

National Science Foundation





# NHERI@UC San Diego: Facility Description and Capabilities

#### Koorosh Lotfizadeh, Ph.D. Department of Structural Engineering, UC San Diego





2023 PEER Annual Meeting

August 24-25, 2023 University of California, Berkeley



## Outline

- Overview of Englekirk Structural Engineering Center
- Large High-Performance Outdoor Shake Table (LHPOST)
- Six-Degree-of-Freedom (6-DOF) Upgrade of LHPOST to LHPOST6
  - Design and Description of the Upgrade
  - Performance of the LHPOST6
- Instrumentation and Data Acquisition System
- New Research Opportunities Made Possible by LHPOST6

# **NHERI Operations Personnel**

#### NHERI@UC San Diego Organization Chart



# **Overview:** Englekirk Structural Engineering Center (ESEC)

#### Englekirk Structural Engineering Center



Large High-Performance Outdoor Shake Table (LHPOST)

#### **IAS Accreditation**



#### **CERTIFICATE OF ACCREDITATION**

This is to attest that

#### ENGLEKIRK STRUCTURAL ENGINEERING CENTER (UCSD) 10201 POMERADO ROAD SAN DIEGO, CALIFORNIA 92131 U.S.A.

**Testing Laboratory TL-1065** 

has met the requirements of AC89, *IAS Accreditation Criteria for Testing Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date May 31, 2023



Ley nather

President

Visit www.iasonline.org for current accreditation information.

# Large High-Performance Outdoor Shake Table (LHPOST)

#### **History**



San Diego

#### **1-DOF Large High-Performance Outdoor Shake Table (LHPOST)**





| Performance Characteristics of LHPOST in Past 1-DOF Configuration (2004 – 2019)        |                                                                  |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
| Designed as a 6-DOF shake table, but built as a 1-DOF system to meet funding available |                                                                  |  |  |  |  |
| Stroke                                                                                 | ±0.75m                                                           |  |  |  |  |
| Platen Size                                                                            | 40 ft × 25 ft (12.2 m × 7.6 m)                                   |  |  |  |  |
| Peak Velocity                                                                          | 1.8 m/sec                                                        |  |  |  |  |
| Peak Acceleration                                                                      | 4.7g (bare table condition); 1.2g (4.0MN/400 tonf rigid payload) |  |  |  |  |
| Frequency Bandwidth                                                                    | 0-33 Hz                                                          |  |  |  |  |
| Horizontal Actuators Force Capacity                                                    | 6.8 MN (680 tonf)                                                |  |  |  |  |
| Vertical Payload Capacity                                                              | 20 MN (2,000 tonf)                                               |  |  |  |  |
| Overturning Moment Capacity                                                            | 50 MN-m (5,000 tonf-m)                                           |  |  |  |  |

#### Tracking Performance of LHPOST (1-DOF)



#### Use of LHPOST in Combination with Large Soil Boxes



Laminar soil shear box:  $6.7m (L) \times 3.0m (W) \times 4.7m (H)$ 

Stiff soil confinement box: 10.0m (L)  $\times$  4.6 or 5.8m (W)  $\times$  7.6m (H)

- To investigate the seismic response of soil-foundation-structural systems.
- To complement centrifuge tests in order to validate computational models.
- To study the performance of bridge abutments, earth retaining walls, slope stability in hillside construction, and underground structures.
- To investigate **soil liquefaction** and its effect on the seismic response of soil-foundationstructural systems.

## Select Set of Shake Table Tests on LHPOST (1-DOF)

































August 24-25, 2023

University of California San Diego

# Six-Degree-of-Freedom (6-DOF) Upgrade of LHPOST to LHPOST6

#### Hydraulic Power System of LHPOST6



#### Accumulator Bank of LHPOST6



- Accumulator bank
  - > 75 bottles total, 15 skids with 5 bottles each
  - > 130 gallons per bottle
  - 3000 psi minimum Nitrogen pressure in each bottle in idle condition
- Pressure changes throughout the day with ambient temperature fluctuations
- Wireless real-time monitoring of pressure and temperature in each bottle
  - Equipped with wireless Sensonode Gold by Parker
  - Data captured by wireless gateway and passed to SQL server
  - Web-based user interface for local or remote monitoring

