State DOT Seismic Resiliency Assessment Process and Mitigation Program

Bruce Johnson, Otak

Oregon Seismic Lifelines Identification Project Seismic Lifelines Evaluation, Vulnerability Synthesis, and Identification

> Prepared for Oregon Department of Transportation

> > Bridge and Geo-Environmental Section Technical Services Branch Oregon Department of Transportation

OREGON HIGHWAYS SEISMIC PLUS REPORT

PEER Annual Meeting, January 2020

Oregon Highways Seismic Options Repor

10-Step Process for Resiliency Planning

- 1. Assess Vulnerability of Assets (bridges and landslides)
- 2. Identify bridge damage states and landslides/rockfall dynamic stability
- 3. Validate Design Criteria consistency with risk
- 4. Estimate cost of mitigation (retrofit or replace)
- 5. Identify Lifeline Routes and Priority Routes for rescue, recovery
- 6. Estimate impact to rescue efforts and economy
- 7. Prioritize a plan for mitigation, considering condition of assets
- 8. Establish Resiliency Investment options
- 9. Develop triage approach for reduced level of mobility
- Coordinate investment plan statewide with other modes/sectors through DHS/TSA Regional Resiliency Assessment Program (RRAP)

Cascadia Subduction Zone Earthquakes

FOCUS ON HIGHWAY BRIDGES Cascadia Subduction Zone Earthquake (Magnitude 9.0)

From REDARS (similar to Hazus)

Slight Moderate Extensive Collapse NHPN

- 6 complete collapses
- 64 extensive
- 106 major
- 164 slight

- **Estimates Loss:**
- **\$1,080** million for bridge repair and replacement
- Significant Economic losses (travel time related losses)

	Damage States				
Route	Slight	Moderate	Extensive	Complete	
I-5 (MWC)	4	1	0	0	
I-5 (MLL)	16	3	1	0	
I-5 (DJJ)	27	0	0	0	
I-84	13	1	0	0	
US-101	7	14	36	5	
US-26	7	5	0	0	
I-205	8	2	0	0	
I-405	7	0	0	0	
US-30	4	2	2	0	
US-20	5	3	5	0	
OR-38	3	2	1	0	
OR-42	4	13	13	1	
Others	59	60	6	0	
Total	164	106	64	6	

New & Retrofit Highway Bridge Seismic Design Criteria

"Life Safety" (no collapse) connects beams to the columns.

"Serviceability" strengthens the substructure for use within 72 hours after an event. (Building code – "Immediate occupancy")

Hazard Level - Recurrence Interval for Highway Bridges

National Code (AASHTO) - Design for "Life Safety" (no collapse) at a 1000-year recurrence interval using USGS 2002 Hazard Maps.

Oregon Code – Design for "no collapse" at a 1000-year recurrence interval using 2014 USGS Hazard Maps and "Serviceability" Design for usability within 72 hours after a CSZ Scenario event, 2014 (USGS). (2-level design criteria)

Retrofitting Progress Dashboard

First 15 years since vulnerability was identified

Years	Actions	
1994/1997	Prioritized total bridge needs	1155
1985-2012	Phase 1 retrofit added to projects (STIP & OTIA III program) bridges addressed	355
Future	Bridges still needing retrofitting (Over 200 years at current funding)	800

I-5 Interstate Bridge

THE

Available on the ODOT Bridge Engineering Section website at:

http://egov.oregon.gov /ODOT/HWY/BRIDGE/

November 2009

Transportation Resiliency depends on Landslides, as well as Bridges

Recommended Lifeline Routes

(Essential, Critical, Normal)

2012 – Seismic Lifelines evaluation
2012 – First "Full" (Phase 2) seismic retrofit

project for ODOT

Total Seismic PLUS Program Cost

Program Phases	Total Bridge Cost	Landslides/Rockfalls Cost	Total Seismic PLUS Program Costs
1	\$738 Million	\$197 Million	\$935 Million
2	\$632 Million	\$272 Million	\$904 Million
3	\$612 Million	\$483 Million	\$1,095 Million
4	\$640 Million	\$126 Million	\$766 Million
5	\$1,432 Million	\$0	\$1,432 Million
Total	\$4.1 Billion	\$1.0 Billion	\$5.1 Billion

