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Above-ground structures of NPPs

Cooling Containment
towers structures

Buildings

Containment on pile foundations
e.g.

Point-Beach NPP (USA)
H.B. Robinson NPP (USA)
Angra NPP (Brazil)
Gosgen-Daniken NPP (Switzerland)

(Zou et al., 2020)



Underground reactors

(IAEA, 2020)

Nuclear waste repositories
(e.g. caverns, shafts, tunnels)

N

(Kari and Puttonen, 2014)

 (cooling system)

Underground structures of NPPs

containment structure
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electric
generator

control

pressure
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water vapour

warm
moist air

L water
condenser

cool condenser water 1
cool water basin ,

cooling tower

nuclear reactor
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Examples of tunnels and shafts of the cooling system in NPPs

HINKLEY = |

POINT C Lo — = o Segmental tunnels

S\Hﬁ \lg_]\ﬁLL g | | ot £ : ' (precast segments)
A K, = . — s

TUNNELS ] Diameter =7 m

Bristol Channel
Water intake

120,000

Tunnels: I/s capacity
Outfall tunnel 24m \ »
Intake tunnels 33m ';8’(,(’(,
below the seabed 5 Tunnel lining segments

12month

Tunnelling project

(Kennedy, 2019)
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Examples of tunnels and shafts of the cooling system in NPPs
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Nonlinear SSI analysis
(Structural nonlinearity)

ASCE 4-16: Seismic Analysis of Safety-Related Nuclear Structures

Chapter 5 - SSI
(5.1 GENERAL REQUIREMENTS): (a) SSI effects shall be considered for all safety-related nuclear structures.

Chapter 4 - Analysis of structures
(4.1 GENERAL REQUIREMENTS): (a) The seismic analysis of safety-related structures is typically performed
by analysis of linearly elastic mathematical models. Nonlinear analysis may be performed in some cases,
or evaluation of existing facilities.

especially for

beyond design basis calculations

" . . Nonlinear structure
Distant soil
Design peak ground acceleration and recorded peak ground acceleration at NPPs. di‘”;i'irr‘l;gge s
Kashiwazaki- Fukushima North Anna, free field i?lsdegzgt
Kariwa, Daiichi, Japan USA .
apan \ |
Jap 3 I ~
Design value 0.20g 0.26 g 0.18¢ {
Recorded value (year) 0.32g(2007) 0.56g(2011) 0.26g (2011) \
]
4 Design basis updated in 2009 to 0.45 g (The National Diet of Japan, 2012), {J
(Coleman et al., 2016) )
{,F
o N o N
Recorded seismic demand exceeded design value Soil FE mesh —=

Horizontal input

I 16-50267-13
wdfpb II_E
c

h

force response history



Nonlinear SSI analysis
(Structural nonlinearity)

ASCE 4-16: Seismic Analysis of Safety-Related Nuclear Structures

Chapter 4 - Analysis of structures

(4.1 GENERAL REQUIREMENTS): (a) The seismic analysis of safety-related structures is typically performed

by analysis of linearly elastic mathematical models. Nonlinear analysis may be performed in some cases,
especially for{beyond design basis calculations|or evaluation of existing facilities. (or definition of fragility curves)

3 Press Releases (TEPCO, 2011)

Design peak ground acceleration and recorded peak ground acceleration at NPPs,

Press Release (Apr 02,2011)

Kashiwazaki- Fukushima North Anna, Out flow of fluid containing radioactive materials to the ocean from areas near intake channel of Fukushima Daiichi Nuclear Power Station Unit 2
Kariwa, Daiichi, Japan |  USA
]apan > Today at around 9:30 am, we detected water containing radiation dose over
1,000 mSv/h in the pit* where supply cables are stored near the intake Underground StrUCtures
Design value 020¢g 0.26¢g* 0.18¢g channel of Unit 2. Furthermore, there was a crack about 20 cm on the
Recorded value (year) 032g(2007) 0563-(20]1} 026g(201]) concrete lateral of the pit, from where the water in the pit was out were damagEd
flowing. At around 12:20 pm, we reaffirmed the event at the scene.
4 Design basis updated in 2009 to 0.45 g (The National Diet of Japan, 2012), We have implemented sampling of the water in the pit, together with the ‘
seawater in front of the bar screen near the pit. These samples wsre sent .
(COIeman et al' 2016) Upper side of to Fukushima Daini Nuclear Power Station for analysis. Often dESIgﬂEd tO
pit :400mSv/h In addition to seawater sampling conducted in the coastal arsas of

