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Performance assessment of near-fault 
structures under large and rare earthquakes
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2023 National Seismic Hazard Model

Sparsity of observations for large and 
rare earthquakes

o Large uncertainties in empirical 
models

o Challenging to assess the impacts 
of rare earthquakes

Physics-based earthquake fault 
rupture simulations



Using simulated ground motions to improve the 
analysis of near-fault building structures
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Pitarka et al. 2015

Geophysics simulations
Plan view of geographical region

Rupturing FaultEpicenter

• Improve understanding and prediction of seismic hazard

• Identify effective approaches to selecting representative earthquake records for 
seismic risk assessment



Using physics-based simulations to represent 
seismic hazard at near-fault locations
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Supplementing with simulated ground 
motions in engineering analysis 

     

          

   

 

 

 
 
  
 
 

  
  
       

Real ground motions

(M = 7, R = 1 km)

Simulated ground motions

(M = 7, R = 1 km)



    

       

 

   

   

   

   

 

 
 
 
 
  
  
 
 
  
  
 
 
 
   
  

            

                 

     

        

 

   

   

   

   

 

 
 
 
 
  
  
 
 
  
  
 
 
 
   
  

            

                 

Supplementing with simulated ground 
motions in engineering analysis 

M = 7, R = 1 km

Maximum Interstory Drifts Maximum Floor Accelerations



Representing site-specific seismic hazard 
using earthquake simulations 

     

          

   

 

 

 
 
  
 
 

                       

                   
  
     

  
           

                  

              
  
     

  
           

M = 7, R = 1 km – RotD50
Abrahamson & Silva & Kamai 2014 NGA West-2 Model

Boore & Stewart & Seyhan & Atkinson 2014 NGA West-2 Model

Campbell & Bozorgnia 2014 NGA West-2 Model

Chiou & Youngs 2014 NGA West-2 Model

Idriss 2014 NGA West-2 Model

Empirical Ground Motion 

Prediction Models

Plan view of geographical region

Simulated Ground Motions

Kenawy, M. and Pitarka, A. (2024) “Use of Physics-based Simulated 
Earthquake Ground Motions in Nonlinear Analysis of Near-Fault 
Buildings.” Proceedings of the 18th World Conference on 
Earthquake Engineering, June 30 – July 5, Milan, Italy.



Understanding co-seismic 
permanent displacements and 
associated pulses (fling step)



Understanding co-seismic displacements and 
associated pulses
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Plan view of geographical region

Fault

Epicenter

Ground 
displacement

Difficult to obtain 
from real ground 

motion recordings

Ground velocity



Co-seismic offset in simulated and recorded 
ground motions

                 

           

                

                  

                          

NESS2.0 Recorded Ground Motion 
Dataset Sgobba S, Felicetta C, Lanzano G, 
Ramadan F, D’Amico M and Pacor F (2021) 
NESS2.0: An updated version of the 
worldwide dataset for calibrating and 
adjusting ground-motion models in near 
source. Bulletin of the Seismological 
Society of America 111(5):2358–2378.



What influences the magnitude of the co-
seismic offset and associated fling pulse?
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Ground motions with strong fling pulses tend to 
have larger spectral accelerations

     

           

   

   

 

 
 
  
 
  
 
 

M7, R = 1 km – Rupture Realization A

Permanent Offset > 0.5 m

Permanent Offset < 0.5 m

     

           

   

   

 

 
 
  
 
  
 
 

M7, R = 1 km – Rupture Realization B

Permanent Offset > 0.5 m

Permanent Offset < 0.5 m

Kenawy, M. and Pitarka, A. (2024). Performance Assessment of Near-Fault Buildings Subjected to Physics-
Based Earthquake Simulated Ground Motions with Fling Step. Earthquake Spectra.



Kenawy, M. and Pitarka, A. (2024). Performance Assessment of Near-Fault Buildings Subjected to Physics-Based Earthquake Simulated 
Ground Motions with Fling Step. Earthquake Spectra.

Selecting representative ground motions that capture 
fling effects on residual drifts of tall buildings

Selected based on full spectral shapePrioritizing long-period spectral ordinates

𝑇1
Residual Interstory Drift (%)Residual Interstory Drift (%)



Studying the consequences of permanent co-
seismic offsets to distributed infrastructure

Bridge Networks in the San 

Francisco Bay Area

PhD Student: 

Melisa Herrera
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How can we make the most out of a small 
number of ‘expensive’ simulations?
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≡ How can we reduce uncertainty at a tractable 
computational cost?



How does the seismic risk vary across different M7 
Hayward fault rupture realizations?

PhD Student: 

Saba Yousefi

Random Samples of 15 Realizations



Optimizing the design of earthquake scenario 
simulations
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How can we design representative rupture scenarios?
What are the most influential scenario design parameters 
for the target engineering application?



Funding support
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Ground Motion Selection for Analysis of Near-Fault Civil Structures using 
Broadband Physics-Based Earthquake Simulations  - Grant No. G22AP00380
Earthquake fault rupture simulations by Arben Pitarka, Lawrence Livermore 
National Laboratory
Structural simulations conducted using the Texas Advanced Computing Center

High Performance, Multidisciplinary Simulations for Regional Scale 
Earthquake Hazard and Risk (EQSIM)

Project PI: David McCallen, Lawrence Berkeley National Laboratory
Exascale Computing Project (ECP), Project Number: 17-SC-20-SC
A collaborative effort of two U.S. Department of Energy organizations - the 
Office of Science and the National Nuclear Security Administration.

Earthquake fault rupture simulations by Arben Pitarka, Lawrence Livermore 
National Laboratory
Structural simulations conducted using the NERSC CORI machine
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