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1 Research Background

m Cities are facing the threats of many disasters
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Christchurch earthquake
$40 billion loss
5 years recovery

Beijing Television
Center fire
$23.99 million loss

Typhoon Soudelor
59 killed,
$4.09 billion loss

CcOVID-19
3.76 million killed,
174 million confirmed cases

Quantifying the performance of the community
under multiple potential hazards is important




1 Research Background

m City-scale disaster simulation models
= Empirical models are widely-used
= e.g., Earthquake: damage probability matrices

Challenges

Limited historical data Not adaptive to new structures

s @ - ! ‘é)urtesy Prof. Gao, MT
. O . e

No strong earthquake in dense population
area of China mainland for 45 Years

Many new structures are emerging



1 Research Background

s Challenges of empirical models
= Limited historical data
= Not adaptive to new structures

= Solutions: Physics-driven model
= Reliable, Efficient, Adaptive
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2.1 Multi-hazard simulation framework based on CIM

Physics-driven simulations of different Commonly-used data format

hazards require different types of data . cannot meet the data requirement

s Structural information

. Earthquake simulation » = Non-structural information !

s Ground motion

____________________________________________

= Building information

__________________________________

Fire simulation »- Initial ignited building

m Some indoor equipment
like sprinkler systems

Wind / COVID-19 » = Building configuration
simulation .7 !'m  Weather conditions




2.1 Multi-hazard simulation framework based on CIM

City information model
CIM = GIS + BIM

= Physics-driven hazard simulation models

] Multi-scale
= Multiple hazards: , B model

earthquake, fire, wind / COVID-19

= Individual buildings + regional scales

Serving multiple
fields = |- .
. S lpmaerer
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Urban planning

BIM:

individual buildings

%= cIm

GIS: urban areas

BIM Object
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CiM-powered multi-hazard simulation framework covering both individual buildings and urban areas, Sustainability, 2020. 9



2.1 Multi-hazard simulation framework based on CIM

» Automatic data transformation

For
communities

Unified data
format

For
individual
buildings
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CiM-powered multi-hazard simulation framework covering both individual buildings and urban areas, Sustainability, 2020.

High-fidelity visualization

of earthquake simulation
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2.2 Case study: Tsinghua campus, multiple hazards

Entire campus
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CiM-powered multi-hazard simulation framework covering both individual buildings and urban areas, Sustainability, 2020.
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3 Physics-driven regional earthquake simulation

= Physics-driven: structural dynamic models + city-scale nonlinear time-
history analysis

City-scale nonlinear
time-history analysis

Advantages

v’ Strictly follow fundamental of structural dynamics

v Accurately represent features of individual buildings

v Accurately represent characteristics of ground motions

Lu XZ, Guan H, Earthquake Disaster Simulation of Civil Infrastructures: From Tall Buildings to Urban Areas (2" Ed.), Singapore: Springer, 2021.



3 Physics-driven regional earthquake simulation

= Multi-scale structural dynamic models

Multi-story bmldlngs Tall buﬂdlngs

Flexural-shear
deformation
mode

é 7777777
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Moderate-fidelity models
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3.1 Higher accuracy of prediction

______________
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Lu XZ, Guan H, Earthquake Disaster Simulation of Civil Infrastructures: From Tall Buildings to Urban Areas (2" Ed.), Singapore: Springer, 2021.



