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Objectives

 Examine adequacy of the Graves and Pitarka (2016, GP2016 hereafter)
kinematic rupture generator to model near-fault ground motions for the
M7.1 Ridgecrest mainshock
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Approach

Run 3D broadband-deterministic simulations (f < 4 Hz) for suite of
randomly generated ruptures using GP2016
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M7.1 Mainshock Setting

2| I EET = e « M7.1 Mainshock rupture occurred along
: multiple subparallel fault segments just east
of Ridgecrest, CA

36" S, & ol s ——k
b |  Predominantly right-lateral slip mechanism

e Left-lateral M6.5 foreshock occurred on
conjugate fault about 34 hours before

35.75° " i mainshock

* Well recorded by the Southern California
Seismic Network (SCSN); 16 strong motion
sites within about 30 km of rupture
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Near Surface Geology

* V30 from Wills et al (2015) range from about
230 m/s to 710 m/s in near fault region

* Most recording sites on Vs3g > 350 m/s

* Indian Wells Valley (sediment filled basin)
lies just west of the mainshock rupture

* Generally harder rock / mountainous regions
to the east of rupture

e Coso volcanic region to the northwest of
rupture
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Comparing GMPEs and Observations
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Ground motion data provided by Caltech/USGS Southern California Seismic Network (SCSN), doi:10.7914/SN/CI, archived at the
Southern California Earthquake Data Center (SCEDC), doi:10.7909/C3WD3xH1



Comparing GMPEs and Observations

WRC2

28.7
ogo—-WM‘WN‘WM\»w Compute spectral acceleration :
333 (RotD50) -
OOOWW — [

obs

1F

0 sec 20

S 01}
f <4 Hz ground velocity (cm/s) (<,() [

WRC2
0.01 - — 0bs

0.1 1 10
Period (s)



Comparing GMPEs and Observations
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Comparing GMPEs and Observations
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Comparing GMPEs and Observations

* Apply same procedure to all stations
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Comparing GMPEs and Observations

* Apply same procedure to all stations
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Comparing GMPEs and Observations

* Apply same procedure to all stations
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Comparing GMPEs and Observations

* Apply same procedure to all stations
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Comparing GMPEs and Observations

* Apply same procedure to all stations

residual (6)
0.5 1 2 5 10
Period (sec)

14



Comparing GMPEs and Observations

* Apply same procedure to all stations
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Comparing GMPEs and Observations

Apply same procedure to all stations
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Comparing GMPEs and Observations

Apply same procedure to all stations
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Comparing GMPEs and Observations

Apply same procedure to all stations

Compute average residual at each period: bias
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Comparing GMPEs and Observations

* Apply same procedure to all stations
* Compute average residual at each period: bias

* Compute standard deviation
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Comparing GMPEs and Observations

Apply same procedure to all stations

Compute average residual at each period: bias

Compute standard deviation

Apply same procedure to other models
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Comparing GMPEs and Observations

Apply same procedure to all stations

Compute average residual at each period: bias

Compute standard deviation
Apply same procedure to other models
Average across models

Key GMPE Features:

* Roughly 20% under-prediction at
5-6 sec period (large variation)

* Roughly 30-40% over-prediction
at 1-4 sec period (small variation)
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Ground Motion Simulations

e Simulate strong ground motions at 16 near
fault sites

e Use SCEC 3D seismic velocity model CVMSI

e 20 m grid spacing and minimum Vs of 400
m/s yields reliable results to maximum
frequency of 4 Hz

e Simulations use three-segment fault model
of Ji et al (2019)
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Seismic Velocity Structure e N
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e CVMSI model has better resolution in this
region; more events & stations in inversion

* Also consistent with previous refraction
(Fliedner et al., 2000) and structural geology
(Monastero et al., 2002) studies
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Kinematic Rupture Modeling

Three-segment fault model with total fault
length = 52 km; fault width = 14 km

Generate suite of 5 randomized ruptures
using GP2016 kinematic rupture generator

Use average rupture speed of 60% local Vs,
consistent with inversions (e.g., Ji et al.,
2019; Wang et al., 2020)

Includes GP2016 depth-dependent effects of
rise time lengthening and rupture speed
reduction in upper 5 km (mimics velocity
strengthening)
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Kinematic Rupture Modeling

* Run 2 slip-rate formulations for each slip model:

Normalized slip rate (unit area)

Standard GP Slip-rate
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energy release to
lower frequencies in
upper 3 km of rupture
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Simulation Goodness-of-Fit (GoF)

In (obs/mod)

Apply same procedure as done with GMPEs

to compute bias and standard deviation
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Waveforms for Lowest Misfit Case

Ground Velocity (f < 4 Hz)
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Ground Displacements and Slip Distribution

* Horizontal displacements for lowest
misfit case in good agreement with near
fault observations
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Ground Displacements and Slip Distribution

Horizontal displacements for lowest

misfit case in good agreement with near

fault observations
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Ground Displacements and Slip Distribution

Horizontal displacements for lowest

misfit case in good agreement with near

fault observations
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Rupture for lowest misfit case has largest slip in
middle portion of fault

Similar to rupture models determined from
ground motion inversion
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Results

* Simulations incorporating change in shape of shallow slip-rate
improve fit to observed motions at 1-4 sec period range
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Add taper to upper 100 m to match Vszq

values from Wills et al (2015)
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