remain elastic

(radiation dose in Fukushima Daiichi/Daini Nuclear Power Station (sampling conducted at 4
the air)

points), we have initiated additional seawater sampling at 2 points in thes

| Bar screen

areas 15 km offshore from the relevant power stations. Taking into account

the result of these meonitoring, we are intending teo conduct a
Approx. 2 m comprehensive assessment.
Approx. 10~20cm L Currently, we are preparing to block up the leakage by injecting concrete

to the crack. Moreover, we will investigate the influx route of

Inside the pit: ) ) ) .
above1000m$vlh contaminated water in the pit and :melement necessary measures to prevent
(radiation dose in the air such influx.

approx 60 cm below
ground level)

(TEPCO, 2011)

*pit: a shaft made of concrete




Nonlinear SSI analysis
(Soil nonlinearity)

ASCE 4-16: Seismic Analysis of Safety-Related Nuclear Structures

Chapter 5 — SSI: Nonlinear Behavior of Soil: Primary and secondary soil nonlinearity

Secondary soil

Primary soil : )
nonlinearity due to SSI

Free Field nonlinearity
(NO SslI) / \

Soil (nonlinear)

5 % Soil (linear)

-
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5.1.4 (d) Primary nonlinearities shall be considered in the SSI analysis. Secondary nonlinearities, including local soil
nonlinear behavior in the vicinity of the soil-structure interface, need not be considered, except for the calculation of

seismic soil pressure.
COMMENTARY: C5.1.4 Nonlinear Behavior of Soil

(...) rigorous nonlinear analysis of a typical nuclear structure requires a fully three-dimensional model and an appropriate
set of constitutive equations for soil. These requirements are currently beyond the state of the art for design.



Solution of dynamic SSl: linear vs nonlinear

SUBSTRUCTURE METHOD DIRECT METHOD
. Structure
S Inertial N
ree rie SSl Interfaces Complete model
—O0———— 0 +
SSI = No
“\\_”,/ - : superposition
of effects
= Superposition of effects Frequency Time
" Frequency domain domain domain
Linear analysis | Fully nonlinear
(equivalent-linear) dynamic analysis
. 8 ¥
Problems to capture LB
moderate-to-high nonlinearities NLSSI NL soil
NL interfaces




Some questions

K

struct

Soil-structure stiffness ratio K

B One of the main variables of SSI

soil



Simple models for above-ground structures

Reference model = Fixed base

SSI K, o
m m Fixed Base (NO SSl)
q S = Wriyg 4 — ..
c
h
Stiffness contrast
g Structural
Cr SS| stiffness
(Wolf, 1985) h
Wrixg
\ £ S=
005 O
Fixed base Equivalent SSI 633' A ¢ VS ¥ soil stiffness
m 025 (shear wave vel)
Kq, k
O = 4| — O Wsg) = — 0.20
m m Inelastic ROCKING Formation of
é:str é:SSI = éstr + é:soil + rad 0.15 4 B Fallswe
Mechanism:
1 1 1 h? 0.10-
—_— —t —+ — ‘ waves are
' keq kstr kh kr “trapped” \&
0.054 4
' —>» Negligible Radiation Damping !
0

003 04 (Prof. Gazetas, Rankine lecture 2019)



Simple models for underground structures

yfree—field

Free-field Presence of the structure
Adfreeffield
2
//// <\|
1/ / {
"4 ///
/\ / /
‘ \\ 7 //
\__\)—{//
yfree—field
Displacement * /_,_,,‘——-———"‘“’
structural demand s - —
1 ""f'_ﬁ___‘-—‘-_—-d_——
\ Ad 20 ’Ié - ]
04
str T %/ T
Ad 1.5 A,/ A
free—field | '\
1.0 \
I Poisson’s Ratio I
0.5 I 1
> (Wang, 1993)
°° ] 1 2 3 4 7 8 9

Flexibility ratio

30|I (1 Vstr)r

10

Reference model = Free-field
(no structure)

Could not be constant

/ during earthquakes

Stiffness contrast

(1+ Vson )

Stl‘ Stl’

KStI’ *

$

Evolution of soil and
structural nonlinearity



Some questions

K
Soil-structure stiffness ratio % B One of the main variables of SSI
soil
NLSSI implies nonlinearity of the whole system (structure + soil) ® Stiffness ratio is not constant

= What happens to the whole system with the evolution of structural damage and soil nonlinearity?

