

PEER International Pacific Rim Forum June 16-17, 2021

Integration of Earth Science, Earthquake Engineering and Social Science Simulations for Earthquake Hazard, Disaster and Response Estimation

M. HORI VAiG, JAMSTEC The University of Tokyo and RIKEN T. HORI (JAMSTEC), T. IRYO (Kobe Univ.), Y. SEKIMOTO (UTokyo), M. ASAI (Kyushu Univ.), M. YOKOMATSU (Kyoto Univ.) and K. IIYAMA (TIT)

INTEGRATED EARTHQUAKE HAZARD AND DISASTER ESTIMATION

Social Science

ELEMENTS OF INTEGRATED EARTHQUAKE SIMULATION

- Earth Science and Earthquake Engineering Simulation
 - FEM for Seismic Wave Propagation in Crust and Seismic Wave Application in Ground
 - DEM (Distinct Element Method) for Long-Term Crust Deformation
 - SPH (Smoothed Particle Hydrodynamics) for Tsunami Simulation
- Social Science Simulation
 - MAS for Mass Evacuation Simulation for Pedestrian and Vehicle
 - Traffic Simulation Combining Traffic Demand and Traffic Flow in Post-Earthquake Disaster Period
 - Economic Activity Simulation for Evaluation of Recovery Plan
- Integration of Simulation on Platform
 - Tokyo Metropolis Earthquake
 - Nankai Trough Earthquake

EARTH SCIENCE AND EARTHEQUAKE ENGINNERING SIMUALTION

FEM

- Crust scale simulation of Nankai Trough Earthquake
- K: construction of analysis model partially based on observed data of curst structures
- Fugaku: construction of analysis model fully based on observed data of crust structure

DEM

- Reproduction of sand box experiment using 2,400,000,000 particles
- Clarification of mechanism of forming accretionary prism

a. Continental Plate Oceanic Plate 2500 km Oceanic Crust **Continental Crust** 6.5 cm/yr Mantle Wedge 800 km Oceanic Mantle

analysis model of crust structure for Nankai Trough Earthquake

analysis model of sand box

analysis model of Fukushima 1st Nuclear Power Plant

- Tsunami inundation simulation
- Kochi City
- Fukushima nuclear power plant

EARTH SCIENCE AND ENGINEERING: FINITE ELEMENT METHOD

algorithm of solver

- Continuous improvement of CG
- Achievement of good scalability in parallel computer and GP-GPU computer
- Automated model construction of urban area
 - ♦ ground
 - structures

EARTH SCIENCE: CRUST DEFORMATION ANALYSIS

Fast Computation

- FEM model of 8,219,600,000 DOF
- Numerical Green functions of 360 source x 1,000 uncertainty
- Ensemble Computing
 - 1,000 models of different (Vp, Vs, ρ)
 - Difference in crust displacement is a few *O*meter
- Updated Lagrangian Analysis
 - Development of fast automated remeshing
 - Analysis of finite and large deformation of fault and subduction zone in geological time scale

(a) original case

EARTH SCIENCE: DISTINCT ELEMENT METHOD

DEM: Particle Analysis Method for Contacting/Detaching of Spherical Particles

- 2.5 billion particles
- dynamic load balance for moving particles
- reproduction of sand box experiments

Fig. 1: Map view of σ_1 of particles in the stress chain at the first thrust formation

ENGINEERING: SMOOTHED PARTICLE HYDRODYNAMICS

MScPHy: Particle Analysis Method for Solid-Fluid Interacting Problems

- Particles for tsunami and ground/structures
- Simple treatment of free boundary problem
- High performance of non-structured grid

analysis model

- exterior and interior of buildings
- particle radius of 30 cm
- use of 128 compute nodes in K

well-controlled load balance for many particles

- fair agreement of observation
- practically acceptable computing time

ENGINEERING: AUTOMATED MODEL CONSTRUCTION FOR TSUNAMI

3D Geological Data of Low Resolution

2D Elevation Data of 1 m Resolution

Analysis Model for JAGURS

 Combined Simulation of Ground Motion and Tsunami Inundation

SOCIAL SCIENCE SIMULATION

MAS

- Development of agents for pedestrians and vehicles with functionalities of see, think, and move
- Development of urban are model for mass evacuation
- Coupled Simulation of Traffic Demand and Traffic Flow
 - Development of traffic demand simulation for post-earthquake disaster
 - Enhancement of traffic demand simulation and traffic flow simulation with HPC capability