3.2 High-fidelity visualization of seismic response: 3D visualization

Ground maotion under Big #1 04

3D visualization T e -l
of Beijing CBD THIVLTE, H 1.000e

Scenario: 1679
Sanhe-Pinggu
M8.0 Earthquake

Many tall
buildings under
moderate
damage, very
difficult to repair




3.2 High-fidelity visualization of seismic response: AR visualization

AR visualization 1 b t Disp. ampllflcatlon factor 100
of New Beichuan § i &, “ w g e R <5 o S
Province

Scenario: 2008
Wenchuan M8.0
Earthquake

st of Goopysics, CEA ¢
B Seadigiroe of saiam nleasity \!Jﬁm

Department of Civil Engineering R~
%, Tsinghua Unwershr n T 4 e
WGroup of Xinzheng Lu +00:00:30:00
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Photo-realistic visualization of seismic dynamic responses of urban building clusters based on oblique aerial photography, Advanced Engineering Informatics, 2020



3.2 High-fidelity visualization of seismic response

W Tsinghua University

= Site-city interaction

Perturbation Relative Disp. X (m) Time: 0.0s
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A numerical coupling scheme for nonlinear time-history analysis of buildings on a regional scale considering site-city interaction effects, Earthquake Engineering &
Structural Dynamics, 2018 18



3.3 Typical applications

Before Earthquake

After Earthquake

19



3.3.1 Seismic loss assessment

Engineering

‘ demand
\parameters
PFA, PFV, IDR

MDOF model residual drift

Performance
models

>

Quantity

| e |

FEMA P-58 consequence
functions and fragility curves
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3.3.2 Post-earthquake recovery simulation

m Resilience recovery simulation of Beijing City
= 68,930 residential buildings under an M8.0 earthquake
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Framework for city-scale building seismic resilience simulation and repair scheduling with labor constraints driven by time-history analysis, Computer-Aided Civil and Infrastructure
Engineering, 2019



3.3.3 Applications: Pre-EQ damage prediction
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3.3.4 Real-time post-EQ assessment

Conventional method

EQ
maghnitude

Significant
o Uncertainty

Building info. § EQ Intensity

Uncertainty Significant
_ Uncertainty

Fragility curve

Significant
¢ Uncertainty

Loss

Proposed method

EQ magnitude

Much smaller
. Uncertainty

. ground motion

Much smaller
’ o Uncertainty

Nonlinear time-
~history analysis
Much smaller

. Uncertainty

Loss

Uncertainty

Real-time city-scale time-history analysis and its application in resilience-oriented earthquake emergency responses, Applied Sciences, 2019
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3.3.4 Real-time post-EQ assessment

= Real-time Earthquake Damage Assessment using
City-scale Time-History Analysis (RED-ACT)

Densely-distributed
; strong motion
: network

7

: *
N
s .
; : g
Recorded ground City-scale nonlinear -
motions time-history analysis Seismic damage

________________________________________________________________________________________________________________________________________________________________________

Real-time city-scale time-history analysis and its application in resilience-oriented earthquake emergency responses, Applied Sciences, 2019
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3.3.4 Real-time post-EQ assessment

s China, USA, Japan, ltaly, New Zealand, etc.
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4.1 Physics-driven fire simulation of communities

Physics-driven fire simulation [

-~ Empirical fire spread model --

Win

Examples: Hamada 1975, FEMA 2012

Features

» Suitable for different regions X

m Consider building state (e.g.,
seismic damage)

m Consider weather conditions X

» High-fidelity visualization X

___________________________________________________________

Thermal
Plume +
Radiation

Physics-driven
smoke
simulation

N

results

eIgnition time

» eBurning duration

eBurned area

____________________________________________________________________________________________________________



4.1 Physics-driven fire simulation of communities

o PhyS|cs -driven S|mulat|on of fire foIIowmg earthquake (FFE)

P(R,)=P(M)xP(F, /M) Features

x P(G)x P(D,) = Suitable for different \/
, : 5 regions
round motion ! » o ‘ o ! » Consider building state \/
‘ i Initial ignited building (e.g., seismic damage)
i (Renand Xie 2004) . | = Consider weather N
: %{% | A ; E conditions
’ ! . | Ignition model i —
: g % i L ] | » High-fidelity visualization \/
| s@/% i ‘

