

#### PEER International Pacific Rim Forum June 16-17, 2021

#### Kinematic Simulation of Near Fault Ground Motions for the 2019 M7.1 Ridgecrest, CA Earthquake

Robert Graves U.S. Geological Survey Arben Pitarka Lawrence Livermore National Laboratory



June 16, 2021



# **Objectives**

- Examine adequacy of the Graves and Pitarka (2016, GP2016 hereafter) kinematic rupture generator to model near-fault ground motions for the M7.1 Ridgecrest mainshock
- Explore the upper frequency limit of the GP2016 approach using 3D deterministic modeling
- Investigate impact of change in shape of shallow slip-rate function on ground motion levels



# Approach

- Run 3D broadband-deterministic simulations (f < 4 Hz) for suite of randomly generated ruptures using GP2016
- Use forward simulations to test predictive power of GP2016 method;
  i.e., not an inversion
- Simulations use a modified version of SCEC
  CVMSI that includes a near-surface taper to match site-specific V<sub>S30</sub>
- Quantify misfit of simulations to observations using Spectral Acceleration Goodness-of-Fit
- Three-component waveforms from lowest misfit model visually compared to observations



# **M7.1 Mainshock Setting**



- M7.1 Mainshock rupture occurred along multiple subparallel fault segments just east of Ridgecrest, CA
- Predominantly right-lateral slip mechanism
- Left-lateral M6.5 foreshock occurred on conjugate fault about 34 hours before mainshock
- Well recorded by the Southern California Seismic Network (SCSN); 16 strong motion sites within about 30 km of rupture

M>2.5 seismicity and focal mechanisms from SCSN Fault traces from Ponti et al. (2020) V<sub>s30</sub> from Wills et al. (2015)

#### **Near Surface Geology**



- V<sub>s30</sub> from Wills et al (2015) range from about
  230 m/s to 710 m/s in near fault region
- Most recording sites on V<sub>S30</sub> > 350 m/s
- Indian Wells Valley (sediment filled basin) lies just west of the mainshock rupture
- Generally harder rock / mountainous regions to the east of rupture
- Coso volcanic region to the northwest of rupture



Ground motion data provided by Caltech/USGS Southern California Seismic Network (SCSN), doi:10.7914/SN/CI, archived at the Southern California Earthquake Data Center (SCEDC), doi:10.7909/C3WD3xH1























- Apply same procedure to all stations
- Compute average residual at each period: bias



- Apply same procedure to all stations
- Compute average residual at each period: bias
- Compute standard deviation



- Apply same procedure to all stations
- Compute average residual at each period: bias
- Compute standard deviation
- Apply same procedure to other models



- Apply same procedure to all stations
- Compute average residual at each period: bias
- Compute standard deviation
- Apply same procedure to other models
- Average across models

#### Key GMPE Features:

- Roughly 20% under-prediction at 5-6 sec period (large variation)
- Roughly 30-40% over-prediction at 1-4 sec period (small variation)



#### **Ground Motion Simulations**



- Simulate strong ground motions at 16 near fault sites
- Use SCEC 3D seismic velocity model CVMSI
- 20 m grid spacing and minimum Vs of 400 m/s yields reliable results to maximum frequency of 4 Hz
- Simulations use three-segment fault model of Ji et al (2019)





- CVMSI model has better resolution in this region; more events & stations in inversion
- Also consistent with previous refraction (Fliedner et al., 2000) and structural geology (Monastero et al., 2002) studies

# **Kinematic Rupture Modeling**

- Three-segment fault model with total fault length = 52 km; fault width = 14 km
- Generate suite of 5 randomized ruptures using GP2016 kinematic rupture generator
- Use average rupture speed of 60% local Vs, consistent with inversions (e.g., Ji et al., 2019; Wang et al., 2020)
- Includes GP2016 depth-dependent effects of rise time lengthening and rupture speed reduction in upper 5 km (*mimics velocity strengthening*)



# **Kinematic Rupture Modeling**

• Run 2 slip-rate formulations for each slip model:



# Simulation Goodness-of-Fit (GoF)



# **Waveforms for Lowest Misfit Case**

Ground Velocity (f < 4 Hz)



# **Ground Displacements and Slip Distribution**

 Horizontal displacements for lowest misfit case in good agreement with near fault observations



# **Ground Displacements and Slip Distribution**

 Horizontal displacements for lowest misfit case in good agreement with near fault observations



• Rupture for lowest misfit case has largest slip in middle portion of fault



# **Ground Displacements and Slip Distribution**

 Horizontal displacements for lowest misfit case in good agreement with near fault observations



- Rupture for lowest misfit case has largest slip in middle portion of fault
- Similar to rupture models determined from ground motion inversion



#### **Results**

- Simulations incorporating change in shape of shallow slip-rate improve fit to observed motions at 1-4 sec period range
- Lowest misfit case has average rupture speed of 60% local Vs with large slip near middle of rupture, similar to other studies
- Simulations reproduce many features of observed waveforms; however, later arriving phases at Indian Wells Valley sites not well matched
- Demonstrates ability of GP2016 to produce realistic ground motions over broad frequency range (0-4 Hz), boosting confidence in predictive power of this method



#### **Seismic Velocity Structure**





 CVMSI model has unrealistically high Vs in near surface (about 2 km/s)

#### **Seismic Velocity Structure**





- CVMSI model has unrealistically high Vs in near surface (about 2 km/s)
- Add taper to upper 100 m to match V<sub>S30</sub> values from Wills et al (2015)