-
= Does structural nonlinearities affect soil nonlinearity? YES
> numerical evidence

= Does soil properties affect structural capacity?

Two case studies:

1) Tunnels ®» 2D fully nonlinear time history analysis

2) CIDH bridge columns ® 3D detailed modelling with experimental benchmark

= |s the gap between geotechnical and structural engineers detrimental to solve NLSSI problems?



1) Fragility analysis of underground tunnels: fully nonlinear SSI

M,,=7.9

Epicentral distance = 14.2 Km

—

2008 Wenchuan earthquake (China)

2008/07/02 02:10

(Li, 2012)

Critical scenarios for tunnels

|. Shallow tunnel |II. Poor geological
condition

Ill. Slide
of a fault

—>

M,=6.9 M,=7.4
Epicentral distance < 15 Km Epicentral distance <32 Km
1980 Irpinia earthquake (Italy) 1990 Manijil earthquake (lran)

” .
£ - . .

3 A

(Cotecchia, 1986) (Wieland, 2011)

Early objective

Definition of numerical fragility curves considering variability of seismic
input, structural and geotechnical nonlinearities, depth of tunnel.

3 (see Andreotti and Lai, 2017a, 2017b, 2019)

From the suite of analysis: investigation on NLSSI effects



Fragility analysis of underground tunnels: fully nonlinear SSI

Selected scenario to evaluate NLSSI

Rock mass parameters

GSI E v ¢ dilatancy c ¥ Ko
[MPa] (1 [F1  [MPa] [N/m’]
80 m 25 | 1100 03 22 0 0.5 24 0.6
e
RC lining ——
e r'jgf trl:];esds Very good quality Average quality Very poor
1 D=9m / (GSI=75) (GSI=50) (GSI=30)
il Strain softening 15 Flastic-plastic
A i i i i 2 8 8 .
@ sl Elastic-brittle 2 Z
; H Hl 1' | | Strain | Strain | Strain
Hoek and Brown (1997) ™
RC Tunnel lining Mohr-Coulomb model
Type Reinforcement Concrete Steel
Section Thickness Steel rebars Stirrups Ec fe fi Es I FLAC2D
[m] [kg/m’] [em’]  [MPa] [MPa] [MPs] [MPa] [MPa] mp Problemsto model cyclic nonlinear
S2 1 80 14.13




Modelling nonlinear cyclic behaviour of structural elements and damage assessment
FLAC 2D Standard Model

Implemented Model

00 — Experimental test L — Experimental test
500 |— FLAC-2D / / ‘/ / M.J.N. PRIESTLEY 500 |~ Seismostruct (fiber-section)
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Velocity [m/s]

Multi-step

FLAC 2D numerical model
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Results: NLSSI tunnel

Evolution of ground and structural nonlinearity

o Ground Plasticity Index Structural Damage Index
Activation of ne plastic zones n° of PH Plastic rotation
15t nonlinear zone ol 4« dynanalysis S i K7

N 0
GPl=—" 1 SDI =) —F-

pl i

static i=1 Yplu
\ n° plastic zones P '\
static analysis
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.l plasticity // 1 0.03
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O . L il 1 1 1

2.0 2.2 2.4 2.6 2.8 3.0 3.2 34
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plasticity

Ground plasticity index (GPI)
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Results: NLSSI tunnel

Evolution of ground and structural nonlinearity

o Ground Plasticity Index Structural Damage Index
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2" nonlinear zone ol 4« dynanalysis S 0 rd
dyn I
GPI=—"--1 SDI =) —
i i=1 Yy
static \ n° plastic zones PLt '\

static analysis Plastic capacity

Structural

plasticity 61 | 021
o I a
[CRERIN Structural 1 018 L
% I damage index | >
§ 4 {0152
— 1 (V]
E 3 | 0.12 %J
0 S
PSS *g - 1009 &
— 2 — —
roun Q. ©
clia:)tlijci:| e | Ground -
P Y 31 plasticity y g
°o 't 0.03 3
O \ 4 5

