

PEER International Pacific Rim Forum June 16-17, 2021

Earthquake Source Characterization for Broadband Ground Motion Simulation

Hiroe Miyake

Earthquake Research Institute University of Tokyo

1

Scenario-based Seismic Hazard Analyses

Broadband Source Modeling

	SCEC Broadband Platform	Recipe
Source Model	Heterogeneous and complex	Characterized source model (definitive & simpler)
Velocity Model	Long-period: 3-D or 1-D Short-period: 1-D or scattering	Long-period: 3-D Short-period: 1-D with site response
Simulation	Hybrid method	Hybrid method & EGF method
Validation	Past earthquakes & GMPEs (5% pseudo-spectral acceleration)	Past earthquakes & GMPEs (ground motion, pulse, seismic intensity)

m

'kinematic'slip

15

10

20

25

Rupture Directivity Pulse: Landers and Kobe

Rupture Directivity Pulse is dependent on Asperity Size

PEER

Source Characterization

Based on heterogeneous slip by waveform inversion...

Outer Fault Parameters $\Delta \sigma_c \sim 2.3$ MPa (Eshelby crack)

Inner Fault Parameters: size (22%) and stress drop of asperities $\Delta \sigma_a \sim 10.5$ Ma

 \bigcirc

Scaling of Rupture Area vs. Mo

Characterized Source Model for Broadband Ground Motion

Miyake et al. (2003)

Recipe for Strong Ground Motion Prediction

Outer Fault Parameters

Irikura and Miyake (2001, 2011)

- **Rupture area S** is given.
- **Seismic moment Mo** from the empirical relation of **Mo-S**.
- Average static stress-drop $\Delta \sigma_c$ from appropriate physical model (e.g., circular crack model, tectonic loading model, etc.)

Inner Fault Parameters

- Combined area of asperities Sa from the empirical relations of S-Sa or Mo-Ao.
- **Stress drop** on asperities $\Delta \sigma_a$ based on the multiple asperity model.
- **Number** of asperities from fault segments.
- Average slip of asperities Da from dynamic simulations.
- **Effective stress** for asperities σ_a and background area σ_b are given.
- **Slip velocity time function** given as Kostrov-like function.

Extra Fault Parameters

Rupture nucleation and termination are related to **fault geometry**.

Recipe on IAEA Safety Report Series No. 85

3.

IAEA (2015)

CHARACTERISTICS AND EVALUATION METHODS OF GROUND MOTIONS					
3.1. Physical process affecting strong ground motion hazard					
assessment					
3.1.1.	Summary of concepts used in strong ground motion				
	simulation methods	7			
3.1.2.	Use of the elastodynamic representation theorem	9			
3.1.3.	Earthquake source rupture processes	11			
3.1.4.	Seismic wave propagation processes	16			
3.2. Overview of strong motion simulation procedures 1					
3.2.1.	Stochastic method	18			
3.2.2.	Asperity source model.	20			
3.2.3.	Hybrid source model	26			
3.2.4.	Composite source model	31			

APPENDIX I:	ESTIMATION OF FAULT PARAMETERS FOR	
	THE SMGA/ASPERITY MODEL	 61

Concept of the Recipe

The first concept of the recipe is that anybody can reproduce the same source definitively.

The second concept is easy to simulate damaging rupture directivity pulses that enhance response spectra seen in the 1992 Landers, 1994 Northridge, and 1995 Kobe earthquakes.

The third concept is the characterized source calibrated by empirical Green's functions including realistic complexity of velocity structure and site response.

Random realization is possible by changing the rupture starting points, location of asperities, and rupture velocity to assess simulated ground motion variability.

SCEC Broadband Platform v19.4.0

method	source module	wave propagation module (long-period + short-period)	references
GP	k-squared	1D FK + 1D EXSIM	Graves and Pitarka (2010)
SDSU	k-squared	1D FK + 1D scattering	Mai et al. (2010)
UCSB	dynamic	1D FK	Schmedes et al. (2010)
CSM	random	1D R/T matrix	Zeng et al. (1994)
EXSIM	Random	1D EXSIM	Motazedian and Atkinson (2005)
SONG	pseudo-dynamic	1D FK + 1D EXSIM	Song (2016)
Recipe (original)	characterized	3D FDM+1D stochastic	Morikawa et al. (2011) Iwaki et al. (2016)
Irikura Recipe 1	characterized	1D FK + 1D EXSIM	Pitarka et al. (2017)
Irikura Recipe 2	characterized	1D FK + 1D stochastic	Iwaki et al. (2016)

Performance of the Recipe: 1-D & 3-D velocity

PEER

Pitarka et al. (2017)

Recipe vs. Graves and Pitarka (GP) for Mw 6.7 Scenario EQ

Pitarka et al. (2020)

Recipe, Graves and Pitarka (GP) & hybrid for Mw 7.0 Kumamoto EQ

Kinematic: Pitarka et al. (2020) Dynamic: Dalguer et al. (2020)

Shallow slip modeling needs deep borehole observations

Variation of megathrust source modeling

Miyake et al. (2016)

M9-class long-period source & M8-class short-period source: 2011 Tohoku

Broadband modeling: T = 0.1-10 s

Frankel (2017) M9-class long-period source & Wirth et al. (2018) Wirth et al. (2018) M8-class short-period source: 2010 Maule

-120"

Maeda et al. (2013; 2015)

Uncertainty of megathrust source modeling

Offshore observation may constrain sources

Seismic observation (NIED)

Aoi et al. (2020)

Conclusions

- Broadband source modeling for crustal earthquakes is well summarized on the SCEC Broadband Platform.
- Validation for 1-D and 3-D velocity model shows a reasonable performance.
- A recipe for predicting strong ground motions targets to reproduce ground motion pulses that are important to earthquake engineering.
- Shallow source modeling needs deep borehole observations to capture slip velocity.
- M9-class long-period source & M8-class short-period source may constrain more by offshore observations.

