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Overview i)

e Steel Moment Resisting
Frames and buildings are
critical to airport (and other
transportation) infrastructure

 Research on column base
connections in SMRFs has

lagged research on other
connections
* |Implications for connection as

well as frame design




Specific Issues

* Desighing bases to be stronger
than columns is impractical and
expensive

* No information on systems with
weak bases

* No experimental data on several
common base connection details |

* Design does not usually account
for interactions between base
connection and frame
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Component Hinge Models (for exposed and

- CALIBRATION

RULES

ons

ﬁ First vield
Flexural
vielding of

J

200.0

100.0

PHYSICS-BASED "
FUNCTIONAL 1000
FORM s

Baze rotation & {(radians)



CSMIP Project on Base Flexibility

Richmond building results
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FEMA P695 Parametric Study using base

connection models
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Key Results (Probabilities of Failure — P695)

BASE STRENGTH LEVEL =3 AND (=1

Prob of Failure (%)

4-story 8-story 12-story 20-story
Building Number of Stories
Base Rotation Limit: - 1 %-2%|:|4% I:Is%l:lUnllmited

Falborski et al., (2019 — in press) “The effect of base connection

strength and ductility on the seismic performance of steel

moment resisting frames,” Journal of Structural Engineering,

American Society of Civil Engineers.

Weak base design feasible
with Q,=3

These moments are up to
120% lower than 1.1RyMp
For 8-20 story buildings,
rotation capacity of 0.05
needed (target for new
details)

Fairly realistic to achieve
based on past data



PEER ODbjectives

 Development and calibration of component (hinge)
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* Nonlinear simulation of archetype frames with dissipative
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Experimental Study (AISC/Pankow)
Phase I:

» Base connections with Reliably Ductile Details as well
as Shallowly Embedded Details

» /tests

 Fall 2019 — Winter 2020

e Testing launches within next weeks

Phase IlI:
» Untested details for Deeply Embedded Connections

e 7/ tests

* Fall 2020
Design Guides and Wrapup | .
» Fall 2021




Experimental Study (AISC/Pankow)
Phase I:

» Base connections with Reliably Ductile Details as well
as Shallowly Embedded details

* /tests
* Fall 2019 — Winter 2020 Anchor Rods :4
* Testing launches within next weeks Specifically pe
Detailed as ”

x4 Tests Below-Ground po

Fuse

Reliably Ductile
Connection



Reliably Ductile Connection (Mason, Ali, Geoff - BIP)

Schematic Plan
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Ductile Behavior

Elastic Loading Yield Mechanism in Anchors
(For clarity, shear key not shown)



Ductile Behavior

Elastic Unloading Compression Yield Mechanism

(For clarity, shear key not shown)



Experimental Study (AISC/Pankow)
Phase I:

» Base connections with Reliably Ductile details as well
as Shallowly Embedded Details

e /tests
 Fall 2019 — Winter 2020 ,

. Cy Diamond
* Testing launches within next weeks Blockout

Overtopping Slab

\

X3 Tests

Shallowly Embedded

) Footin
Connection 8



Experimental Study (AISC/Pankow)

Phase II:
» Untested details for Deeply Embedded Connections
 /tests

* Fall 2020

Embedded With Top
Plate

Embedded with
Welded Embedded With

Reinforcement Welded Shear Studs




o i

Setup and Status

X7 Specimens Cast &
Cured




Final Phase — Design Guide/Code Development:
- Design Guide One (~2021)
- Seismic Design Manual

- AISC 341

AISC/Pankow oversight committee

Name Affiliation Title

I Tom Sabol (Chair) Engelkirk Principal

2 Rick Drake Fluor Corporation Senior Fellow Structural Engineering
3 Joe Zona Simpson Gumpertz & Heger Senior Principal

4 Subhash Goel University of Michigan Emeritus Professor

S Chia Ming Uang UC San Diego Professor

6 Tim Fraser Steel Structures Detailing VP Operations and Engineering
7 Jim Malley Degenkolb Group Director, Senior Principal
8 Tom Kuznik Herrick Corporation Chief Engineer

