Dissipative base connections for moment frame structures in airports and other transportation systems

Amit Kanvinde, UC Davis Ahmad Hassan, UC Davis

17 January 2020

CHARLES PANKOW

Project Team and Collaborators

UC Davis

- Amit Kanvinde, PI
- Ahmad Hassan, PhD Student
- Tomasz Falborski, former postdoc now faculty at Gdansk University, Poland
- Vince Pericoli, former postdoc now Engineer at Sandia Labs

PEER BIP Partner, Forell Elsesser

- Mason Walters
- Ali Roufegarinejad
- Geoff Bomba

UC Irvine (collaborator)

- Farzin Zareian
- Pablo Torres Rodas, now faculty at Univ San Francisco de Quito, Ecuador

Brigham Young University (adviser)

- Paul Richards

University College London (UCL) (collaborator)

- Carmine Galasso
- Biao Song, PhD Student

Acknowledgments

- PEER
- American Institute of Steel Construction
- Charles Pankow Foundation
- California Strong Motion Instrumentation Program, CA Department of Conservation

Overview

- Steel Moment Resisting
 Frames and buildings are
 critical to airport (and other
 transportation) infrastructure
- Research on column base connections in SMRFs has lagged research on other connections
- Implications for connection as well as frame design

Specific Issues

- Designing bases to be stronger than columns is impractical and expensive
- No information on systems with weak bases
- No experimental data on several common base connection details
- Design does not usually account for interactions between base connection and frame

PEER (SIMULATION BASED SYSTEM STUDIES)

- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases •

OUTCOMES

- Design methodology for Frames with Weak Bases
- **Rigorous Consideration of base-frame interactions**
- Details that make this possible + data on untested details
- Code changes (e.g., AISC 341) ٠

PEER

Design Guide One update, Design Manual Updates

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)

- Moment Frame Buildings ullet
- Range of foundation types

PEER (SIMULATION BASED SYSTEM STUDIES)

- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases •

AISC + CHARLES PANKOW FOUNDATION (EXPERIMENTAL COMPONENT STUDIES) Untested details

- Unbonded dissipative elements to localize
 - Resilience

OUTCOMES

- **Design methodology for Frames with Weak Bases**
- **Rigorous Consideration of base-frame interactions**
- **Details that make this possible + data on untested details**
- Code changes (e.g., AISC 341)
- **Design Guide One update, Design Manual Updates**

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)

- Moment Frame Buildings ullet
- Range of foundation types

PEER (SIMULATION BASED SYSTEM STUDIES)

- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

OUTCOMES

- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)

- Moment Frame Buildings
- Range of foundation types

PEER (SIMULATION BASED SYSTEM STUDIES)

- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

PEER

OUTCOMES

- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Strength Model for Biaxial Bending of Base Plates
- Calibration of Resistance Factors added in Design Equations
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)

- Moment Frame Buildings
- Range of foundation types

PEER (SIMULATION BASED SYSTEM STUDIES)

- Component models for strength/stiffness/hysteresis
- Demonstrate frame performance with dissipative/flexible bases
- Methodology to design frame-base system with such bases
- Motivate research on ductile and repairable bases

OUTCOMES

- Design methodology for Frames with Weak Bases
- Rigorous Consideration of base-frame interactions
- Details that make this possible + data on untested details
- Strength Model for Biaxial Bending of Base Plates
- Calibration of Resistance Factors added in Design Equations
- Code changes (e.g., AISC 341)
- Design Guide One update, Design Manual Updates

MODEL VALIDATION

CA STRONG MOTION INSTRUMENTATION PROGRAM (VALIDATION AND BENCHMARKING)

- Moment Frame Buildings
- Range of foundation types

PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases

PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases

Component Hinge Models (for exposed and embedded type connections)

PHYSICS-BASED

FUNCTIONAL

FORM

CSMIP Project on Base Flexibility

PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases

FEMA P695 Parametric Study using base connection models gravity loads

-200.0

-0.150 -0.100 -0.050 0.000 0.050

Base rotation θ (radians)

0.100 0.150

Key Results (Probabilities of Failure – P695)

Falborski et al., (2019 – in press) "The effect of base connection strength and ductility on the seismic performance of steel moment resisting frames," Journal of Structural Engineering, American Society of Civil Engineers.