Physics-driven building model | ' Thermal

3 g  Plume+ /w0

! - - \;’ / -
. Radiationy” / .
i - J
I i /
bl /

_— i | —f
e Building | | o
seismic damage 5 i Pany |

Fire spread and smoke
visualization

Physics-driven i  Physics-driven FFE model

J carthquake simulation i R Physics-driven FFE simulation

Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage, Journal of Earthquake Engineering, 2017
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4.2 Case study: Taiyuan City, Fire follow earthquake

s Central Taiyuan City
s 26 km2, 44,152 buildings

s Design based earthquake level

Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage, Journal of Earthquake Engineering, 2017
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4.2 Case study: Taiyuan City, Fire follow earthquake
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s Consider weather conditions
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Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage, Journal of Earthquake Engineering, 2017 30



4.3 Physics-driven wind simulation of communities

pmmm Empirical model ---------- ; Physics-driven building vibration simulation Physics-driven wind simulation

; | City-scale time-history analysis City-scale large eddy simulation
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4.4 Case Study: San Francisco Downtown, Wind

_________________________________________________________________________________________________________________________________________________________________________________

= Mesh scheme (6400 x 6200 x 1650 m3)
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4.4 Case Study: San Francisco Downtown, Wind

Wind speed at a height of 20 m Wind-induced motion of buildings
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Computational simulation of wind-induced motion of tall buildings in cityscapes. The 15th International Conference on Wind Engineering (ICWE15). 2019, Beijing, China.



4.4 Case Study: San Francisco Downtown, Wind

Bl Sitting
Standing
Walking

Il Dangerous

- A SR
—500 -400 -300 -200 -100 0 100 200 300 400 500

Among the 55 buildings over 100 m, .
87.3% of the buildings indicate an | '
occupant comfort quality of H-90
in the top story. i A

_____________________________________________________________________________________________________________________________________________________________________

Bl 18.37% 16.08%
22.26% Bl 43.29%

Computational simulation of wind-induced motion of tall buildings in cityscapes. The 15th International Conference on Wind Engineering (ICWE15). 2019, Beijing, China. 34



4.5 Physics-driven COVID-19 simulation of communities

= January 2020, in response to the shortage of medical resources,
Chinese cities began to build temporary hospitals

e.g., Huoshenshan Hospital

“A race for life!”

It took only 10 days from the

order of design to the
completion of the construction.

How to quantitatively evaluate the infection risk caused by the
harmful air from temporary hospitals with

high efficiency and accuracy ?

High-efficiency simulation framework to analyze the impact of exhaust air from COVID-19 temporary hospitals and its typical applications, Applied Sciences, 2020
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4.5 Physics-driven COVID-19 simulation of communities

From multi-
level-of-

details CIM
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High-efficiency simulation framework to analyze the impact of exhaust air from COVID-19 temporary hospitals and its typical applications, Applied Sciences, 2020
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4.5 Physics-driven COVID-19 simulation of communities
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High-efficiency simulation framework to analyze the impact of exhaust air from COVID-19 temporary hospitals and its typical applications, Applied Sciences, 2020
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4.6 Applications

= C trati
= Huoshenshan hospital e
Jan. 28, 2020 (Wuhan) I 1.5
Wic o S — 1.2
- 0.9

Jan. 29, 2020 Jan.30, 2020 Feb.04, 2020 Feb.14, 2020
Ditan hospital Leishenshan hos. Xiaotangshan hos. 3rd people’s hos.
(Beijing) (Wuhan) (Beijing) (Shenzhen)
= Ty - Total number of
o

sickbeds

A% 'au}..'.m’;\
) benefiting from the

-,

proposed method:

> 10,000

High-efficiency simulation framework to analyze the impact of exhaust air from COVID-19 temporary hospitals and its typical applications, Applied Sciences, 2020

-



Qutlines

1. Research Background
2. Multi-hazard simulation framework based on CIM

3. Physics-driven regional earthquake simulation

4. Physics-driven fire, wind/COVID-19 simulation of
communities

5. Conclusions




5 Conclusions
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