inference Uncertainty, and Inaccessibility

Sparse point sensors (e.g., strain gauges, accelerometers) do not provide
continuous field measurement, can result in large uncertainties, and are not

optimized for long-term monitoring.

Vision and remote sensing-based methods
cannot help much with monitoring of
inaccessible/deep subsurface infrastructure

and subsurface monitoring.
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Can distributed fiber optic sensing provide

robust solutions for subsurface monitoring?
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Distributed Fiber Optic Sensing

Distributed fiber-optic sensing technologies measure light backscattered from every

point along a continuous fiber

Changes in the environment around the fiber (temperature, strain) will alter the

scattering profile - The cable is the sensor

Distributed fiber-optic sensing

converts conventional fiber-
optic cables into massive arrays
of strain, temperature and/or

vibration sensors.

Laser pulse sent
down optical fiber.

Interrogator processes
backscattered light.
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Channel spacing

Phase difference
across a gauge
length is assigned
to channels.
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Brillouin-Based and Rayleigh-Based Distributed Sensing

Brillouin-Based Sensing | Rayleigh-Based Sensing

Measurement Brillouin frequency shift Rayleigh phase shift )\0
& :
Temporal _ . > Rayleigh
Sampling Typically, minutes mHz to kHz g Tl'g
£ Brillouin [i| Brillouin
Sensitive to Strain Dynamic Strain E <T—£ L»
(and Temperature) (and Temperature) i=)
»
Gauge length . . /\ >
(spatial averaging) Typically, 1 m Typically, 1-10 m wavelength
Monsberger et al. (2020)
Spatial Sampling <1lm <1lm

DAS can provide:

e Increased sensitivity

e Increased temporal resolution >> possibility to measure dynamic processes



Brillouin-Based Distributed Strain Sensing Applications

Optical fiber strain and
temperature sensors
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Rayleigh-Based Distributed Acoustic Sensing (DAS) Applications
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Earthquake & Deformation Monitoring Along the Same Array
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Lab-scale Sand Box Testing on Optical Fiber Cables
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Soil Box Testing & Modeling: A New Opportunity to
Build Confidence on Using Distributed Fiber Optic Sensing
in Lab- and Real-scale Problems

Objective 1
Advanced Instrumentation Solutions
& Lab-Scale Subsurface Monitoring

Objective 2
Real-Scale Subsurface
Monitoring Solutions

Steel Moment

| Resisting Frame
Superstructure
(both directions)

LBNL BioEPIC Building (Courtesy of David McCallen)
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Soil Box Dynamic Characteristics (plane-strain approximation)
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Typical Point Sensors for Lab-Scale Instrumentation of
Soil-Structure Interaction Problems

Quantities of Interest:

® Structure deformation and strain e Strain dependent soil properties
e Soil deformation and strain e Soil-structure interface characteristics
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> Accelerometer > >

== Bender Element

I Strain Gauge
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Exemplar Instrumentation (Centrifuge Testing)

O Seylabi et al. (2016)




Exemplar Instrumentation (Centrifuge Testing)
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Potential Fiber Optic Sensing Instrumentation Layout

Interrogation
Units

Bending strain?

Hoop strain?

(Scattered strain and
particle vibration?

Propagation
velocity?
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Research Questions

We need to perform systematic numerical and experimental feasibility studies

to answer the following research questions:

Spatial & temporal resolutions in different environments

Possible designs to resolve different components of the strain tensor
Consistency with point sensor measurements

Soil-cable-structure coupling effects and strain transfer mechanisms
Embedment, densification, and soil nonlinearity effects

Integrity and resistance to large deformations and damages

Required numerical modeling techniques

Real-scale deployment challenges and opportunities for long-term/real-

time monitoring
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Concluding Remarks
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Concluding Remarks

Towards robust solutions for subsurface vibration and deformation monitoring

Superstructure
(both directions)

Above grade

Subsurface

Thank you for your attention!
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