



### Structural Health Monitoring using Acceleration Data and Machine Learning Techniques

Sifat Muin and Khalid M. Mosalam

2019 PEER Annual Meeting January 17, 2019

### Outline

- Motivation and SHM background
  - CAV as a damage feature
    - CAV in Machine Learning
      - H-MC Framework for SHM
        - Conclusion

### **Motivation**

• Current US infrastructure systems need continuous monitoring.





Knowledge about damage → Decision:
1. Damage → plan proper response.
2.No damage → immediate occupancy.

### **SHM Process**

SHM is the process to develop online damage detection and/or assessment capability for engineered systems (aerospace, **civil**, mechanical).



### CAV & Damage



### CAV & Damage



20

40

Time (sec)

0

60

Roof --- 6<sup>th</sup> ..... 3<sup>rd</sup> - · 2<sup>nd</sup> - -

80

• Undamaged / baseline case from 1992 Landers earthquake

40 50 60

Time (sec)

10 20 30

Ground

0

# **CAV in Machine Learning**



Damage Identification

# Machine Learning (ML)

"ML is the science of making computers learn & act as humans to improve their learning over time in autonomous fashion, using data & information (observations & real-world interactions)."



### Supervised & Unsupervised Learning

- Supervised learning is inferring a function from **labeled training data**.
- Unsupervised learning is inferring function from **unlabeled training data.**
- Supervised learning
  - Regression continuous output
  - **Classification** discrete output
- Unsupervised learning
  - Clustering unknown output

**Classification Example** 



Features: words, characters, size, etc.

# Supervised & Unsupervised Learning

- Supervised learning is inferring a function from **labeled training data**.
- Unsupervised learning is inferring function from **unlabeled training data.**
- Supervised learning
  - Regression continuous output
  - **Classification** discrete output
- Unsupervised learning
  - Clustering unknown output

### **Classification Example**



# **SDOF** Analysis

| SDOF model | Feature<br>Symbol | Theoretical Definition                                                                         | Mathematical Definition                                           |  |
|------------|-------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| m          | CAVs              | CAV value at a sensor                                                                          | $CAV_{s} = CAV = \int_{0}^{T}  \ddot{u}(t)  dt$                   |  |
|            | R <sub>CAV</sub>  | Ratio of floor CAV response to<br>Linear CAV response                                          | $R_{CAV} = \frac{CAV_s}{CAV_l}$                                   |  |
| (d)        | S <sub>CAV</sub>  | Change in effective duration compared to a linear model                                        | $S_{CAV} = (D_{5-75,s} - D_{5-75,l}) \times 100\%$                |  |
|            | $\Delta_{NCAV}$   | Total absolute deviation of NCAV (Normalized CAV with $CAV_{max}$ ) compared to a linear model | $\Delta_{CAV} = \operatorname{abs}[(A_s - A_l)/A_l] \times 100\%$ |  |

### SDOF Results: TEST-1

| Input Features                  | OLR   | LR    | ANN_10 | ANN _100 | SVM   |
|---------------------------------|-------|-------|--------|----------|-------|
| CAV                             | 80.54 | 82.88 | 80.54  | 81.71    | 79.38 |
| R <sub>CAV</sub>                | 87.16 | 86.72 | 88.72  | 89.49    | 88.33 |
| $\Delta_{CAV}$                  | 75.10 | 75.10 | 75.10  | 77.04    | 75.10 |
| CAV, R <sub>CAV</sub>           | 90.27 | 89.44 | 88.72  | 90.66    | 91.05 |
| $R_{CAV}, \Delta_{CAV}$         | 86.77 | 84.72 | 89.11  | 87.94    | 87.94 |
| $CAV,\Delta_{CAV}$              | 80.54 | 83.27 | 80.54  | 81.32    | 79.38 |
| CAV, $R_{CAV}$ , $\Delta_{CAV}$ | 90.27 | 89.05 | 90.27  | 90.66    | 89.88 |

 $CAV \& R_{CAV}$  used together as features give highest accuracy for both test cases

