

Center for Computational Modeling and Simulation

SimCenter Tools for Next Generation Regional Natural Hazard Engineering

Sanjay Govindjee

UC Berkeley

NSF award: CMMI 1612843

SimCenter Mandate

To produce Extensible Software that Researchers in Natural Hazards Engineering can use in their research

- Develop an open-source computational framework for building workflow applications to support decision-making to enhance community resilience to natural hazards in the face of uncertainty;
- Design a framework that is sufficiently flexible, extensible, and scalable so that any component of it can be enhanced to improve the analysis and thereby better meet the needs of the community;
- Seed the framework with enough data and interfaces to existing simulation tools so that it can be employed in the near-term;
- Release tools/applications built using this framework that meets the computational needs of researchers in natural hazards engineering;
- Provide an ecosystem that fosters collaboration between scientists, engineers, urban planners, public officials, and others who seek to improve community resilience to natural hazards.

NHERI SimCenter

"Transforming the nation's ability to understand and mitigate adverse effects of natural hazards on the built environment through computational simulation"

quoFEM (v2.0)

quoFEM (Quantified Uncertainty with Optimization for the Finite Element Method) is a tool that combines finite element applications with uncertainty quantification (UQ) applications behind a simple user interface (UI).

Capabilities

SimCenter 🚟

- Forward problem: Monte Carlo (MC), Space filling (LHS) Variance Reduction, Importance Sampling Variance reduction, MC using surrogate models -Gaussian Processes (GP) or Polynomial Chaos Expansion (PCE), density approximation using samples
- (2) Inverse Problem: Parameter Estimation (MLE/MAP) and simulation of samples from posterior using Metropolis-Hastings (MH) variants (MH with delayed-rejection, adaptive MH)
- (3) Reliability Analysis: FORM and SORM adopting local or global search schemes for most probable point (MPP) and further leveraging surrogate models for efficient MPP identification
- (4) Global Sensitivity Analysis: MC or PCE based estimation

Year 4 updates will incorporate:

- (1) Online parameter estimation
- (2) Integration of hierarchical models and coupled with Multifidelity Monte Carlo simulation
- (3) Design under uncertainty problems (RBDO)
- (4) Extension of interface to allow easy integration of algorithms beyond DAKOTA capabilities (\rightarrow)
- (5) High efficiency techniques for global sensitivity analysis
- (6) Design of Experiments for global surrogate modeling
- (7) Rare event MC-based reliability analysis

WE-UQ (v2.0)

Wind Engineering with Uncertainty Quantification (WE-UQ) is an application to determine the response of a structure to wind loading. The tool focuses on providing different wind loading options (including options to integrate with CFD simulations), structural model generators, and UQ methods. It allows users to run computations on HPC resources.

Capabilities

<u>Loading options</u>: (1) stochastic wind load generation; (2) database-enabled options utilizing Vortex-Winds; (3) uncoupled CFD simulations incorporating TInF option for inflow; (4) Tokyo Polytechnic University's (TPU's) low-rise wind tunnel datasets; and (5) user-provided wind tunnel test data for rectangular buildings. <u>UQ methods</u>: Forward Problem methods from quoFEM

Model Generators: Nonlinear (NL) shear models and detailed OpenSees building models

-UQ: Wind Engineering with Uncertaint	y Quantification			
GI Loading Type DEDM_H	8			
SIM			DED	M-HRP Inputs
EVT Wind Tunnel Building	Geometry			
FEM	D 1	2	3	
	-			
EDP	•			
RES Building Heig	pht OH=1	H=2 H=3	H=4 H=5	
Exposure Condition				
O Urban/Suburban A	rea	Open Terrain		
Wind Speed and Durat	lon			
Mean Wind Velocity at	Building Top		100	0 mph
Duration			10	min
Angle of Incidence			0	degrees
RUN	RUN at DesignSafe	GET from D	DesignSafe	
This work is based on			grant 1612843 Sim	Cente

Year 4 updates will incorporate:

- (1) Coupling of CFD-FEM simulations.
- (2) Surrogate Modeling options.
- (3) Additional Low Rise Roof Shapes and TPU datasets.
- (4) New UQ features made available through quoFEM, including Sensitivity and Reliability Options.
- (5) Model Generators including Expert System.

