Dissipative base connections for moment frame structures in airports and other transportation systems

Amit Kanvinde, UC Davis
Ahmad Hassan, UC Davis

17 January 2020
Project Team and Collaborators

UC Davis
- Amit Kanvinde, PI
- Ahmad Hassan, PhD Student
- Tomasz Falborski, former postdoc now faculty at Gdansk University, Poland
- Vince Pericoli, former postdoc now Engineer at Sandia Labs

PEER BIP Partner, Forell Elsesser
- Mason Walters
- Ali Roufegarinejad
- Geoff Bomba

UC Irvine (collaborator)
- Farzin Zareian
- Pablo Torres Rodas, now faculty at Univ San Francisco de Quito, Ecuador

Brigham Young University (adviser)
- Paul Richards

University College London (UCL) (collaborator)
- Carmine Galasso
- Biao Song, PhD Student
Acknowledgments

- PEER
- American Institute of Steel Construction
- Charles Pankow Foundation
- California Strong Motion Instrumentation Program, CA Department of Conservation
Overview

• Steel Moment Resisting Frames and buildings are critical to airport (and other transportation) infrastructure

• Research on column base connections in SMRFs has lagged research on other connections

• Implications for connection as well as frame design
Specific Issues

• Designing bases to be stronger than columns is impractical and expensive
• No information on systems with weak bases
• No experimental data on several common base connection details
• Design does not usually account for interactions between base connection and frame
Overall Research Plan

PEER (SIMULATION BASED SYSTEM STUDIES)
- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES)
- Untested details
- Unbonded dissipative elements to localize yielding
- Resilience

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)
- Moment Frame Buildings
- Range of foundation types

MODEL VALIDATION

OUTCOMES
- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates
Overall Research Plan

PEER (SIMULATION BASED SYSTEM STUDIES)
- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES)
- Untested details
- Unbonded dissipative elements to localize yielding
- Resilience

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)
- Moment Frame Buildings
- Range of foundation types

Model Validation

Demands

Component Models

OUTCOMES
- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates
Overall Research Plan

PEER (SIMULATION BASED SYSTEM STUDIES)
- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

DEMANDS

COMPONENT MODELS

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES)
- Untested details
- Unbonded dissipative elements to localize yielding
- Resilience

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)
- Moment Frame Buildings
- Range of foundation types

OUTCOMES
- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details

HILTI (FEM SIMULATIONS)
- Biaxial Bending

UCL & UC DAVIS (RELIABILITY STUDY)
- Exposed Base Reliability Analysis
Overall Research Plan

PEER (SIMULATION BASED SYSTEM STUDIES)
- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES)
- Untested details
- Unbonded dissipative elements to localize yielding
- Resilience

OUTCOMES
- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Strength Model for Biaxial Bending of Base Plates
- Calibration of Resistance Factors added in Design Equations
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)
- Moment Frame Buildings
- Range of foundation types

HILTI (FEM SIMULATIONS)
- Biaxial Bending

UCL & UC DAVIS (RELIABILITY STUDY)
- Exposed Base Reliability Analysis
Overall Research Plan

PEER (SIMULATION BASED SYSTEM STUDIES)
- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES)
- Untested details
- Unbonded dissipative elements to localize yielding
- Resilience

HILTI (FEM SIMULATIONS)
- Biaxial Bending

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)
- Moment Frame Buildings
- Range of foundation types

OUTCOMES
- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Strength Model for Biaxial Bending of Base Plates
- Calibration of Resistance Factors added in Design Equations

- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates
PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases
PEER Objectives

• Development and calibration of component (hinge) models for column base connections
• Nonlinear simulation of archetype frames with dissipative bases
• Application of simulation results for design development
• Inform component experiments and interpretation
• Development of design examples for moment frames with dissipative bases
Component Hinge Models (for exposed and embedded type connections)

PHYSICS-BASED FUNCTIONAL FORM

CALIBRATION RULES
CSMIP Project on Base Flexibility

Richmond building results

<table>
<thead>
<tr>
<th>Base conditions</th>
<th>Error ((\epsilon))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Total average error: 0.85</td>
</tr>
<tr>
<td></td>
<td>NS average error: 0.83</td>
</tr>
<tr>
<td></td>
<td>EW average error: 0.82</td>
</tr>
<tr>
<td></td>
<td>Average error for the 1st story: 0.81</td>
</tr>
<tr>
<td>Pinned</td>
<td>Fixed: 0.45, NS: 0.48, EW: 0.47</td>
</tr>
<tr>
<td></td>
<td>Average error for the 1st story: 0.38</td>
</tr>
</tbody>
</table>

Fixed: Error = 0.449
With base springs: Error = 0.3519
Pinned: Error = 73.81
PEER Objectives

