

University of Nevada, Reno

Large-Scale Shake Table Testing on the Effectiveness of Helical Piles to Mitigate Liquefaction-Induced Building Settlements

Ramin Motamed, Milad Jahed Orang (UNR) Athul Parayancode, Muhammad Zayed, Ahmed Elgamal (UCSD)

Acknowledgements

- Pacific Earthquake Engineering Research Center (PEER)
- Staff and a group of students at UCSD and Powell Lab
- Ram Jack

Presentation Outline

- Background and Motivation
- Shake Table Testing Program
- Test Series #2 (with mitigation measure)
- Observations and Path Forward

Background and Motivation

- 2011 M9.0 Tohoku Earthquake
- Widespread Liquefaction
 - 27,000 buildings damaged
 - Similar to Christchurch, NZ
- <u>Building foundation</u> performance varied
 - Deep foundations, good performance
 - Shallow foundations, extensive damage
 - 0 cm < 30 cm < 70 cm
 - Factor of 2.3

Building (Pile Supported) -No Settlement

Free field -30cm Settlement Building (Mat Foundation) -70cm Settlement

Ashford et al. 2011

1994: NORTHRIDGE

"Structures damaged in the Marina District of San Francisco. The *first story of this three-story building* was damaged because of liquefaction; the second story collapsed. What is seen is the third story." 1989 Loma Prieta Eq Photo: USGS

Reference: Janiele Maffei (2019) – CEA

Research Approach

- Field case histories
- Centrifuge tests
- <u>1-g shaking table tests</u>

Shake Table Testing

Testing Program

- Two series of tests
 - 1. Without any mitigation (baseline test) Completed June 2018
 - 2. With helical piles as a countermeasure completed in <u>April</u> <u>2019</u>
- Multiple shakings including white noises during each test

Test #	PGA (g)	GWT (m)
2-1	0.15 g	0.6
2-2	0.3 g	0.6

Target Input Motion

Test Layout

- Isolated footing
- GWT @ 0.6m
- Uniform liquefiable layer (4.5') w/ 2' of crust
- 41.6kPa contact pressure
- Extensive instrumentation
- A group of 2×2 helical piles
- w/ and w/o mitigation

Laminar Box at UCSD's Powell Lab

• Height= 2.9m (9.5 ft), Width= 1.8m (5.9 ft), Length= 3.9m (12.8 ft)

Model Design and Construction Challenges

- Extensive instrumentation of helical piles
- Design of pile-footing connection
- Used bracket connection, no specifications for lateral capacity
- Suitable for dynamic Loading?

FIGURE 5—4021.1 SUPPORT BRACKET ASSEMBLY WITH GUIDE SLEEVE AND PILING

Completed Model Prior to Shaking

Observed Sand Ejecta

Photo 13. Differential settlement of 4 story RC apartment house due to liquefaction.

Ref: Yamagichi et al. (2012)

Observations and Path Forward

- Helical piles performed very well (settlement reduction)
- Extensive liquefaction and <u>sand ejecta</u> were achieved in both tests
- Data interpretation to continue
- Test series#1 (baseline) results were submitted for publication
- This scale testing on a shallow foundation on liquefiable soil: first-of-its-kind => greater opportunities!
- Industry support was key to our success
- Collaborative projects are unique: opportunities and complementing expertise and facilities => coordination is key!

Thank you!