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Seismic Performance of Precast Reinforced and Prestressed
Concrete Walls

Tony Holden'; Jose Restrepo®; and John B. Mander®

Abstract: Two geometrically identical half-scale precast concrete cantilever wall units were constructed and tested under quasi-static
reversed cyclic lateral loading. One unit was a code compliant conventionally reinforced specimen, designed to emulate the behavior of
a ductile cast-in-place concrete wall, The other unit was part of a precast partially prestressed system that incorporated post-tensioned
unbonded carbon fiber tendons and steel fiber reinforced concrete. Hysteretic energy dissipation devices were provided in the latter unit
in the form of low yield strength tapered longitudinal reinforcement. acting as a fuse connection between the wall panel and the
foundation beam. The conventional precast reinforced wall performed very well in terms of the duetility capacity and energy absorption
capahility, reaching 2.5% drift before significant strength degradation occurred, The precast partially prestressed wall unit achieved drift
levels well in excess of 3% with no visible damage to the wall panel prior to failure. Test results and performance comparisons between
the precast partially prestressed wall system and the precast conventionally reinforced unit are presented.

DOI: 10.1061/(ASCEJ0T33-9445(2003)129:3(286)
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Introduction

The earthquake-structural engineers” role has historically focused
on ensuring life safety while recognizing the limitations that eco-
nomics places on design, To design a structure elastically using
conventional design methods and philosophies has generally been
considered impractical. Engineers, in general, have designed
structures for reduced lateral forces and accepted damage in po-
tential plastic hinge zones, which are specifically detailed for duc-
tility. No other economic parameters, such as the cost of damage
te equipment and stored goods and the cost associated with loss
of operation following a moderate or strong earthquake, are cur-
rently accounted for in the design process.

One of the main disadvantages of conventional cast-in-place
construction, or precast concrete construction designed 1o behave
as “if monolithic,” is that regions in the lateral force resisting
systern are likely to be sacrificed in moderate and strong earth-
quakes. Significant damage involving large residual lateral dis-
placements and wide residual cracks is expected to oceur with
such systems; hence, the cost and consequences of damage after
an earthguake can be significant 1o the building occupant, Uncou-
pling the energy dissipation mechanism from the structure is an
ideal solution that was first conceived and implemented through
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seismic isolation. This solution, however, has generally been re-
stricted in the United States and New Zealand to nationally sig-
nificant structures,

The excellent seismic performance of buildings constructed
incorporating structural walls is well documented (Wood et al.
1987; Wyllic 1989; Fintel 1993), For example, during the 1988
Armenia carthquake poorly designed and constructed buildings
that incorporated precast concrete walls as the main lateral force
resisting system performed  substantially better than buildings
built with other structural systems (Wyllie 1989). Buildings where
lateral force resistance was provided by structural walls also
showed excellent performance during the [985 Chilean earth-
quake (Wood et al. 1987).

Although structural walls are a common and cost-effective
way of providing lateral force resistance to buildings in seismic
areas of the world there has been a drive to make wall systems
more economical, Historically, cast-in-place reinforced concrete
has been the most commonly wsed method of consiruction for
structural wall systems, More recently, there has been an in-
creased use of precast concrete walls of either the tilt-slab or
factory-built varicty; their design being carried out to emulate the
behavior of their cast-in-place counterparts.

Fig. | schematically compares the response of (a) a conven-
tional reinforced concrete system; (b) a fully prestressed precast
concrete system; and () a partially prestressed (hybrid) concrete
system. For the last two prestressed wall systems the tendons, if
left unbonded over a certain length, remain elastic during rocking.
In this way the elastic restoring force will essentially prevent
residual lateral displacements from occurring. Since the concrete
is not bonded wo the tendons, considerably less cracking is in-
duced than in monolithic walls that rely solely on bonded rein-
forcement to provide the lateral force resistance, The behavior of
such a system can be described as being bilinear elastic, In these
systems cosmetic damage is restricted to the bottom comers of
the wall about which it rocks. By armoring the ends of a pre-
stressed concrete wall with steel plates and embedding a mating
steel plate in the foundation, it is possible to avoid any damage,
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Abstract

The increasing need to reduce damage and downtime in modern buildings
has led to the development of a low-damage design philosophy, where the
earthquake loads can be resisted with damage confined to easily replaceable
components. Post-tensioned (PT) concrete walls have emerged as a popular low-
damage structural system that have been implemented in a range of buildings.
In order to provide essential evidence to support the development of low-
damage concrete structures, a system-level shake-table test was conducted on a
two-storey low-damage concrete wall building implementing state-of-art design
concepts. The test building included PT rocking walls that provide the primary
lateral-load resistance in both directions, a frame that utilized slotted beam con-
nections, and a range of alternative energy dissipation devices that were installed
at wall base or/and beam-column joints. The building was subjected to 39 tests
with a range of intensity ground motions, incorporating both unidirectional and
bidirectional ground motions on the structure with different combinations of
wall strength and energy dissipating d. The building performed excep-
tionally well during the intense series of tests, confirming the suitability of both
the design methods and the connection detailing implemented. The building
achieved an immediate occupancy performance objective even when subjected
to maximum considered earthquake hazard shaking. The building exhibited
only minor damage at the conclusion of testing, with distributed cracking in the
floors and cosmetic spalling in the wall toes that did not compromise structural
capacity or integrity and could be easily repaired with minimal disruption.
The test has provided a rich dataset that is available for further analysis of the
building response and validation of design methods and numerical models.

KEYWORDS

displacement-based design, energy dissipating device, low-damage design, post-tensioned wall,
precast concrete, PRESSS, repairability, rocking wall, seismic design, self-centering, shake-table
test, slotted beam, system level, wall-to-floor
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