- large scale urban area traffic model of 400,000 links
- embarrassing parallel commuting of traffic demand and flow simulation

SOCIAL SCIENCE SIMULATION

- Economic Simulation
 - Analysis method of solving dynamic problem for industrial activities of using damaged stocks
 - MAS for 1:1 scale economic model to analyze impact of earthquake damage

Utilization of Urban Area Data

- Preparation of detailed information for constructing analysis models of social science simulation
- Development of sophisticated methods of inter/extra-polating scattered and fragmented urban area data

MAS for 150,000,000 agents largest HPC computation in economics

dynamic load balance among agents of various size; from largest agent of national bank to smallest agent of household

various data set of urban area information about economic activities

SOCIAL SCIENCE SIMULATION: MAS FOR MASS EVACUATION

Development of Autonomous Agent with Different Attribute

 Pedestrian and vehicle agent with functionalities of see, think and move, moving in urban area model in non harmonious manner

10

8

6

-4

-2 0

- Urban area model of road network with interactions and buildings producing derbis
- Good Scalability
 - Gradual concentration of agents in shelters
 - Dynamic load balance in assigning compute nodes to agents

d =Distance required for car to decelerate to stop

functionality of move: smooth in and out at intersection

SOCIAL SCIENCE SIMULATION: MAS FOR MASS EVACUATION

Load Balance - Compute Node Allocation -

Strong Scalability					
er of	5			Strong	

- more than 10,000,000
- Scalability: up to 2048 compute nodes

- Grid model for agent movement
- Node-link model for agent memory

99%

89%

83%

SOCIAL SCIENCE SIMULATION: TRAFFIC DEMAND AND FLOW

SOCIAL SCIENCE SIMULATION: COUPLING OF DEMAND AND FLOW SIMULATION

SOCIAL SCIENCE SIMULATION: MAS FOR ECONOMIC SIMULATION

Number of MPI processes	Runtime per period (s)	Scalability (%)
16	492.00	
32	294.13	83.64
64	187.04	78.63
128	129.00	72.50
256	107.32	60.10

Problem settings: 20 periods with 331million agents in reedbush computer (The Univ. of Tokyo)

- Macro Economic Agent Based MAS of Poledna et al.
 - Verified by comparing general economics model
- First Enhancement of MAS with HPC Capability
 - 1:1 Scale of Japanese Economy (100,000,000 human agents + 4,000,000 non-human agents)
 - Ensemble computing for uncertainty quantification

SOCIAL SCIENCE SIMULATION: MAS FOR ECONOMIC SIMULATION RESULTS

Comparison of Recovery Plan

INTEGRATION OF SICAL SCIENCE SIMULATION

Traffic Simulation

Economic Simulation

INTEGRATION: AUTOMATED MODEL CONSTRUCTION

Bridge Model in Road Network

- Use of intermediate data
- Inter/extra-polation based on derivatives

INTEGRATION: STRUCTURAL DAMAGE AND ROAD NETWORK

INTEGRATION: STRUCTURAL DAMAGE AND ECONOMIC SIMULATION

water supply port facility

use of fragility curves and recovery curves for infrastructures

- Difference in coordinate system
- Errors in data conversion
- Lack of physical simulation of

TOKYO METROPOLIS EARTHQUAKE

\blacklozenge	Earthquake Scenario	Cabinet Office Prediction
		Input of synthesized seismic wave propagating from fault

 Ground FEM 3-layer model (bedrock + 2 layers) non-linear RO

Residential Building number: 243,132
 linear MDOF

Road Network

Central Tokyo link: 347,691
 Vehicle number: standard size 5,000,000 + large size 250,000 (558,572 packets, 1 packet = standard size 10 + large size 5) time: 4 - 10