### **SDOF** Analysis



| Feature<br>Symbol | Theoretical Definition                                                                                      | Mathematical Definition                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| CAVs              | CAV value at a sensor                                                                                       | $CAV_{s} = CAV = \int_{0}^{T}  \ddot{u}(t)  dt$                   |
| R <sub>CAV</sub>  | Ratio of floor CAV response to<br>Linear CAV response                                                       | $R_{CAV} = \frac{CAV_s}{CAV_l}$                                   |
| S <sub>CAV</sub>  | Change in effective duration compared to a linear model                                                     | $S_{CAV} = (D_{5-75,s} - D_{5-75,l}) \times 100\%$                |
| $\Delta_{NCAV}$   | Total absolute deviation of NCAV<br>(Normalized CAV with CAV <sub>max</sub> )<br>compared to a linear model | $\Delta_{CAV} = \operatorname{abs}[(A_s - A_l)/A_l] \times 100\%$ |

### SDOF Results: TEST-2

|      | Input Features                  | OLR   | LR    | ANN_10 | ANN _100 | SVM   |
|------|---------------------------------|-------|-------|--------|----------|-------|
|      | CAV                             | 36.67 | 12.50 | 18.33  | 15.83    | 8.33  |
|      | R <sub>CAV</sub>                | 60.00 | 42.50 | 30.83  | 37.50    | 20.83 |
|      | $\Delta_{CAV}$                  | 61.67 | 45.00 | 42.50  | 40.00    | 21.67 |
| hor  | CAV, R <sub>CAV</sub>           | 74.14 | 61.67 | 18.33  | 40.00    | 25.00 |
|      | $R_{CAV}$ , $\Delta_{CAV}$      | 65.83 | 45.00 | 60.00  | 40.00    | 22.50 |
| L    | $CAV,\Delta_{CAV}$              | 70.00 | 60.00 | 51.67  | 36.67    | 24.17 |
| ases | CAV, $R_{CAV}$ , $\Delta_{CAV}$ | 70.00 | 61.67 | 38.33  | 54.17    | 25.00 |

 $CAV \& R_{CAV}$  used together as features give highest accuracy for both test cases

### **MDOF** Analysis

### A MDOF model representing a 5-story structure





### > Class specific **recall** values for the two models

| Class     | MDOF-US | MDOF-NS |
|-----------|---------|---------|
| Undamaged | 0.993   | 0.993   |
| Minor     | 0.286   | 0.000   |
| Moderate  | 0.781   | 0.463   |
| Major     | 0.922   | 0.966   |

Locations were identified correctly even when damage locations were uncertain with CAV and R<sub>CAV</sub>

|         | MDOF<br>model | Test<br>set | Location accuracy |
|---------|---------------|-------------|-------------------|
| MDOF-US | TEST-1        | 97.5%       |                   |
|         | TEST-2        | 97.5%       |                   |
|         | TEST-1        | 93.0%       |                   |
|         | MDOF-N5       | TEST-2      | 95.0%             |

# Human-Machine Collaboration (H-MC)

Human-Machine collaboration (H-MC) is a framework in which humans co-work with machines to complete specific tasks by using the particular strengths of both human (H) and machine (M).



# **Novelty Detection**

Between supervised and unsupervised learning, lies one class classification.

✓ Available data from only one class.





### Novelty model:

- Non-parametric (uncertain) distribution from training data
- Distance measure to detect novelty  $\geq 1.5 \times IQR$

**Limitation**: Novelty detection alone may result in False Positive (*FP*) due to lack of data from rare (strong but undamaging) shaking.

## **POE Envelope**



- Structure-specific SDOF model with basic data
- NTHA using 1,710 ground motions
- Joint distribution using  $CAV \& R_{CAV}$  of damaging

events

### H-MC for Damage Detection



### **CSMIP** Buildings

CGS CSMIP-12267 Hemet - 4-story Hospital CGS CSMIP-01260 El Centro - Imperial Co. Services CGS CSMIP-89494 CGS CSMIP-03603 San Diego - 19-story Commercial Bldg Eureka - 5-story Residential Bldg. CGS CSMIP-23634 San Bernardino - 5-story Hospital COS CSMIP-24322 CGS CSMIP-58354 History CSUH Admin. Bldg ALL PRIM CGS CSMIP-58019 Stanford - 4-story Residential E CGS CSMIP-57357 CGS CSMIP-24386 Van Nuys - 7-story Hotel CGS CSMIP-24463 San Jose - 13-story Govt Office Bldg Los Angeles - 5-story Warehouse 

# **Undamaged Buildings**



### **Undamaged Buildings**



### **Damaged Buildings**



### The Future



### **Acknowledgements:**

Dr. Selim Günay, Dr. Umberto Alibrandi, & Dr. Yousef Bozorgnia.

**Funding Sources:** 

California Strong Motion Instrumentation Program (CSMIP) &

Taisei Chair in Civil Engineering





# Thank You!