9 Mason Walters Forell Elsesser Engineers Senior Principal

10 Geoff Bomba, SE Forell Elsesser Engineers Principal
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Biaxial Bending (HILTI)

Multiple
Anchors in
Tension

-Not Only 2-

Problem:

Interaction between 2 directions
(Bidirectional Effects of Seismic & Wind
Loads)

Compromises strength of connection
Bearing Stresses & Anchor Force
Distribution

Not addressed by current guidelines
(AISC Design Guide 1)




Biaxial Bending (HILTI)

SOFTWARE VALIDATION

with various configurations (Uniaxial)
e Accurate Predictions for Anchor Forces

o

Kanvinde et al.
(2014)

e \alidated against 2 series of existing experimental data

Gomez et al.
(2010)

_/

Fairly Representative
through Varying\
Geometry
Moment Angles
Level of Axial Load

=T

BIAXIAL INSIGHTS
Bearing Stresses
Distribution of Axial
Forces

Connection Strength




Biaxial Bending (HILTI)

MODEL FORMULATION

reduction (including DG1 assumption)

e Probing Bearing Stress distribution for error

e Assume Linear Distribution of forces in anchors
e Assume Neutral Axis Orientation 0y ,=0

Loading

Ratio vs Normalized Axial Force
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Biaxial Bending (HILTI) =

MODEL FORMULATION Linear
e Probing Bearing Stress distribution for error D'St”b“t'on\b ?
reduction (including DG1 assumption) =
e Assume Linear Distribution of forces in anchors T2
e Assume Neutral Axis Orientation Oy ,= 0 .qine f T3 |
_ , _ _ Rectangular Dist.
Ratio vs Orientation Neutral Axis
)0 Triangular Dist.
° Single Force
o o ! N.A
0 ° e
§ o ! T o & ; ° o o« * % 2 "o ® ™
= 1.00 ;‘—'—s—s—; $ 1 '—'—;—|—.—‘—.'— /’
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Reliability Study (UCL — UC Davis)

Design Considerations for Exposed Column Base Connections

AISC Design Guide One Proposed Approach
* FOUR expected failure modes:  THREE Mechanics Based failure modes:
M M M M
épﬂb pll pll pdl
A
=
fmax ' fmax
* Peoncrete — 0-65 IS Used to determine the * @ concrete = 1.0 is considered to determine the
Imposed loads; imposed loads;

* ¢ plate in bending = 0.9 and ¢ rod in tension — 0.75 ¢ ¢p|ate in bending and ¢rod in tension- LO be

determined from Reliability Analysis



BASE PLATE ANCHOR RODS

Reliability Analysis :
S|

* 59 representative design cases (P-M
pairs):

= 4 x 4-story frames (both exterior & interior S S
bases); 2 |
= 2 x design locations (LA & SAC); " Mainly compression side 1

» 3 x design load types (earthquake, wind & 06 0.7 0.8 9

gravity); Py &concrete =0.65
= 2 x cases from AISC DG1; . ,
! : | —— AISC DG1: B, = 1.9
= 1x case from SEAOC design manual. 5| g g XM Bp'a;e= 22
(o} roas *
« Sources of uncertainty: K -

= Sectional geometries; =? ' « DG1 design approach
= Material properties; 2] ’ T

. . 1 1 Mainly compression side § | v o ele_, > 1.1
u App“ed |OadS, . | Thicker plate | 5 E v 1<ele, <1.1]
= Mechanical models. 0.6 0.7 0.8 0.9 4r XK Mean f,

.. : ¢ =1.0 ¢
. Limit-state functions: : b Deonerere =10 80
) ) ) Only tension side o ele ;> 1.1 5
= Concrete bearing failure; 5 Thinner plate |¥ 1<®/eg, <11
= Base plate flexural yielding (compression or 4/ 2 Mean Brogs "
tension Side); %3’ ° 04s 0.55 0.65 0.75
= Anchor rods axial yielding. o, o
« Monte-Carlo simulation: ' . Mechanics based
= Reliability index (B) as a function of ¢; O s 06 07 o8 09 approach







