Aftershock Seismic Vulnerability and Time-dependent Risk Assessment of Bridges

Sujith Mangalathu, Ph.D.

Research team

Prof. Henry Burton, UCLA
Prof. Jonathan Stewart, UCLA
Dr. Sujith Mangalathu, UCLA
Mehrdad Shokrabad, UCLA
Motivation

• Caltrans uses the following table to relate bridge seismic damage to post-earthquake functionality and repair priorities

<table>
<thead>
<tr>
<th>Bridge system damage states</th>
<th>BSST-0</th>
<th>BSST-1</th>
<th>BSST-2</th>
<th>BSST-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINOR</td>
<td>Low</td>
<td>Medium</td>
<td>Medium-High</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ShakeCast Inspection Priority levels</th>
<th>Low</th>
<th>Medium</th>
<th>Medium-High</th>
<th>High</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Likely Immediate Post-Event Traffic State</th>
<th>Open to normal public traffic – No Restrictions</th>
<th>Open to Limited public traffic – speed/weight/lane restrictions</th>
<th>Emergency vehicles only – speed/weight/lane restrictions</th>
<th>Closed (until shored/braced) – potential for collapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Operation Implications</td>
<td>Very unlikely</td>
<td>Unlikely Likely</td>
<td>Likely Very Likely</td>
<td>Very likely Very Likely - Detour</td>
</tr>
<tr>
<td>Is closure/detour needed? & Are traffic restrictions needed?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Emergency Repair Implications | Very unlikely | Unlikely | Likely | Very likely |
| Is shoring/bracing needed? & Is roadway leveling needed? | | | | |

<table>
<thead>
<tr>
<th>Component Damage Range</th>
<th>CDT-0 to 1</th>
<th>CDT-1 to 2</th>
<th>CDT-2 to 3</th>
<th>Above CDT-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary components</td>
<td>CDT-0</td>
<td>CDT-1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Secondary components</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Aftershock Vulnerability and Time dependent Risk Assessment of Bridges

Motivation

• The extent to which ‘residual structural capacity’ and ‘time-dependent aftershock hazard and risk’ inform these damage-functionality and inspection priority relationships is unclear.

Goals / Overall Objective

• Conduct aftershock seismic vulnerability and time-dependent risk assessment of typical California bridges.

• Evaluate the effect of seismic design philosophy on the time-dependent risk.

• Use results from vulnerability and risk assessments to inform decisions regarding the appropriateness and timing of inspections and post-event closure (partial and complete).
Steps involved in proposed framework

- Select mainshock-aftershock ground motions
- Create structural models of bridge structures
- Conduct mainshock and mainshock-aftershock fragility analysis
- Quantify time-dependent hazard (APSHA) and risk (Markov Chain Models) assessment
- Establish time-dependent risk and functionality/inspection relationships
Past studies have reported non-negligible differences in frequency content of mainshock (MS) and aftershock (AS) records.

Therefore, MS-AS sequences in response history analysis.
Mainshock-aftershock ground motions for bridge-specific risk analysis

- Selected based on high-seismicity zones in California
- Set of 34 record-pairs from Class 1 and Class 2 events in PEER-NGA West2 database
 - $5.8 \leq M_{w,MS} \leq 7.6$
 - $4.0 \leq M_{w,AS} \leq 6.5$
 - $\varepsilon \sim 1.3$
Mainshock-aftershock ground motions for network risk analysis

- Set of 33 record-pairs
- Selected based on a hypothetical scenario event
 - $M_{W,MS} = 7.3$
 - $6.2 \leq M_{W,AS} \leq 7.1$
More than 24,000 bridges in California

Mangalathu (2017): based on design philosophy, bridges in California can be grouped into three

- Era 11 (constructed before 1970)
- Era 22 (Between 1970-1990)
- Era 33 (Constructed post 1990)
Selected Bridge Cases

Aftershock Fragility Analysis

- **Aftershock fragility**: A conditional probability that determines the likelihood that a damaged structure will meet or exceed a specified level of damage, given an aftershock intensity measure and an initial damage state associated with the mainshock.

 [mainshock-damage-dependent aftershock fragility]
Main shock and Aftershock fragilities of a bridge designed in Era 11
A Probabilistic Framework for Quantifying MS and MS-AS Seismic Risk

\[\Pi^k = \begin{bmatrix} p_{11}^k & p_{12}^k & \cdots & p_{1r}^k \\ 0 & p_{22}^k & \cdots & p_{2r}^k \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_{rr}^k \end{bmatrix} \]

\[P_{ij}^k = \left(P_{i,j}[EDP > edp_j|IM] - P_{i,j+1}[EDP > edp_{j+1}|IM] \right) d\lambda_{IM}^k(\text{im}) \]

- \(i \): damage state under 1\(^{st} \) event
- \(j \): damage state 2\(^{nd} \) event

Probability of transition between limit states at time step \(k \) after mainshock

APSHA curve at time step \(k \) after mainshock
Aftershock Vulnerability and Time dependent Risk Assessment of Bridges

Complete Limit State Probability under Aftershocks for different mainshock limit states and Bridge E3

20% reduction in $S_{a_{median}}$

$P[\text{Complete} | DS_{MS}]$

$S_{a} (g)$

Intact
Slight
Extensive

0 0.5 1 1.5 2 2.5
Aftershock Vulnerability and Time dependent Risk Assessment of Bridges

Aftershock Transition Probability conditioned on different limit states under mainshock

![Graph showing transition probability over time for different eras.
- Era 1
- Era 2
- Era 3

- All motor vehicle accidents: 0.6% in 50 years
- Daily $P_{MS}[Complete]$
 - 0.23% in 50 years
 - 0.12% in 50 years
 - 0.03% in 50 years]
Aftershock Vulnerability and Time dependent Risk Assessment of Bridges

Service–life probability of Complete damage state under MS and MS-AS scenarios

- Only mainshock
- Mainshock-aftershock
- Era 1
- Era 2
- Era 3
Conclusions

- Performed aftershock probabilistic seismic hazard analysis (APSHA) to quantify time-dependent post-mainshock hazard.

- Implemented Markov Chain Model that integrates time-dependent hazard curves and mainshock-damage-dependent-fragilities to quantify time-dependent risk.

- Suggested a time-dependent risk outcomes to inform bridge functionality and inspection priorities.