BUILDING DAMAGE CONSIDERING UNCERTAINITY OF SURFACE LAYERS

a_{eq}: parameter of ground motion amplification

REMAINING ROAD WIDTH CONSIDERING UNCERTAINITY OF SURFACE LAYERS

road closed if remaining width ratio < 0.5

TRAFFIC SIMULATION: TRAFFIC DENSITY

ordinary traffic density

Case 1

Case 2

traffic density

TRAFFIC SIMULATION: DEGREE OF CONGESTION

ordinary traffic congestion

Case 1

1.5 - 1.61.6 - 1.7 17 - 18- 1.9

2.0 - 2.12.2 - 2.3 - 2.4 22 - 2.5

2.6

- 2.7

Case 2

traffic congestion

NANKAI TROUGH EARTHQUAKE

- Earthquake Scenario Cabinet Office Estimation (basic, east-side, land-side)
 Osaka area synthesized
 Other area use of predicted seismic intensity
- Ground
 2-layer model (bedrock + surface layer)
 non-linear RO
- Residential Building number: 1,266,706
 linear MDOF

Road Network

Kansai	link:	495,595
 Vehicle 	number: (558,572 time:	standard size 5,000,000 + large size 250,000 packets, 1 packet = standard size 10 + large size 5) 4 – 10
Demand	local gov	ernment estimation (use of Kumamoto Earthquake data)

AUTOMATED MODEL CONSTRUCTION

Urban Area Information about Bridge Attributes number of Links: 21,968

data resource

<u>Structures</u>

- residential building maps
- GIS of urban
- CAD data
- design guidelines
- design regulations, etc.

<u>Road</u>

- coordinates/links
- attributes
- specification
- width, etc.

<u>Ground</u>

- elevation
- boring data
- AVS30 etc.

BUILDING MODEL

1,266,706 Residential Buildings

wood	87
S	10
RC	3
SRC	less than 0.1

2 story	88
3 – 5 story	11
others	less than 1

GROUND MODEL

Ground Data (AVS30)			thickness [m]	Vs [m/s]	γt
road: OpenStreetMap AVS30: J-SHIS	surface layer	30	AVS30	10.	
	J-SHIS	bedrock	50	700	10.

TRAFFIC FLOW SIMULATION

ordinary

TRAFFIC FLOW SIMULATION

post-earthquake (basic scenario)

TRAFFIC FLOW SIMULATION: SUMMARY

ordinary

land

land x1.5

land x1.3 (G)

ECONOMIC SIMULATION: RECOVERY OF INDUSTRY

OSK, 36 sectors: top 5 % industrial sector makes fast recovery in 2 months, while others gradually recovers in 8 months

ECONOMIC SIMULATION: EFFECTS OF RECOVERY PLAN ON INDUSTRY

Infrastructure Recovery Plan and Evaluation

	standard plan 12 months	Speed-up		
		3 months	6 months	9 months
plan evaluation function: W_kihon10	-1.523 10 ⁸	-1.446 10 ⁸	-1.432 10 ⁸	-1.443 10 ⁸

standard plan of 12 quoter recovery \rightarrow need for speed-up of 6 quarters

- Little difference induced by speed-up of recovery plan for this problem setting
- Significant effects observed in early stage of recovery only for industry sectors less damaged → additional recovery plan needed to minimize difference in damage and recovery

Industrial Sector Recovery: Increase in production if speed-up of 6 months is adopted

CONCLUDING REMARKS

- FUGAKU Project for Integrated Earthquake Simulation
- Goal of Earthquake Simulation: Required Resolution
 - Structural response: 1 ~ 10 Hz, time resolution 0.1 sec
 - S-wave velocity of surface ground: 100 m/s, spatial resolution 10 m
 - Damage of structural members and connecting parts: spatial resolution 10 m
 - Much coarser resolution of social science simulation
- Uncertainty in Earthquake Disaster Estimation: Required Number of Scenarios
 - Earthquake scenarios: scale, process, number, etc.
 - Urban area models: configurations, materials, etc.
 - Social activity models: traffic, economic, attribute data, initial conditions
- Earthquake Disaster Mitigation and Strengthening of Resilience
 - Need for sufficiently high resolution
 - Need for worst scenarios for pre-disaster preparedness and post-disaster action