#### Accumulator Bank of LHPOST6



## LHPOST6



# **Performance Characteristics of LHPOST6**

## **Performance Characteristics of LHPOST6**

Uniaxial performance characteristics of the LHPOST6 Sinusoidal motions - Bare table condition - Centered rigid payload of 4.9 MN (1,100 kips)

| Platen size                        | 12.2 m × 7.6 m (40 ft × 25 ft)                                                                              |                                                                                                           |                                                                                                                                                   |                                                                                                             |                                                                                                           |                                                                                                                                             |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency<br>Bandwidth             | 0 – 33 Hz                                                                                                   |                                                                                                           |                                                                                                                                                   |                                                                                                             |                                                                                                           |                                                                                                                                             |  |
| Vertical Payload<br>Capacity       | 20 MN (4,500 kip                                                                                            | )                                                                                                         |                                                                                                                                                   |                                                                                                             |                                                                                                           |                                                                                                                                             |  |
|                                    | Sinusoidal motions - Bare table condition                                                                   |                                                                                                           | Sinusoidal motions - Centered rigid payload of 4.9<br>MN (1,100 kips)                                                                             |                                                                                                             |                                                                                                           |                                                                                                                                             |  |
|                                    | Horizontal<br>X<br>(E-W)                                                                                    | Horizontal<br>Y<br>(N-S)                                                                                  | Vertical<br>Z<br>(-)                                                                                                                              | Horizontal<br>X<br>(E-W)                                                                                    | Horizontal<br>Y<br>(N-S)                                                                                  | Vertical<br>Z<br>(-)                                                                                                                        |  |
| Peak Translational<br>Displacement | ±0.89 m<br>(±35 in)                                                                                         | ±0.38 m<br>(±15 in)                                                                                       | ±0.127 m<br>(±5 in)                                                                                                                               | ±0.89 m<br>(±35 in)                                                                                         | ±0.38 m<br>(±15 in)                                                                                       | ±0.127 m<br>(±5 in)                                                                                                                         |  |
| Peak Translational<br>Velocity     | 3.0 m/sec<br>(118 in/sec)                                                                                   | 2.0 m/sec<br>(80 in/sec)                                                                                  | 0.45 m/sec<br>(17 in/sec)                                                                                                                         | 3.0 m/sec<br>(118 in/sec)                                                                                   | 2.0 m/sec<br>(80 in/sec)                                                                                  | 0.55 m/sec<br>(21 in/sec)                                                                                                                   |  |
| Peak Translational<br>Acceleration | (5.8 g) <sup>(1)</sup><br>3.7 g <sup>(2)</sup>                                                              | (4.7 g) <sup>(1)</sup><br>1.85 g <sup>(2)</sup>                                                           | -3.4 g<br>+31.1 g <sup>(1)</sup><br>+11.9 g <sup>(3)</sup>                                                                                        | (1.6 g) <sup>(1)</sup><br>1.0 g <sup>(2)</sup>                                                              | (1.25 g) <sup>(1)</sup><br>0.50 g <sup>(2)</sup>                                                          | -1.64 g<br>+7.5 g <sup>(1)</sup><br>+2.5 g <sup>(2)</sup>                                                                                   |  |
| Peak Translational<br>Force        | 10.6 MN <sup>(1)</sup><br>(2,380 kip) <sup>(1)</sup><br>6.8 MN <sup>(2)</sup><br>(1,530 kip) <sup>(2)</sup> | 8.38 MN <sup>(1)</sup><br>(1,890 kip) <sup>(1)</sup><br>3.4 MN <sup>(2)</sup><br>(765 kip) <sup>(2)</sup> | -4.3 MN <sup>(4)</sup><br>+57.0 MN <sup>(5)</sup><br>(+12,800<br>kip) <sup>(5)</sup><br>+22.9 MN <sup>(6)</sup><br>(+5,150<br>kip) <sup>(6)</sup> | 10.6 MN <sup>(1)</sup><br>(2,380 kip) <sup>(1)</sup><br>6.8 MN <sup>(2)</sup> (1,530<br>kip) <sup>(2)</sup> | 8.38 MN <sup>(1)</sup><br>(1,890 kip) <sup>(1)</sup><br>3.4 MN <sup>(2)</sup><br>(765 kip) <sup>(2)</sup> | -4.3 MN <sup>(4)</sup><br>+57.0 MN <sup>(5)</sup><br>(+12,800 kip) <sup>(5)</sup><br>+22.9 MN <sup>(6)</sup><br>(+5,150 kip) <sup>(6)</sup> |  |
| Peak Rotation                      | 2.22 deg <sup>(7)</sup>                                                                                     | 1.45 deg <sup>(7)</sup>                                                                                   | 3.8 deg                                                                                                                                           | 2.22 deg (7)                                                                                                | 1.45 deg <sup>(7)</sup>                                                                                   | 3.8 deg                                                                                                                                     |  |
| Overturning<br>Moment Capacity     | 32.0 MN-m<br>(23,600 kip-ft)                                                                                | 35.0 MN-m<br>(25,800 kip-ft)                                                                              |                                                                                                                                                   | 45.1 MN-m<br>(33,200 kip-ft)                                                                                | 50.0 MN-m<br>(36,900 kip-ft)                                                                              |                                                                                                                                             |  |