- Weak base design feasible with Ω_0 =3
- These moments are up to 120% lower than 1.1RyMp
- For 8-20 story buildings, rotation capacity of 0.05 needed (target for new details)
- Fairly realistic to achieve based on past data

PEER Objectives

- Development and calibration of component (hinge) models for column base connections
- Nonlinear simulation of archetype frames with dissipative bases
- Application of simulation results for design development
- Inform component experiments and interpretation
- Development of design examples for moment frames with dissipative bases

Experimental Study (AISC/Pankow)

Phase I:

- Base connections with Reliably Ductile Details as well
- as Shallowly Embedded Details
 - 7 tests
 - Fall 2019 Winter 2020
 - Testing launches within next weeks

Phase II:

- Untested details for Deeply Embedded Connections
 - 7 tests
 - Fall 2020

Design Guides and Wrapup

➢ Fall 2021

Experimental Study (AISC/Pankow)

Phase I:

- Base connections with Reliably Ductile Details as well as Shallowly Embedded details
 - 7 tests
 - Fall 2019 Winter 2020
 - Testing launches within next weeks

x4 Tests

Anchor Rods Specifically Detailed as Below-Ground Fuse

Reliably Ductile Connection

Reliably Ductile Connection (Mason, Ali, Geoff - BIP)

Ductile Behavior

Ductile Behavior

(For clarity, shear key not shown)

Experimental Study (AISC/Pankow)

Phase I:

- Base connections with Reliably Ductile details as well as Shallowly Embedded Details
 - 7 tests
 - Fall 2019 Winter 2020
 - Testing launches within next weeks

Experimental Study (AISC/Pankow)

Phase II:

- Untested details for Deeply Embedded Connections
 - 7 tests
 - Fall 2020

Embedded with Welded Reinforcement

Embedded With Welded Shear Studs

Setup and Status

Final Phase – Design Guide/Code Development:

- Design Guide One (~2021)
- Seismic Design Manual
- AISC 341

AISC/Pankow oversight committee

Name		Affiliation	Title
1	Tom Sabol (Chair)	Engelkirk	Principal
2	Rick Drake	Fluor Corporation	Senior Fellow Structural Engineering
3	Joe Zona	Simpson Gumpertz & Heger	Senior Principal
4	Subhash Goel	University of Michigan	Emeritus Professor
5	Chia Ming Uang	UC San Diego	Professor
6	Tim Fraser	Steel Structures Detailing	VP Operations and Engineering
7	Jim Malley	Degenkolb	Group Director, Senior Principal
8	Tom Kuznik	Herrick Corporation	Chief Engineer
9	Mason Walters	Forell Elsesser Engineers	Senior Principal
10	Geoff Bomba, SE	Forell Elsesser Engineers	Principal

Final Phase – Design Guide/Code Development:

- Design Guide One (~2021)
- Seismic Design Manual
- AISC 341

AISC/Pankow oversight committee

Name		Affiliation	Title
1	Tom Sabol (Chair)	Engelkirk	Principal
2	Rick Drake	Fluor Corporation	Senior Fellow Structural Engineering
3	Joe Zona	Simpson Gumpertz & Heger	Senior Principal
4	Subhash Goel	University of Michigan	Emeritus Professor
5	Chia Ming Uang	UC San Diego	Professor
6	Tim Fraser	Steel Structures Detailing	VP Operations and Engineering
7	Jim Malley	Degenkolb	Group Director, Senior Principal
8	Tom Kuznik	Herrick Corporation	Chief Engineer
9	Mason Walters	Forell Elsesser Engineers	Senior Principal
10	Geoff Bomba, SE	Forell Elsesser Engineers	Principal

Problem:

- Interaction between 2 directions (Bidirectional Effects of Seismic & Wind Loads)
- Compromises strength of connection
- Bearing Stresses & Anchor Force Distribution
- Not addressed by current guidelines (AISC Design Guide 1)

- Probing Bearing Stress distribution for error reduction (including DG1 assumption)
- Assume Linear Distribution of forces in anchors
- Assume Neutral Axis Orientation $\theta_{N,A} = \theta_{Loading}$

MODEL FORMULATION

- Probing Bearing Stress distribution for error reduction (including DG1 assumption)
- Assume Linear Distribution of forces in anchors
- Assume Neutral Axis Orientation $\theta_{N,A} = \theta_{Loading}$

Ratio vs Orientation Neutral Axis

Reliability Study (UCL – UC Davis)

Design Considerations for Exposed Column Base Connections

AISC Design Guide One

• FOUR expected failure modes:

Proposed Approach

• THREE **Mechanics Based** failure modes:

- $\phi_{\text{concrete}} = 0.65$ is used to determine the imposed loads;
- $\phi_{\text{ plate in bending}} = 0.9 \text{ and } \phi_{\text{ rod in tension}} = 0.75$

- $\phi_{\text{concrete}} = 1.0$ is considered to determine the imposed loads;
- $\phi_{\text{plate in bending}}$ and $\phi_{\text{rod in tension}}$: to be determined from **Reliability Analysis**

Reliability Analysis

- 59 representative design cases (P-M pairs):
 - 4 x 4-story frames (both exterior & interior bases);
 - 2 x design locations (LA & SAC);
 - 3 x design load types (earthquake, wind & gravity);
 - 2 x cases from AISC DG1;
 - 1 x case from SEAOC design manual.

Sources of uncertainty:

- Sectional geometries;
- Material properties;
- Applied loads;
- Mechanical models.

Limit-state functions:

- Concrete bearing failure;
- Base plate flexural yielding (compression or tension side);
- Anchor rods axial yielding.

Monte-Carlo simulation:

Reliability index (β) as a function of φ;

