

PEER International Pacific Rim Forum June 16-17, 2021

A 4-Step Methodology for the Validation of Not-Historical Large-Event Ground-Motion Simulations: the San Francisco Bay Area Case Study

Floriana Petrone University of Nevada, Reno & Lawrence Berkeley National Laboratory

Norman Abrahamson and David McCallen

June 17, 2021

Agenda

Introduction

 \square

- Relevance of simulated GMs to engineering domains
- Historical vs not-historical events
- Proposed 4-step validation methodology and acceptance criteria
 - Rock-basin canonical domain
 - □ The San Francisco Bay Area region
 - Simulation-based site-specific analysis vs ASCE/SEI 7-16

Concluding remarks

Relevance of simulated GMs to engineering domains

Inform and support PBEE

Understand <u>what features</u> relevant to the evaluation of the structural risk <u>characterize near-field ground motions</u>

Map the <u>complex variability of structural risk</u> in areas of high seismicity

Enable true site-specific evaluations of earthquake structural risk

&

Evaluate seismic hazard based on a (very) large number of simulations from a range of seismic sources

Perform Nonlinear TH analyses

Predict ground-motion amplitudes

Validation methodologies

- □ Station-by-station inspection
- Seismogram waveforms comparison
- □ Use of well-constrained GMMs

VS

Not-historical Events

- Records from consistent events are scarce/not available
- GMMs are not well constrained
- the expected GMs characteristics need to be inferred from the knowledge of geology/rupture

[Source: adapted from Ancheta et al. (2014)]

Proposed 4-step methodology

Four-step methodology and acceptance criteria

- Step 1: Selection of a population of *real records* consistent with the simulated scenarios
- Step 2: Comparison of the *distribution of IMs* from the simulated records, real records, and GMPEs
- **Step 3:** Comparison of the *distribution of simple proxies for building response*
- **Step 4:** Comparison of the *distribution of Engineering Demand Parameters (EDPs)* for a realistic model of a structure.

Petrone, F., Abrahamson, N., McCallen, D., Miah, M., (2020), Validation of (not-historical) large-event near-fault ground-motion simulations for use in civil engineering Applications, *Earthquake Engineering and Structural Dynamics*, 50(1), p. 116-134

Step 1 – Real records selection

INT

						Fault I	Parallel: M7, R _{rup}	= 1-10 km	Fault Parallel: M7, R _{rup} = 1-10 km
	Earthquake Name	Station Name	M _w	R _{rup} (km)	Vs30 (m/s)				$ \ge 0.8 = 0.8 $
		EC County Center FF	_	7.31	192.1		\sim		arit
		EC Meloland Overpass FF	-	0.07	186.2	6		-	
	I . I I I I OC	El Centro Array #4	-	7.05	208.9	[1	Ē
	Imperial Valley-06	El Centro Array #5	- 6.53	3.95	205.6	3a		< 1 1	
	(1979)	El Centro Array #6	-	1.35	203.2	0)		\searrow 1	
		El Centro Array #/	-	0.56	210.5	0.1			
		El Centro Differential Array	-	5.00	200.1	0.1			
	Morgan Hill (1984)	Covote Lake Dam (SW Abut)	6 19	0.53	597.1	E Contraction of the second seco			
:	Loma Prieta	Gilroy - Gavilan Coll	0.17	9.96	729.7	·			
	(1989)		- 6.93	3.88	477.7				
	(• • •)					0.2 0.5	1	3 8	0.2 0.5 1 3
	Landers (1992)	Lucerne	7 28	2 19	684 9		Period [sec]		Period [sec]
	Europeis (1992)	Lucenne	7.20	2.19	001.9				
		Jensen Filter Plant		5 /3	373.1	Fault I	Normal: M7, R	= 1-10 km	Fault Normal: M7, R _{rup} = 1-10 km
		Iensen Filter Plant Generator	-	5 43	525.8	5			
		Newhall - Fire Sta	-	5.92	269.1]	τ - between events term
	Northridge-01	Newhall - W Pico Canvon Rd	-	5.48	285.9				ϕ - within event term
	(1994)	Rinaldi Receiving Sta	- 6.69	6.50	282.3			1	
		Sylmar - Converter Sta	-	5.35	251.2				ili ili
		Sylmar - Converter Sta East	-	5.19	370.5		\sim	1	
		Sylmar - Olive View Med FF	-	5.30	440.5	[6]		1	
	Kobe, Japan	KJMA	- 6.90	0.96	312.0	z .		1	
	(1995)	Takarazuka	0.90	0.27	312.0	Sa _F		~	
		•••							
	Chi-Chi, Taiwan	WGK	7.62	9.96	258.9				
	(1999)	Madian	7.07 (mean)	288	365 7	0.1		\backslash	
		StDev (In units)	0.50 (linear)	2.00	0.42	Ē		\sim	
		State (in units)	0.50 (mical)	1.10	0.42	ļ		\mathbf{X}	
						ŀ		N	0
tal o	f 38 real reco	ords resolved in FN	and FP	romn	onent	0.2 0.5	1	3 8	3 0.2 0.5 1 3
iai U	10010011000			o o mp	•••••		Period [sec]		Period [sec]

The variability resulting from the uneven sampling of earthquakes was evaluated with a linear mixed-effects model

Step 2 – Distribution of IMs for the two separate components

Step 3 – Distribution of Building Response Proxies

- □ Inter-period correlation
- Ground-motion polarization
- Ground-motion significant duration

Inter-period correlation

 $\rho_{rec_{(T_1,T_2)}} \pm 1.96 \, \sigma_{\rho(T_1,T_2)}$

Step 4 – Distribution of building response from FEMs

Acceptance criteria

$$(\mu_{lnPID})_{rec,i} \pm 1.96 \sqrt{\frac{\sigma_{lnPID,rec,i}^2}{n_{rec}} + \frac{\sigma_{lnPID,sim,i}^2}{n_{sim}}}$$

The San Francisco Bay Area Case Study

The same validation approach was extended to a real domain representing the San Francisco Bay Area to simulate 8 M_w 7 Hayward Fault earthquakes.

Simulations by Arthur Rodgers and Arben Pitarka

Petrone, F., Abrahamson, N., McCallen, D., Pitarka, A., Rodgers, A., Engineering Evaluation of the EQSIM Simulated Ground-Motion Database: The San Francisco Bay Area Region, *Earthquake Engineering and Structural Dynamics* (under review)

SFBA ground-motion validation (snapshot)

PSA and ground-motion significant duration

Simulation-Based Site-Specific Analysis

Can simulated ground motions enable true site-specific analyses?

Soil class C: $Vs_{30} = 637$ -m/sec Scale factor: <5 $M_w \sim 7.2$, $R_{rup} = 4$ to 5-km 20-story RC-MRF: $T_1 = 2.9$ -sec

Simulated Ground-Motion Selection

How do we select simulated ground motions?

N

- □ Current research is **expanding the proposed 4-step methodology** to explicitly incorporate ground-motion features affecting the response of long-period structures (e.g., pulse-like components).
- Current efforts are extending the site-specific analyses to the entire San Francisco Bay Area region to investigate the effect of the site-specificity enabled by physics-based groundmotion simulations on structural design and assessment at the regional scale for multiple building typologies.
- □ Future work will **further investigate the ground-motion variability** deriving from purely uncorrelated ruptures where multiple parameters are made to vary (e.g., randomization of the slip distribution seed, hypocenter, rupture speed, risetime, etc.).

Thank you!