

What Can Simulated Ground Motions Tell Us About Near-fault Seismic Hazard and Infrastructure Performance?

Maha Kenawy, Ph.D.
Assistant Professor
School of Civil and Environmental Engineering
Oklahoma State University

Performance assessment of near-fault structures under large and rare earthquakes

Sparsity of observations for large and rare earthquakes

- Large uncertainties in empirical models
- Challenging to assess the impacts of rare earthquakes

Physics-based earthquake fault rupture simulations

2023 National Seismic Hazard Model

Using simulated ground motions to improve the analysis of near-fault building structures

- Improve understanding and prediction of seismic hazard
- Identify effective approaches to selecting representative earthquake records for seismic risk assessment

Using physics-based simulations to represent seismic hazard at near-fault locations

Replace/supplement recorded ground motions

Represent seismic hazard target at a given location

Supplementing with simulated ground motions in engineering analysis

Supplementing with simulated ground motions in engineering analysis

Representing site-specific seismic hazard using earthquake simulations

Empirical Ground Motion Prediction Models

Abrahamson & Silva & Kamai 2014 NGA West-2 Model Boore & Stewart & Seyhan & Atkinson 2014 NGA West-2 Model Campbell & Bozorgnia 2014 NGA West-2 Model Chiou & Youngs 2014 NGA West-2 Model Idriss 2014 NGA West-2 Model

Simulated Ground Motions

Plan view of geographical region

Kenawy, M. and Pitarka, A. (2024) "Use of Physics-based Simulated Earthquake Ground Motions in Nonlinear Analysis of Near-Fault Buildings." Proceedings of the 18th World Conference on Earthquake Engineering, June 30 – July 5, Milan, Italy.

Understanding co-seismic permanent displacements and associated pulses (fling step)

Understanding co-seismic displacements and associated pulses

Plan view of geographical region

Co-seismic offset in simulated and recorded ground motions

- * Simulated motions
- Moving mean
- Recorded motions
- Burks & Baker 2014
- Schiappapietra et al. 2022

NESS2.0 Recorded Ground Motion

Dataset Sgobba S, Felicetta C, Lanzano G, Ramadan F, D'Amico M and Pacor F (2021) NESS2.0: An updated version of the worldwide dataset for calibrating and adjusting ground-motion models in near source. Bulletin of the Seismological Society of America 111(5):2358–2378.

What influences the magnitude of the coseismic offset and associated fling pulse?

Ground motions with strong fling pulses tend to have larger spectral accelerations

Kenawy, M. and Pitarka, A. (2024). Performance Assessment of Near-Fault Buildings Subjected to Physics-Based Earthquake Simulated Ground Motions with Fling Step. Earthquake Spectra.

Selecting representative ground motions that capture fling effects on residual drifts of tall buildings

Prioritizing long-period spectral ordinates

Kenawy, M. and Pitarka, A. (2024). Performance Assessment of Near-Fault Buildings Subjected to Physics-Based Earthquake Simulated Ground Motions with Fling Step. Earthquake Spectra.

Studying the consequences of permanent coseismic offsets to distributed infrastructure

Bridge Networks in the San Francisco Bay Area

PhD Student: Melisa Herrera

How can we make the most out of a small number of 'expensive' simulations?

≡ How can we reduce uncertainty at a tractable computational cost?

How does the seismic risk vary across different M7 Hayward fault rupture realizations?

0.3 0.1

Random Samples of 15 Realizations

PhD Student: Saba Yousefi

Optimizing the design of earthquake scenario simulations

How can we design representative rupture scenarios? What are the most influential scenario design parameters for the *target engineering application*?

19

Funding support

Ground Motion Selection for Analysis of Near-Fault Civil Structures using Broadband Physics-Based Earthquake Simulations - Grant No. G22AP00380

Earthquake fault rupture simulations by **Arben Pitarka**, Lawrence Livermore National Laboratory

Structural simulations conducted using the Texas Advanced Computing Center

Project PI: **David McCallen,** Lawrence Berkeley National Laboratory Exascale Computing Project (ECP), Project Number: 17-SC-20-SC A collaborative effort of two U.S. Department of Energy organizations - the Office of Science and the National Nuclear Security Administration.

Earthquake fault rupture simulations by **Arben Pitarka**, Lawrence Livermore National Laboratory

Structural simulations conducted using the NERSC CORI machine

Maha Kenawy, Ph.D.

Assistant Professor School of Civil and Environmental Engineering Oklahoma State University

O | 405.744.2793 E | mkenawy@okstate.edu www.mahakenawy.com