

Advances in Full Fidelity Soil-Structure-Fluid Interaction Simulation for Nuclear Structures

PEER DOE Workshop: May 17-18, 2021

SPONSORS

Greg Mertz

Costantino and Associates Los Alamos, New Mexico

Andy Coughlin

Structural Integrity Associates

Bend, Oregon

Analysis Needs for Next Generation Reactors

- Coupled Soil Structure Fluid Interaction (SSFI)
- Combined SSFI and operating load analysis
- Leverage capabilities of commercial FEM codes
- Reduce analysis cycle time
- Single analysis model
 - Same FEM model for operational and seismic loads
 - Eliminate two step analysis solution
 - Reduce model maintenance effort

A top view of the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory.

Analysis Needs for Next Generation Reactors

Equivalent Linear vs Nonlinear Analysis

- Should we design for significant inelastic deformation during a structures life?
- Operating basis should remain elastic
- Safe shutdown may have limited inelastic deformation
 - ASCE 43 Limit State C
 - Most designs are targeting elastic response
 - Regulatory precedent
- Nonlinear analysis is valuable for beyond (original) design basis events
 - Seismic demand 25 years after construction

Existing Analysis Tools

SASSI

- Very good for developing frequency domain soil impedance and load vectors
- Lacks many state-of-the-art analysis features
- Narrow userbase
- Commercial FEM
 - Excellent element libraries
 - Ability to perform fluid-structure interaction with acoustic elements
 - Excellent constraints, etc. for model development
 - Graphical pre and post processing
 - Wide userbase

Buildings designed using SASSI and commercial FEM

Proposed Solution

- Combine the best of SASSI and Commercial FEM
 - Use SASSI to develop soil impedances and load vectors for a given excavation and site profile
 - Store in a soil library
 - Use a commercial FEM code to
 - Develop building model
 - Generate operational demands
 - Generate seismic demands in the frequency domain
 - Post processing to convert frequency domain to time domain
 - Combine operational and seismic demands
- Functionally equivalent to a SASSI solution

SASSI Soil Impedance

*Use SASSI House bricks with mixed lumped and consistent mass

Impedance Matrix Storage

- Full Storage can be large
- Condense out internal DOF to reduce storage

Case 1 Case 2 Case 3 Reduced Full Full Reduced Full Reduced 5,168 Nodes 1,360 18,928 3,328 35,280 5,085 File Size GiB 1.7 0.12 24 0.72 84 1.7 Size Ratio 48 14 32

Impedance Matrix Storage

Condensed Impedance

 $[C_{Red}] = [C_{bb}] - [C_{bi}] [C_{ii}]^{-1} [C_{ib}]$

- Let [X] be the solution of
 [C_{ii}][X] = [C_{ib}], then
 - $[C_{Red}] = [C_{bb}] [C_{bi}][X]$

Store Impedances and Load Vectors as Soil Library

COSTANTINO

TES

🖂 info@structint.com 🕓 1-877-4SI-POWER 🌐 structint.com

Commercial FEM Solution (ANSYS)

Embedded Building

- 95'x47'x44', Embedded 19'
- Open interior, dry
- Stiff soil, low damping
- Use ANSYS building stiffness and mass in SASSI

X Transfer Functions

Large number of building DOF wrt to soil impedance Use sparse solver

SLIDE 11

857:x TF=eq SASSI +

SASSI +

857:z TE=e SASSI +

Frequency (hz)

Embedded Building with FSI

- With a pool up to grade
- Center roof response

Structural Integrit Associates, Inc.*

- Fluid modeled with acoustic elements
- Unsymmetric mass and stiffness

Embedded Building with FSI (cont)

- With a pool up to grade
- Fluid response to vertical motion

Experimental Needs

- Validation of Analysis Methods
 - Soil box seismic environment w/o building
 - Not a halfspace
 - Need to fully characterize the response of a soil box
 - Range of soil strain levels
 - Operating basis low strain (boring, but important test)
 - Design basis moderate strain
 - Beyond design basis high strain
 - Soil box with test structure
 - Focus on SSI interaction
 - Wall tractions with waterproofing
 - Soil pressure on wall
 - Foundation rocking

🗹 info@structint.com 🕓 1-877-4SI-POWER 🌐 structint.com

COSTANTINO

Structural Integ

Partially embedded structure containing fluid with a free surface. Immersed dummy component

Examples:

- Reactor vessel with supercritical steam/water
- Molten salt reactor with free surface
- Reactor vessel immersed in water
- Liquid metal cooled reactor
- Spent fuel pool

Specimens

- Empty container
- Partially filled container
- Full container
- Instrumentation
 - Soil pressure and tractions
 - Fluid Pressure
 - Component Acceleration
 - Anchorage Load
 - Structure Acceleration and Relative Displacement
 - Fluid Level Indicator

- Analytical preparation
 - Create soil impedance functions
 - Frequency Domain Solution
 - Time Domain Solution
 - Target range of soil strain
 0.1g, 0.5g, 1.0g, 2.0g PGA
- Experimental Runs
 - 0.1g, 0.5g, 1.0g, 2.0g PGA
 - Monitor divergence from analytical runs

Results

- Identify acceptable range for equivalent linear analyses
- Validate coupled time domain solution
- Establish method to qualify Gen IV reactors with Soil-Fluid-Structure interaction
- Possible expansions
 - Isolation and damping
 - Pebble bed fuel
 - Cask tipping

└── info@structint.com 🕓 1-877-4SI-POWER ⊕ structint.com

Conclusions

Practical solution for Soil-Structure-Fluid Interaction problems

- Based on existing, proven, technology
- Methodology is functionally equivalent to a SASSI solution
- Demonstration problem
 - Excellent results comparisons
 - Transfer functions
 - Acceleration time histories and response spectra
 - Structural member design forces
 - Acoustic pressure time histories
- Experimental verification will strengthen our understanding
 - Confirm what we know
 - Identify what we don't know