EE-UQ (v2.0)

Earthquake Engineering with Uncertainty Quantification (WE-UQ) is an application to determine the response of a structure to earthquake loading. The tool focuses on providing different earthquake loading options, structural model generators, and UQ methods. It allows users to run computations on HPC resources.

Capabilities

<u>Loading options</u>: (1) Stochastically generated motions Vlachos et al. and Dabaghi & Der Kiureghian; (2) PEER .AT2 files; (3) interaction with PEER NGA WEST database; (4) Site Response (soil column: Elastic, PM4Sand/Silt, PDMY02, etc.)

UQ methods: Forward Problem methods from quoFEM

Model Generators: Nonlinear (NL) shear models and detailed OpenSees building models

• •				
EE-UQ: R	esponse of Building to Earthquake			Login
_				
GI	Loading Type Stochastic Ground Motion			
SIM	Stochastic Loading Model			
EVT	Vlachos et al. (2018)			
FEM	This model implements the method described in Vlachos et al. (2018) - "Predictive model for site specific simulation of ground motions based on earthquake scenarions"			
110	Moment Magnitude mag			
00	Closest-to-Site Rupture Distance [km] 20			
EDP	Average shear-wave velocity for top 30 meters [m/s] 600			
RES	Provide seed value 500			
	RUN at Design	afe	GET from DesignSafe	Exit
	This work is based on material supporte		dation under grant 1812243 SimCent	er
			Center for Computational Modelin	g and Simulation

Year 4 updates will incorporate:

- (1) Random Fields in Site Response
- (2) Incorporate Domain Reduction Method
- (3) Coupling with NGA East
- (4) Surrogate Modeling options
- (5) Incorporate Reliability and Sensitivity from quoFEM
- (6) Hierarchical models and multi-fidelity MC
- (7) Model Generators including Expert System

PBE (v2.0)

The Performance Based Engineering (PBE) Application is an extensible workflow application to perform PBE computations for various hazards. The current release provides researchers a tool to assess the performance of a building in an earthquake scenario. The application focuses on quantifying building performance through decision variables.

Capabilities <u>UQ methods</u>: As per EE-UQ <u>Event-loading options</u>: As per EE-UQ <u>Damage and loss (D&L) assessment</u>: FEMA P58 and HAZUS D&L functions <u>User configuration options</u>: Define D&L models

Year 4 updates will incorporate: (1) An extension to include wind events (HAZUS D&L)

PELICUN (v2.0).

PELICUN stands for Probabilistic Estimation of Losses, Injuries, and Community resilience Under Natural disasters. The HAZUS and FEMA P58 methods in PELICUN provide multihazard and multi-fidelity damage and loss modeling capabilities.

Capabilities

FEMA P58 and HAZUS-based methods to estimate damage and losses under earthquake and hurricane wind.

- (1) uncertainty in structural response;
- (2) time-based assessments;
- (3) user friendly input and output
- (4) auto-population feature for regional simulations

Year 4 updates will incorporate:

- (1) Methods and configuration data for damage and loss assessment in storm surge and tsunami events.
- (2) Higher fidelity models for lifeline damage and loss assessment.
- (3) Enhanced auto-population methods for damage and loss models.
- (4) Efficient structural response estimation without simulation.

SimCenter VIER

Tools to Study Effects of Regional Hazard

Emphasis in 2020 is on **RDT**, rWhale, PELICUN, BRAILS to allow researchers to study Effect of Natural Hazards on the Regional Scale

Buildings Inventory

Buildings Inventory Development using Web Automation

BRAILS (v1.0)

The Building Recognition using AI at Large Scale (BRAILS) is a new AI-enabled tool to assist regional-scale simulations. BRAILS utilizes machine learning (ML) and deep learning (DL) to create enhanced building inventory databases of cities.