O . L il 1 L I f 1 O

2.0 2.2 2.4 2.6 2.8 3.0 3.2 34




Results: NLSSI tunnel

Evolution of ground and structural nonlinearity

o Ground Plasticity Index Structural Damage Index
Activation of ne plastic zones n° of PH Plastic rotation
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Ground plasticity index

. 0200 — X L\
Results: NLSSI tunnel [ , l
0.150 . i
Linear vs Nonlinear structure Som | R '
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5 : : 0000 L . Linear
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Ground plasticity index

Results: NLSSI tunnel

Linear vs Nonlinear structure

6 : :
IPH | IIIPH!

s | i
4t Nonlinear_ /:
. i structure "/ :
.| e

I Linear : '

- structure > — :
. — N

22 24 2.6 28 3.0 32 34
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Linear structure

t=3.2s

Total shear strain

&

e
Localized
‘/ strains

—— ;

Results: NLSSI tunnel

Linear vs Nonlinear structure: shear strains and structural deformations

Nonlinear structure 3000

2500
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‘@ \
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Numerical evidence
Structural nonlinearity affects soil nonlinearity
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2) Detailed modelling of CIDH bridge column

Experimental benchmark: full-scale cyclic test by UCLA (Janoyan, Wallace and Stuart, 2006)
\ ¢

Why this test?
= Severe nonlinearity of both soil and structure w
= Full-scale test
= High quality experimental data: soil + structure _
I
|

UL Uncopaoioates Unaraned Toaos TastLab] T
BT Procoursmuie Tasifn Si)
a= 1oy

(305 mm)

L e

oo <.
==y ey

T R T . Y ‘ Nl = ‘?cprhunl

Unit 1

— I

3 2.0m
Failure surfaces for the passive wedges

4.5 Unit 2 ' T A |

6
7.5 T .
Unit 3
Q [ @
10.5
Unit 4
12 T
| 135 T

15



2) Detailed modelling of CIDH bridge column

3D MODEL Embedded longitudinal and transversal reinforcement Fiber sections and
(ABAQUS) - p-y curves
Nonlinear concrete  Nonlinear steel 1[0 iimi 0 (Seism oStru Ct)
Nonlinear soil ° 1 | i ———tt -
A | [iEE =t
‘ o : 2 . y -
Y I ’
[
Layer - : : . — :
1.1 |
[
1.2 |
2 _ |
3 : l
4.1 ae 5 I
4.2 I | !
5 E HH : : Soil-Pile interface y 1
6.1 ;- FEEEE R + : elements . 1
6.2 - Frictional model - 1 : T % Tt
7 - Allow separation ]
12D
[
2D Models W |' W
= Soil: Mohr-Coulomb plasticity W W R
12D = Concrete: Concrete damaged plasticity WA
_ _ = Steel: bi-linear with hardening |
(Andreotti and Calvi, 2021) o _ _ é
» |nterface: Frictional model allowing separation
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= Characterization tests small specimens
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Plastic strain A= 10 mm  Steel reinforcement A= 103 mm
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Concrete 0.028
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3D model: Elastic vs Nonlinear structure

Results with identical soil and different structural behaviour (LIN vs NL)
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Structural influence on soil nonlinearity

Results with identical soil and different structural behaviour (LIN vs NL) 15

B
EL structure = 10
NL structure . >
. . (constant structural stiffness) =
(decreasing structural stiffness) = 5
Plastic strains g
0.260 " e
0.226 i & 5
0.029 =
e -
. ! D
0.016 i = -10

0.012
0.008
0.004
0.000

-

N

Y
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72702 03 04 05 06 07 08 09 1
l,‘\ Plastic hinge Deflection [m]
EL structure — NL soil

---- Experimental
= 3D Model (STR: NL - SOIL: NL)
=== 3D Model (STR: LIN-EL - SOIL: NL)

=  Greater volume of nonlinear soil

= Soil nonlinearity goes deeper

= Evaluation of inertial
interaction only!