• Development and calibration of component (hinge) models for column base connections
• Nonlinear simulation of archetype frames with dissipative bases
• Application of simulation results for design development
• Inform component experiments and interpretation
• Development of design examples for moment frames with dissipative bases
FEMA P695 Parametric Study using base connection models
Key Results (Probabilities of Failure – P695)

- Weak base design feasible with $\Omega_0 = 3$
- These moments are up to 120% lower than 1.1RyM_p
- For 8-20 story buildings, rotation capacity of 0.05 needed (target for new details)
- Fairly realistic to achieve based on past data

PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases
Experimental Study (AISC/Pankow)

Phase I:
- Base connections with Reliably Ductile Details as well as Shallowly Embedded Details
 - 7 tests
 - Fall 2019 – Winter 2020
 - Testing launches within next weeks

Phase II:
- Untested details for Deeply Embedded Connections
 - 7 tests
 - Fall 2020

Design Guides and Wrapup
- Fall 2021
Experimental Study (AISC/Pankow)

Phase I:

- Base connections with Reliably Ductile Details as well as Shallowly Embedded details
 - 7 tests
 - Fall 2019 – Winter 2020
 - Testing launches within next weeks

Reliably Ductile Connection

Anchor Rods Specifically Detailed as Below-Ground Fuse

x4 Tests
Reliably Ductile Connection (Mason, Ali, Geoff - BIP)

Schematic Plan

Over-sized hole in baseplate

Shear Lug

Baseplate and threads remain elastic

Reduced Diameter Section

Rod isolated with tape

Polyethylene Tape -For Debonding-

Upset Threaded Rod
Ductile Behavior

Elastic Loading

Yield Mechanism in Anchors

(For clarity, shear key not shown)
Ductile Behavior

Elastic Unloading

Compression Yield Mechanism

(For clarity, shear key not shown)
Experimental Study (AISC/Pankow)

Phase I:
- Base connections with Reliably Ductile details as well as Shallowly Embedded Details
 - 7 tests
 - Fall 2019 – Winter 2020
 - Testing launches within next weeks
Experimental Study (AISC/Pankow)

Phase II:

- Untested details for Deeply Embedded Connections
 - 7 tests
 - Fall 2020
Setup and Status

x7 Specimens Cast & Cured

Setup in Process
Final Phase – Design Guide/Code Development:
- Design Guide One (~2021)
- Seismic Design Manual
- AISC 341

AISC/Pankow oversight committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tom Sabol (Chair)</td>
<td>Engelkirk</td>
<td>Principal</td>
</tr>
<tr>
<td>2 Rick Drake</td>
<td>Fluor Corporation</td>
<td>Senior Fellow Structural Engineering</td>
</tr>
<tr>
<td>3 Joe Zona</td>
<td>Simpson Gumpertz & Heger</td>
<td>Senior Principal</td>
</tr>
<tr>
<td>4 Subhash Goel</td>
<td>University of Michigan</td>
<td>Emeritus Professor</td>
</tr>
<tr>
<td>5 Chia Ming Uang</td>
<td>UC San Diego</td>
<td>Professor</td>
</tr>
<tr>
<td>6 Tim Fraser</td>
<td>Steel Structures Detailing</td>
<td>VP Operations and Engineering</td>
</tr>
<tr>
<td>7 Jim Malley</td>
<td>Degenkolb</td>
<td>Group Director, Senior Principal</td>
</tr>
<tr>
<td>8 Tom Kuznik</td>
<td>Herrick Corporation</td>
<td>Chief Engineer</td>
</tr>
<tr>
<td>9 Mason Walters</td>
<td>Forell Elsesser Engineers</td>
<td>Senior Principal</td>
</tr>
<tr>
<td>10 Geoff Bomba, SE</td>
<td>Forell Elsesser Engineers</td>
<td>Principal</td>
</tr>
</tbody>
</table>
Final Phase – Design Guide/Code Development:
- Design Guide One (~2021)
- Seismic Design Manual
- AISC 341