Earthquake Scenario Simulator (EQSS)

Prototype for Scenario-based Regional Seismic Hazard Analysis and Ground Motion Records Selection/Scaling

👫 Simcenter - Earthquake Scenario Simulation		- 🗆 X
File Edit View Help		
Site Type Single Location Grid of Locations Latitude Min: 60.936 Max: 61.337 Divisions: 40 Longitude Min: -150.073 Max: -149.045 Divisions: 40		Property Value Site 950 > Location * * Site Data * * Vs30 [m/s] 184.49235439533368 Source Global Vs30 from Topographic Slope (Wal * Zhao et al 2006 Site Soft Soil Source Mapped from Vs30 * Ground Motion Selected Record Scale Factor 1.14033 * Back Ground Acceleration
Earthquake Rupture Magnitude: 7.000 : Location Latitude: 61.346 : Longitude: -149.955 : Depth: 46.700 :		Mean (g) 0.322527 Std. Dev. 0.683912 Inter Ev. Std. Dev. 0.6039 Inter Std. Std. Oev. 0.221 > Spectral Accelerations 2
Geometry Average Dip: 90.00		Response Spectra Mean Selected
Type: ZhaoEtAl (2006) Intensity Measure Type: All Supported IMs Spatial Correlation		1.00 4 C C C C C C C C C C C C C C C C C C
Record Selection Database: PEER NGA West 2 Error Metric: Root Mean Square		0.01 0.10 1.00 Time [sec.]
Settings Run	Map © OpenStreetMap Contributions, © Carto	Hide
Analysis completed successfully!	This work is based on material supported by the National Science Foundation under grant 1612843 SimCenter Will Center to Computational Modeling and Simulation	Mode: Results

Regional Simulations Testbeds to Verify the Software

Memphis, TN Lifelines Testbed

Anchorage Testbed: Workflow Configurations

Anchorage Testbed: Results: Validation

Estimated Losses

	Recorded GM	Simulated GM
Repair Cost [\$Billion]	7.5	7.3
Red Tags	3800	626
Loss Ratio [%]	14.5	12.5

- City of Anchorage identified more than 750 homes and buildings that suffered substantial damage
- Research opportunities to calibrate, verify and validate computational models

Recorded GM

Simulated GM

Parcels Loss Ratios

Buildings Red Tags

Anchorage Testbed: Results: a Story Map

Documents the input data, results and process

SimCenter Memphis (TN) testbed E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)

- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

SimCenter Memphis (TN) testbed

- E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)
- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

SimCenter Memphis (TN) testbed

- E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)
- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

spatial correlation

SimCenter Memphis (TN) testbed

- E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)
- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

SimCenter Memphis (TN) testbed

- E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)
- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

SimCenter Memphis (TN) testbed

- E. Month (SimCenter REU, Cornell); C. Lee, I. Tien (GeorgiaTech)
- use rWHALE for estimation of damage and repair times
- unprecedented fidelity in damage and loss estimates
- support Bayesian approach to describe interdependencies
- extended damage and loss models to support non-building assets
- extended rWHALE to preserve spatial correlation in lifeline performance estimates

Summary

Closure

- Leveraging past PEER projects to move into the future
 - Regional simulations
 - New hazards
- All software is opensource including building inventories
 - <u>http://SimCenter.DesignSafe-Cl.org</u>
 - <u>http://github.com/NHERI-SimCenter</u>
- The Center is open for collaborations: Looking to facilitate research
- Open job opportunities for postdocs interested in hazards and programming
- Follow us on Twitter & Facebook. Subscribe to our newsletter. Come to our workshops. Attend our webinars. Most importantly <u>contribute</u>.