Major Seismic Event: "Islands of Isolation"

Total economic loss: \$350 B

Isolated Zones: Full Seismic Program

Reduce economic loss by: \$84 B

Cost = \$5.1 Billion Economic Loss Avoided = \$84 Billion

Overall Seismic Resiliency Triage Strategy

Southern Oregon Triage Routes

Interstate 5 and OR 140

- I-5 and OR 140 (key lifeline routes)
- 17 bridges
 7 unstable slopes
- \$35 million (Mainline cost would be \$350 M)

ODOT – Local Agency Triage Routes (Tillamook County Trial cost is 10% of Original)

Local Agency Seismic Triage Project

Other Modes Coordination

- 1. The Redmond Airport will be the nexus of relief supplies entering Oregon (Other states may have their own supply issues and may not be able to help)
- 2. Relief supplies will come overland to the valley and the coast

Post-Earthquake Response

ODOT Resiliency Planning 10-Step Process

- 1. Assess Vulnerability of Assets (bridges and landslides)
- 2. Identify bridge damage states and landslides/rockfall dynamic stability
- 3. Validate Design Criteria consistency with risk
- 4. Estimate cost of mitigation (retrofit or replace)
- 5. Identify Lifeline Routes and Establish priority for rescue, recovery
- 6. Estimate impact to rescue efforts and economy
- 7. Prioritize plan for mitigation, considering condition of assets
- 8. Establish Resiliency Investment options
- 9. Develop triage approach for reduced level of mobility
- 10. Coordinate investment plan statewide with other modes/sectors through DHS/TSA Regional Resiliency Assessment Program (RRAP)

Thanks for your attention.

Bruce Johnson, Otak Former State Bridge Engineer, ODOT

Acknowledgement: Albert Nako, ODOT Seismic Stnds Engr

- Identify strategic lifeline routes
- Minimize long term economic damage
- Estimate Cost to address overall bridge condition

-Oregon Highway Seismic Options Report

Lifelines – Their Function

Facilitate:

- <u>Rescue</u> Emergency response to treat casualties and evacuate survivors
- <u>Relief</u> Provide basic necessities, restore social equilibrium, and assess damage
- <u>Recovery</u> Restoring commerce and the economy; bring things back to "normal"

Lifeline Goals

- 1. Support Survivability and Emergency Response Efforts Immediately Following the Event
- 2. Provide Transportation Facilities that are Critical to Life Support Functions for an Interim Period After the Event
- 3. Support Statewide Economic Recovery

ODOT's Seismic Retrofit Program

By the numbers:

- * 138 bridges to be replaced
- * 390 bridges to be retrofitted
- * 190 bridges to be rehabilitated and retrofitted
- 1185 landslides and rockfalls to be mitigated

✤ Program Cost ~ \$5.2B

Take Home Learnings... Next Steps

Bridge condition – include seismic

Bridge funding

Engage local communities for Triage Approach

ODOT Seismic Expenditures In HB2017

- Example: \$500 million/yr from HB2017
- State funds: \$250 million
- Seismic: \$61 million/yr (\$31 bridges, \$15 unstable slopes and \$15 facilities)
- Goal is to complete Phase 1 in 25 years
 - Study Triage Approach using lower cost alternative local routes for Phases 2-5
- Earmarked funding for Southern Oregon Triage and Center Street Bridge in Salem

Rogue Valley Triage Lifeline Routes

Operational Airports After EQ-Tsunami – Valley

Columbia River Ports

Port of Portland Facilities

Coastal Ports

Damage to Other Sector Lifelines and **interdependency** will slow restoration of services and rebuilding of the economy.

Key Finding – Liquid Fuel Dependency

• Liquid Fuel vulnerability is a key issue for transportation

