Modeling Vertical Free-Field Motion for SSI Analysis Consistent with Vertical Design Motion Development

DOE/PEER/UNR Workshop

International Workshop on Large-Scale Shake Table Testing for the Assessment of

Soil-Foundation-Structure System Response for Seismic Safety of DOE Nuclear Facilities

May 18, 2021

Farhang Ostadan

Manager of Earthquake Engineering Center

Bechtel Corporation

EPRI Report

https://www.epri.com/#/pages/product/3002011804/

Current Practice

- Development of seismic design motion for NPP application begins with PSHA and follows with a robust site amplification analysis (NUREG/CR 6728) to develop the horizontal design response spectra (GMRS, FIRS)
- ➤ For vesical design response spectra development, vertical Pwave analysis is no longer performed. P-wave amplifications are found to be spurious and not consistent with observation
- ➤ Instead, applicable V/H spectral ratios are used in practice to develop vertical design spectra. There are few publications outlining the formulation of the V/H ratios
- For horizontal SSI analysis, the horizontal design spectra or associated time histories are used for analysis
- For vertical SSI analysis, vertical P wave is modeled in the freefield
 - ✓ This approach is inconsistent with development of the vertical design spectra
 - ✓ SSI results are overly conservative (ISRS for equipment design)
 - ✓ Results in buoyancy stability issues for plant structures with embedment (shallow and deep embedment)

New Approach

- For SSI analysis of embedded structures using the substructuring methods (SASSI), the free-field motion within the embedment depth of the structures needs to be computed. In other SSI formulation, free-field motion for the full height of the soil column is needed
- ➤ In the new approach, the free-field motion at each depth in the model is computed using the horizontal motion at the same depth and applying applicable V/H ratio to get the vertical motion
- This approach is formulated in frequency domain using RVT (random vibration theory) in an iterative process to get he vertical spectra at all depth of interest for SSI analysis
- ➤ In this approach, free-field SSI vertical motion is consistent with the approach used for development of the vertical design spectra
- ➤ The vertical SSI results are more realistic and are reduced from the results using P-wave analysis

of Free-Field Ground Motion Response Spectra for Deeply Embedded nuclear Structures (BNL-107612-2015-R, 2/2015)

(Data from 45 vertical arrays: California, Japan, Alaska, Taiwan)

Lotung SSI Experiment (1980s)

V/H Spectral Ratio from Lotung LSST No. 7 Free-Field records

Commonly Used V/H Ratios

V/H ratios for WUS rock and CEUS Hard Rock Sites, NUREG/CR-6728 at 5% spectral damping

Commonly Used V/H Ratios

Gülerce and Abrahamson V/H(WUS,soil) / V/H(WUS,rock) for a suite of controlling magnitudes and distances for VS30 of 743 m/sec and 1,500 m/sec at 5% spectral damping

Shear and P-wave Velocity Profiles at a Soil Plant Site in US

Randomized P-wave Profile

Responses at the Surface

Comparison of V/H Ratio

Shear and P-wave Velocity Profiles at a Rock Plant Site in US

Vertical Responses at the Surface

Adjustment Factors to be Applied to FIRS to Obtain SSI Input Response Spectra

- There are anomalies and over prediction of vertical ground motion when P-wave propagation is used
- Several studies concluded that the vertical motion at low and mid frequency is the results of refraction and reflection of shear waves and not from P-wave body waves
- ➤ The P-wave analysis results conflict empirical V/H ratio relationship developed based on recorded motion
- The V/H ratio operators operate on H spectra to get the V spectra

UNR Shear Box

- ➤ In development of the horizontal spectra, the UNR shear box offer unique opportunities to evaluate:
 - ✓ Effect of one-dimensional versus two-dimensional shaking on soil nonlinearity and site response
 - ✓ Assessment and verification of equivalent linear soil models versus nonlinear models and their limits
 - ✓ Validation data for site response nonlinear analysis
 - ✓ Site properties at high level of soil strain particularly soil damping (out of reach of laboratory testing, RCTS)
 - ✓ Resonance of thin soft soil layers on rock or stiff soil layers
 - ✓ Begin to provide SSI data for extreme shaking for validation of nonlinear SSI solutions

Adopted AP1000 Lumped Mass Stick Model (LMSM)

V/H ratios in the Soil Profile due to P-wave Propagation Input, RG 1.60 Input Motion

V/H ratios in the Soil Profile due to Consistent V/H Input, RG 1.60 Input Motion

Comparison of Vertical ARS at Node 1 on Foundation

Comparison of Vertical ARS at Node 18, top of ASB

Comparison of Vertical ARS at Node 29, Top of CIS

Total Vertical Seismic Load (kips)			
	ASB	CIS	SCV
P-Wave Input	2.608 x 10 ⁴	2.600 x 10 ⁴	2.403 x 10 ³
Consistent V/H Input	2.137 x 10 ⁴	2.130 x 10 ⁴	1.925 x 10 ³
Mean Basemat Pressure (ksf)			
	ASB	CIS	SCV
P-Wave Input	1.159	1.156	0.107
Consistent V/H Input	0.950	0.947	0.086

Comparison AP1000 on Deep Soil Profile: Total Vertical Seismic Load and Mean Basemat Seismic Pressure

Closure

Consistent V/H Ratio Approach for vertical SSI analysis has been approved by ASCE 4 committee for implementation in ASCE 4-22 in progress at this time

Thank You Comments/Questions

