Damage-Based Capacity Limit States for Nonductile Bridge Columns

Sashi K. Kunnath and Jin Zhou University of California at Davis

2023 PEER Annual Meeting

Outline of presentation

- Background ShakeCast & next generation bridge system fragility relationships
- Developing component capacity limit state (CCLS) models
 - Conceptual basis for model development
 - Ductility & damage-based models
- Application to multi-column bents
- Project findings & future work

ShakeCast Analysis: Near real-time damage assessment

Ground shaking data (produced by USGS)

ShakeCast inventory of existing bridges

Probabilistic seismic demand models for different bridge classes ShakeMap provides distribution of ground shaking (5-10 min)

Earthquake occurs.

epicenter identified

magnitude and

min)

ShakeCast determines the bridges that fall in the regions of strong shaking.

ShakeCast identifies the bridges that are more likely to have damage due to the critical combination of damaging shaking levels and greater vulnerability. (10 min)

Associating demand with likely damage Need for component and system-level damage limit states

Development of component capacity limit state models based primarily on available experimental data (Caltrans/Georgia Tech & Rice efforts)

Lack of experimental data on older (pre-1971) California bridge columns Hence, need to resort to numerical simulations

Non-ductile bridge columns

ERA-1 (pre-1971)

Transverse Reinforcement Ratio: ~ 0.1% - 0.25% Characteristics: In some columns, the longitudinal reinforcing steel bars were lap spliced at base

ERA-2 (1971 - 1990)

Transverse Reinforcement Ratio: ~ 0.3% - 1.0%

ERA-3 (post 1990)

Transverse Reinforcement Ratio: ~ 0.5% - 1.35%

Modeling: Element model

Pushover analysis of a typical Era-1 column

Kenawy, M Kunnath, SK et al. (2020). Concrete Uniaxial Nonlocal Damage-Plasticity Model for Simulating Post-Peak Response of Reinforced Concrete Beam-Columns under Cyclic Loading. *ASCE Journal of Structural Engineering*. 146 (5).

Kenawy M, Kunnath SK et al.. (2018). Fiber-Based Nonlocal Formulation for Simulating Softening in Reinforced Concrete Beam-Columns, *ASCE Journal of Structural Engineering*, 144 (12).

Material modeling

Confined concrete model

Scott, B. D., Park, R., and Priestley, M. J. N. (1982). "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates." *ACI Journal*, 79(1): 13–27.
Saatcioglu, M., and Razvi, S. R. (1992). "Strength and ductility of confined concrete." *J. Struct. Diy.*, ASCE, 118(6), 1590-1607

Strain penetration model

Zhao, J., and S. Sritharan. (2007) Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures. *ACI Structural Journal*, 104(2), 133-141.

Rebar buckling model

Zong, Z., Kunnath, S., and Monti, G. (2014). "Material Model Incorporating Buckling of Reinforcing Bars in RC Columns." *Journal of Structural Engineering*, 140 (1).

Model validation

- 1. Chai, Y. H., M. N. Priestley and F. Seible (1991). "Seismic retrofit of circular bridge columns for enhanced flexural performance." ACI Structural Journal, 88(5).
- Soesianawati, M.T.; Park, R; and Priestley, M.J.N. (1986). Limited Ductility Design of Reinforced Concrete Columns, Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand
- 3. Sun Z., Seible, F. and Priestley, M.J.N. (1993), "Diagnostics and retrofit of rectangular bridge columns for seismic loads." Structural Systems Research Program, 93/07, University of California, San Diego.

Identification & selection of Era-1 columns

Simulation study: prototype models and parameters

Column #	1	2	3	4	5	6	7
Trans. reinf.	#4	#4	#4	#4	#4	#7	#8
Spacing (in)	6	12	12	12	8	8	12
Trans. steel ratio	0.24%	0.12%	0.12%	0.12%	0.18%	0.55%	0.48%
Long. reinf.	32 # 14	11 # 14	32 # 14	21 # 14	30 # 18	19 # 10	45 # 14
Long. steel ratio	3.0%	1.0%	3.0%	2.0%	5.0%	1.0%	4.3%
			1 1				

Note: Hysteretic parameters for the reinforcing steel model were varied to generate 3 simulations each

Identification & selection of Era-1 columns

Wide section:

Simulation study: prototype models and parameters

Wide section:

Column #	1	2	3	4	5
B (in)	36	36	36	36	36
D (in)	72	96	96	72	72
Height (ft)	36	48	48	36	36
Trans. reinf	# 4	# 4	# 4	# 4	# 4
Spacing (in)	12	12	12	15	15
Trans. Steel Ratio	0.23%	0.23%	0.15%	0.12%	0.12%
Long. Reinf	28 #14	26 # 11	20 # 11	28#14	40#14
Long. Steel Ratio	3.0%	1.4%	1.0%	3.0%	4.2%