AISC/Pankow oversight committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tom Sabol (Chair)</td>
<td>Engelkirk</td>
<td>Principal</td>
</tr>
<tr>
<td>2 Rick Drake</td>
<td>Fluor Corporation</td>
<td>Senior Fellow Structural Engineering</td>
</tr>
<tr>
<td>3 Joe Zona</td>
<td>Simpson Gumpertz & Heger</td>
<td>Senior Principal</td>
</tr>
<tr>
<td>4 Subhash Goel</td>
<td>University of Michigan</td>
<td>Emeritus Professor</td>
</tr>
<tr>
<td>5 Chia Ming Uang</td>
<td>UC San Diego</td>
<td>Professor</td>
</tr>
<tr>
<td>6 Tim Fraser</td>
<td>Steel Structures Detailing</td>
<td>VP Operations and Engineering</td>
</tr>
<tr>
<td>7 Jim Malley</td>
<td>Degenkolb</td>
<td>Group Director, Senior Principal</td>
</tr>
<tr>
<td>8 Tom Kuznik</td>
<td>Herrick Corporation</td>
<td>Chief Engineer</td>
</tr>
<tr>
<td>9 Mason Walters</td>
<td>Forell Elsesser Engineers</td>
<td>Senior Principal</td>
</tr>
<tr>
<td>10 Geoff Bomba, SE</td>
<td>Forell Elsesser Engineers</td>
<td>Principal</td>
</tr>
</tbody>
</table>
Biaxial Bending (HILTI)

Problem:
- Interaction between 2 directions (Bidirectional Effects of Seismic & Wind Loads)
- Compromises strength of connection
- Bearing Stresses & Anchor Force Distribution
- Not addressed by current guidelines (AISC Design Guide 1)

Multiple Anchors in Tension -Not Only 2-
Biaxial Bending (HILTI)

SOFTWARE VALIDATION
- Validated against 2 series of existing experimental data with various configurations (Uniaxial)
- Accurate Predictions for Anchor Forces

Kanvinde et al. (2014)

Gomez et al. (2010)

BIAXIAL INSIGHTS
- Bearing Stresses
- Distribution of Axial Forces

Fairly Representative through Varying
- Geometry
- Moment Angles
- Level of Axial Load
- Connection Strength
Biaxial Bending (HILTI)

MODEL FORMULATION
- Probing Bearing Stress distribution for error reduction (including DG1 assumption)
- Assume Linear Distribution of forces in anchors
- Assume Neutral Axis Orientation $\theta_{N.A} = \theta_{\text{Loading}}$

Ratio vs Normalized Axial Force

<table>
<thead>
<tr>
<th>Hilti/Model</th>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P/(1.7.f_c.A_b)$</th>
<th>0.00</th>
<th>0.20</th>
<th>0.40</th>
<th>0.60</th>
<th>0.80</th>
<th>1.00</th>
<th>1.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear Distribution
Rectangular Dist.
Triangular Dist.
Single Force
Bearing Area
N.A
Biaxial Bending (HILTI)

MODEL FORMULATION
- Probing Bearing Stress distribution for error reduction (including DG1 assumption)
- Assume Linear Distribution of forces in anchors
- Assume Neutral Axis Orientation $\theta_{\text{N.A}} = \theta_{\text{Loading}}$

<table>
<thead>
<tr>
<th>Ratio vs Orientation Neutral Axis</th>
<th>Hilti/Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Neutral Axis</td>
<td></td>
</tr>
<tr>
<td>Hilti/Matlab</td>
<td>Ratio</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>2.50</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Linear Distribution
Rectangular Dist.
Triangular Dist.
Single Force

T1
T2
T3
T4

N.A
Bearing Area

T4 Ratio
Reliability Study (UCL – UC Davis)

Design Considerations for Exposed Column Base Connections

AISC Design Guide One

- FOUR expected failure modes:
 - $\phi_{\text{concrete}} = 0.65$ is used to determine the imposed loads;
 - $\phi_{\text{plate in bending}} = 0.9$ and $\phi_{\text{rod in tension}} = 0.75$

Proposed Approach

- THREE Mechanics Based failure modes:
 - $\phi_{\text{concrete}} = 1.0$ is considered to determine the imposed loads;
 - $\phi_{\text{plate in bending}}$ and $\phi_{\text{rod in tension}}$: to be determined from Reliability Analysis
Reliability Analysis

• 59 representative design cases (P-M pairs):
 ▪ 4 x 4-story frames (both exterior & interior bases);
 ▪ 2 x design locations (LA & SAC);
 ▪ 3 x design load types (earthquake, wind & gravity);
 ▪ 2 x cases from AISC DG1;
 ▪ 1 x case from SEAOC design manual.

• Sources of uncertainty:
 ▪ Sectional geometries;
 ▪ Material properties;
 ▪ Applied loads;
 ▪ Mechanical models.

• Limit-state functions:
 ▪ Concrete bearing failure;
 ▪ Base plate flexural yielding (compression or tension side);
 ▪ Anchor rods axial yielding.

• Monte-Carlo simulation:
 ▪ Reliability index (β) as a function of φ;

\[
AISC \text{ DG1: } \beta_{\text{plate}} = 1.9 \quad \beta_{\text{rods}} = 2.2
\]

\[
\phi_{\text{concrete}} = 0.65
\]

\[
\phi_{\text{concrete}} = 1.0
\]