- (1) Peak acceleration controlled by the actuator force capacities in the control zero-position of the table.
- (2) Acceleration limit controlled by the reaction mass until further studies.
- (3) Acceleration limit controlled by the design strength of the steel honeycomb platen.
- (4) Assuming a pressure of 125 psi in the chamber of each vertical actuator and accounting for the hold-down forces in the control zero-position of the table.
- (5) Peak force controlled by the vertical actuator force capacities and accounting for the hold-down forces in the control zero-position of the table.
- (6) Force limit controlled by the design strength of the steel honeycomb platen and accounting for the hold-down forces in the zero control position of the table.
- (7) Due to kinematics of the piston seals of the vertical actuators.

#### August 24-25, 2023

#### University of California San Diego

#### Target vs. Achieved Tri-Axial Ground Motion - 1995 M6.9 Kobe, Japan, Takatori Station







#### AC-156 Compatible Earthquake, Tri-Axial Ground Motion



#### 1978, M7.4 Tabas, Iran, Tri-Axial Ground Motion



## Synthetic 6-DOF Ground Motion



## 1989 Loma Prieta Earthquake, MCER Level, XYZ (5/17/2023)



# Instrumentation and Data Acquisition

#### Instrumentation and Data Acquisition

#### > Objectives

- Provide quality management system
- Provide nationally and internationally recognized testing data and reports
- Maintain a calibrated sensor and equipment inventory
- Documentation
  - Documentation master log file
  - General documentation
  - Standard operation procedures
  - In-house calibration procedures
  - Sensory inventory
  - Equipment inventory
  - > Calibration reports



Accelerometer linearity



Accelerometers



**Reference equipment** 



**Displacement transducers** 

#### University of California San Diego

#### Instrumentation and Data Acquisition

- Instrumentation available:
  - 251 MEMS-Based Accelerometers (±5g and ±10g)
  - 305 Linear Displacement Transducers (1 to 20 in)
  - > 154 String Potentiometer Displacement Transducers (2 to 120 in)
  - 28 Inclinometers (±15 deg)
  - 4 Load Jacks
  - 31 Load Cells (up to 20,000 lbs)
  - > 32 Soil Pressure Transducers
- ➢ GNSS System:
  - > 10 Receivers Operating at 100 Hz
- > Cameras:
  - Drones (DJI Phantom 4 Pro)
  - GoPro Cameras (4K and 1080p)
  - End-to-end Live Video Streaming Production System



#### University of California San Diego

## New Research Opportunities Made Possible by LHPOST6

## New Research Opportunities Made Possible by LHPOST6

- Investigate the combined effect of realistic near-field translational and rotational earthquake ground motions applied as dynamic excitation to full 3D and large/full-scale structural, geotechnical, or soil-foundationstructural systems, including:
  - Effects of SSI (both kinematic and inertial)
  - Non-linear soil and structural behavior
  - Soil liquefaction
  - Seismic compression



Geometric interpretation of how horizontal translation and rocking can contribute to the total drift in a simple building during passage of a Rayleigh wave [Trifunac, 2009]

Van Den Einde, L., Conte, J.P., Restrepo, J.I., Bustamante, R., Halvorson, M., Hutchinson, T.C., Lai, C.T., Lotfizadeh, K., Luco, J.E., Morrison, M.L. and Mosqueda, G., 2021. *NHERI@ UC San Diego 6-DOF large high-performance outdoor shake table facility. Frontiers in Built Environment*, 6, p.580333.

## For More Information About NHERI@UC San Diego LHPOST6

#### > Join us at our annual NHERI@UC San Diego User/Researcher Training Workshop

- December 14-15, 2023
- Registration begins soon
- Visit us on the web:
  - DesignSafe: <u>ucsd.designsafe-ci.org</u>
  - UCSD: <u>nheri.ucsd.edu</u>

> Contact one of the NHERI@UC San Diego team members:

- Koorosh Lotfizadeh, <u>klotfiza@ucsd.edu</u>
- Joel Conte, jpconte@ucsd.edu
- John McCartney, <u>mccartney@ucsd.edu</u>
- Machel Morrison, <u>mmorrison@ucsd.edu</u>
- Jose Restrepo, jrestrepo@ucsd.edu
- Lelli Van Den Einde, <u>lellivde@ucsd.edu</u>

# Thank You