

Shake Table Tests for Validation of Numerical FSI Models of Advanced Reactors

Faizan Ul Haq Mir, Ching-Ching Yu, Andrew S. Whittaker

University at Buffalo

- Motivation
- Test plan
- Instrumentation
- Seismic inputs, fixed based and isolated
- Test results:
 - Frequency of convective mode
 - Damping in convective modes
 - Hydrodynamic responses
 - Base isolation
- Numerical modeling: linear and non-linear solvers in LS-DYNA
- Work in progress

(Image: TerraPower)

Motivation

- Advanced reactors
 - Liquid metals for heat evacuation
 - Vessels may be thinner than in PWRs and BWRs
 - Reduced seismic capacity
- Fluid-structure interaction (FSI)
 - Building structure, reactor vessels, vessel internals
- Legacy FSI procedures added mass and damping
 - Idealized geometries only (e.g. Chen et al. 1976, Dong 1978)
- FSI calculations for seismic design, qualification and risk assessment
 - Physical testing of equipment not feasible in most cases
 - Verified and validated FSI models needed
 - Conventionally supported
 - Isolated

Verification and validation

Building a dataset

- Base-supported vessel
- Phase-I:
 - No vessel head, RVIs, or HMOs
 - Results used for validation of numerical models in LS-DYNA: ALE and ICFD
- Phase-II:
 - Simplified representations of central and offcenter RVIs
 - Testing completed; numerical modeling continues

Conclusions

- Experimental and analytical predictions of sloshing frequency
- Smaller damping in convective mode than ASCE 4
- Analytical solutions for lateral, rocking, and vertical excitations: results <u>may</u> be superimposed
- Base isolation leads to reduction in responses, except wave height
- Lagrangian approaches in LS-DYNA do not predict convective responses well
- ALE model in LS-DYNA validated; tracer card needs improvement
- If no convective response: Lagrangian model is faster than ALE
- Data to be made available on DesignSafe

Acknowledgments

- ARPA E
- Kairos Power
- Benjamin D. Kosbab and Kaniel Z. Tilow, SGH
- Technical staff, SEESL, University at Buffalo

Thank you

faizanul@buffalo.edu