Identical structure
different soil

Plastic strain
Concrete Steel

0.0092
0.0080
0.0044
0.0008

-0.0029

-0.0065

-0.0069

Stiff Soil
(AVG parameters)

Stiff Soil PH region
i Different plastic
higher )
plastic strains /=] GEEEHL hinge length
\ ] A
/
{{/ f 2m
e 3.8m
A 4
Steel / E!';-Illr—e

- Concrete

Plastic hinge

A

Soft Soil
(MIN parameters)

| !I
yf

N

Soft Soil

»

Influence of soil stiffness on structural nonlinearity

Stiff soils

= Concentration of strains (soil & structure)
= Smaller plastic hinge length
= Higher curvature demand

Soft soils

= Distribution of strains
= Larger plastic hinge length
= |ower curvature demand

Numerical evidence
Soil properties affect structural capacity

Seismic demand is modified by
secondary soil nonlinearity

d

Hazard

- NLSS!
Seismic risk < Vulnerability

Exposure \

Structural capacity

How much?

affected by soil properties



Experimental tests: issues of NLSSI

- Centrifuge tests
Artificial gravity field
Small scale structural models (1/20 — 1/50)

- Shake tables with small soil boxes

Small soil vertical stress

- Mobile laboratory for in-situ dynamic tests
(Calvi et al., 2021)
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Full scale tests in-situ (dynamic inertial SSI interaction)
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Experimental tests on NLSSI: fill the gap between research and practice

New shake table with big soil box
University of Nevada, Reno

Important
contributions to B
dynamic NLSSI

Structural damage of RC elements
Failure mechanisms of the system
Kinematic and inertial interaction

Soil properties

Primary and secondary soil nonlinearity

Damping (e.g. radiation)

above-ground structures
| | shallow foundations
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Experimental tests on NLSSI: fill the gap between research and practice

New shake table with big soil box
University of Nevada, Reno

Important
contributions to B
dynamic NLSSI

Structural damage of RC elements
Failure mechanisms of the system
Kinematic and inertial interaction

Soil properties

Primary and secondary soil nonlinearity
Damping (e.g. radiation)

Containment of
underground reactors




Experimental tests on NLSSI: fill the gap between research and practice

New shake table with big soil box
University of Nevada, Reno

Important
contributions to B
dynamic NLSSI

Structural damage of RC elements
Failure mechanisms of the system
Kinematic and inertial interaction

Soil properties

Primary and secondary soil nonlinearity
Damping (e.g. radiation)

Underground structures
(e.g. tunnels)




Experimental tests on NLSSI: fill the gap between research and practice

New shake table with big soil box
University of Nevada, Reno

Important
contributions to B
dynamic NLSSI

Structural damage of RC elements
Failure mechanisms of the system
Kinematic and inertial interaction

Soil properties

Primary and secondary soil nonlinearity
Damping (e.g. radiation)

Underground structures
(e.g. shafts)




Experimental tests on NLSSI: fill the gap between research and practice

New shake table with big soil box
University of Nevada, Reno

Important
contributions to B
dynamic NLSSI

Structural damage of RC elements
Failure mechanisms of the system
Kinematic and inertial interaction

Soil properties

Primary and secondary soil nonlinearity
Damping (e.g. radiation)

Bridge columns




Is the gap between geotechnical and structural engineers detrimental to solve NLSSI problems?

“If our small minds, for some convenience, divide this glass of wine, this universe, into
parts -- physics, biology, geology, astronomy, psychology, and so on -- remember that
nature does not know it! So let us put it all back together, not forgetting ultimately what
it is for. Let it give us one more final pleasure; drink it and forget it all!”

Prof. Richard P. Feynman

Guido Andreottil2 - Assistant Professor (quido.andreotti@iusspavia.it)

Gian Michele Calvil2 - Professor (gm.calvi@iusspavia.it)

1 University School for Advanced Studies IUSS Pavia, Piazza della Vittoria n.15, 27100 Pavia, ltaly
2 European Centre for Training and Research in Earthquake Engineering, Via A. Ferrata 1, 27100 Pavia, Italy
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