Distributed fiber-optic sensing for subsurface vibration and deformation monitoring

Elnaz Seylabi¹, Verónica Rodríguez Tribaldos², David McCallen^{1,2}

¹ University of Nevada Reno (UNR)

² Lawrence Berkeley National Laboratory (LBNL)

DOE-PEER Workshop May 17-18, 2021

Outline

□ Importance of subsurface monitoring

- Distributed fiber optic sensing
 - Distributed strain sensing applications
 - Distributed acoustic sensing applications
 - Lab-scale sand box testing on optical fiber cables
- □ Soil box testing and modeling: A new opportunity to build confidence

on using distributed fiber optic sensing for subsurface monitoring

Concluding remarks

Subsurface Monitoring

Internet images

Mita (1999)

Measurement Sparsity, Inference Uncertainty, and Inaccessibility

- Sparse point sensors (e.g., strain gauges, accelerometers) do not provide continuous field measurement, can result in large uncertainties, and are not optimized for long-term monitoring.
- Vision and remote sensing-based methods

 cannot help much with monitoring of
 inaccessible/deep subsurface infrastructure
 and subsurface monitoring.

 Fiber optic sensing-based methods have been long explored as a promising sensing candidate for health monitoring of civil infrastructure.

Can distributed fiber optic sensing provide robust solutions for subsurface monitoring?

Distributed Fiber Optic Sensing

- Distributed fiber-optic sensing technologies measure light backscattered from every point along a continuous fiber
- Changes in the environment around the fiber (temperature, strain) will alter the scattering profile - <u>The cable is the sensor</u>

⁶

Brillouin-Based and Rayleigh-Based Distributed Sensing

DAS can provide:

- Increased sensitivity
- Increased temporal resolution >> possibility to measure **dynamic processes**

Brillouin-Based Distributed Strain Sensing Applications

Rayleigh-Based Distributed Acoustic Sensing (DAS) Applications

Earthquake & Deformation Monitoring Along the Same Array

Lab-scale Sand Box Testing on Optical Fiber Cables

Soil Box Testing & Modeling: A New Opportunity to Build Confidence on Using Distributed Fiber Optic Sensing in Lab- and Real-scale Problems

Objective 1

Advanced Instrumentation Solutions & Lab-Scale Subsurface Monitoring

Objective 2

Real-Scale Subsurface Monitoring Solutions

LBNL BioEPIC Building (Courtesy of David McCallen)

Soil Box Dynamic Characteristics

Soil Box Dynamic Characteristics (plane-strain approximation)

Free field response (no structure)

Scattered field response (with structure)

Typical Point Sensors for Lab-Scale Instrumentation of Soil-Structure Interaction Problems

Quantities of Interest:

- Structure deformation and strain
- Soil deformation and strain

- Strain dependent soil properties
- Soil-structure interface characteristics

Exemplar Instrumentation (Centrifuge Testing)

Seylabi et al. (2016)

Exemplar Instrumentation (Centrifuge Testing)

Potential Fiber Optic Sensing Instrumentation Layout

Research Questions

We need to perform systematic numerical and experimental feasibility studies to answer the following research questions:

- Spatial & temporal resolutions in different environments
- Possible designs to resolve different components of the strain tensor
- Consistency with point sensor measurements
- Soil-cable-structure coupling effects and strain transfer mechanisms
- Embedment, densification, and soil nonlinearity effects
- Integrity and resistance to large deformations and damages
- Required numerical modeling techniques
- Real-scale deployment challenges and opportunities for long-term/realtime monitoring

Concluding Remarks

Courtesy of David McCallen

Concluding Remarks

Thank you for your attention!