Note: Hysteretic parameters for the reinforcing steel model were varied to generate 3 simulations each

Loading protocols: (a) cyclic loading

Hence, the column models were subjected to 9 simulations each – three modeling parameters and three loading histories

Damage States

Notation	Damage state
DS-1	Negligible
DS-2	Minor
DS-3	Minor to moderate
DS-4	Moderate to severe
DS-5	Severe, but stable
DS-6	Extremely severe with likely instability of system
DS-7	Collapse

Limit state calibration: Phase I Damage correlated to ductility demand

Circular versus Wide Rectangular Sections

Application of ductility-based calibration to earthquake loading

Column damage state		DS-1	DS-2	DS-3	DS-4	DS-5	DS-6	DS-7	
Definition		Cracking of cover	Minor Spalling	Major Spalling	Exposed core	Bar buckling	Multi-bar rupture	Column collapse	
Ductility	Mean of cyclic loading	0.23	1.67	1.90	3.32	4.80	6.10	7.82	
Demand	Seismic loading	0.22	1.70	1.95	3.32	4.15	4.15	4.15	

Damage-based development of limit states

Column Damage Index

Reinforcing steel damage

1

$$D_{si} = \frac{1}{\sum_{j=1}^{n} (2N_f)}$$

Aggregate material damage

$$D_{c} = \sum_{i}^{n} w_{ci} D_{ci} \qquad D_{s} = \sum_{i}^{m} w_{si} D_{si}$$
$$w_{ci} = \frac{\alpha_{i} D_{ci}}{\sum_{i}^{n} \alpha_{i} D_{ci}} \qquad w_{si} = \frac{\beta_{i} D_{si}}{\sum_{i}^{m} \beta_{i} D_{si}}$$

Column damage

$$DI = W_c D_c + W_s D_s$$
$$W_s = \frac{D_s}{D_s + D_c} , W_c = \frac{D_c}{D_s + D_c}$$

Definition of damage limit states

Damage state	Damage description		Damage criteria in critical fiber			
DS-1	Cracking in cover	Slight	C1	Tension cracking in fiber C1, $D_{c_{C1}} \ge 0.01$		
DS-2	Minor Spalling	Moderate	CR2	$D_{c_{CR2}} \ge D_{cu_{CR2}}$		
DS-3	Major Spalling		CR3	$D_{c_{CR3}} \ge D_{cu_{CR3}}$		
DS-4	Bar buckling	Enterview	S1	See Section 4.5.1		
DS-5	Exposed core / first-bar rupture	Extensive	S1	$D_{s_{s1}} \ge 1$		
DS-6	Multi-bar rupture	Complete	S_i , $d_{si} \geq 0.2 R_c$	$D_{s_{si}} \ge 1$		
DS-7	Column collapse			50% loss in lateral strength in load-displacement response		

Calibration of damage limit states

Column damage state	Definition	Ranf et. al	l Chai et. al		
DS-1	Cracking of cover	0.01	0.03		
DS-2	Minor Spalling	0.07	0.07		
DS-3	Major Spalling	0.19	0.24		
DS-4	Bar buckling	0.40	0.57		
DS-5	<i>Exposed core / first- bar rupture</i>	0.72	0.75		
DS-6	Multi-bar rupture	1.26	1.03		
DS-7	Column collapse	2.05	1.22		

Calibration with shaking table test

		Computed Damage Index			
Column damage state	Damage description	GM1	GM2	GM3	
DS-1	Cracking of cover	0.01	0.01	0.01	
DS-2	Minor Spalling	0.02	0.03	0.02	
DS-3	Major Spalling		0.11	0.22	
DS-4	Bar buckling		0.58	0.53	
DS-5	Exposed core			0.97	
DS-6	Multi-bar rupture			1.76	
DS-7 Column collapse		Did not occur			

Schoettler, M. J., J. I. Restrepo, G. Guerrini, D. Duck, and F. Carrea. 2015. A full-scale, singlecolumn bridge bent tested by shake-table excitation. PEER Rep. 2015/02, Pacific Earthquake Engineering Research Center, Univ. of California.

Post-earthquake assessment of bridge bents

Summary of IDA simulations

Summary of findings & future work

- Ductility-based limit states are unreliable for earthquake loading
- The proposed damage-based limit states were shown to be independent of failure mode and loading protocol
 - Redundancy provided by multi-column bents indicate 2-column bents provide additional margin of safety for all damage states but no further enhancement is achieved with 3-column bents
- <u>Ongoing & future work</u>: refine damage model for early damage states; analysis of additional crosssections, shear and mixed failure modes; compare with work on Damage Indices by Farzin at UCI

Acknowledgements

 Cliff Roblee (Caltrans) Chuang-Sheng (Walter) Yang & Qiu Zheng (Georgia Tech)

