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• Current US infrastructure systems need

continuous monitoring.

Knowledge about damage  Decision:

1. Damage  plan proper response.

2.No damage  immediate occupancy.
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Motivation



SHM is the process to develop online damage detection and/or assessment
capability for engineered systems (aerospace, civil, mechanical).
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Processing chain of SHM
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In this study, Machine 
Learning (ML)

PGA, Drift, Power Spectra, IRF, CAV, etc. 

CAV: Cumulative Absolute Velocity

SHM Process



CAV: Cumulative Absolute Velocity
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CAV & Damage



• Actual damage at ground, 2nd, 3rd & 4th floors

• Undamaged / baseline case from 1992 

Landers earthquake
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CAV & Damage
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CAV in Machine Learning



“ML is the science of making computers learn & act as humans to
improve their learning over time in autonomous fashion, using data &
information (observations & real-world interactions).”

Traditional Programming Machine Learning
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Machine Learning (ML)



• Supervised learning is inferring a function from labeled training data.
• Unsupervised learning is inferring function from unlabeled training data.

Classification Example

Features: words, characters, size, etc. 
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• Supervised learning 
• Regression – continuous output
• Classification – discrete output

• Unsupervised learning

• Clustering – unknown output

Supervised & Unsupervised Learning



• Supervised learning is inferring a function from labeled training data.
• Unsupervised learning is inferring function from unlabeled training data.
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• Supervised learning 
• Regression – continuous output
• Classification – discrete output

• Unsupervised learning

• Clustering – unknown output

Supervised & Unsupervised Learning

Classification Example



SDOF model
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SDOF Analysis

SDOF Results: TEST-1
Input Features OLR LR ANN_10 ANN _100 SVM

CAV 80.54 82.88 80.54 81.71 79.38

𝑅𝐶𝐴𝑉 87.16 86.72 88.72 89.49 88.33

∆𝐶𝐴𝑉 75.10 75.10 75.10 77.04 75.10

CAV, 𝑹𝑪𝑨𝑽 90.27 89.44 88.72 90.66 91.05

𝑅𝐶𝐴𝑉, ∆𝐶𝐴𝑉 86.77 84.72 89.11 87.94 87.94

CAV,∆𝐶𝐴𝑉 80.54 83.27 80.54 81.32 79.38

CAV, 𝑅𝐶𝐴𝑉, ∆𝐶𝐴𝑉 90.27 89.05 90.27 90.66 89.88

CAV & 𝑅𝐶𝐴𝑉 used together 
as features give highest 
accuracy for both test cases



SDOF model
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SDOF Analysis

Input Features OLR LR ANN_10 ANN _100 SVM

CAV 36.67 12.50 18.33 15.83 8.33

𝑅𝐶𝐴𝑉 60.00 42.50 30.83 37.50 20.83

∆𝐶𝐴𝑉 61.67 45.00 42.50 40.00 21.67

CAV, 𝑹𝑪𝑨𝑽 74.14 61.67 18.33 40.00 25.00

𝑅𝐶𝐴𝑉, ∆𝐶𝐴𝑉 65.83 45.00 60.00 40.00 22.50

CAV,∆𝐶𝐴𝑉 70.00 60.00 51.67 36.67 24.17

CAV, 𝑅𝐶𝐴𝑉, ∆𝐶𝐴𝑉 70.00 61.67 38.33 54.17 25.00

SDOF Results: TEST-2

CAV & 𝑅𝐶𝐴𝑉 used together 
as features give highest 
accuracy for both test cases



A MDOF model representing a 5-story structure
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MDOF Analysis

 Class specific recall values for the two models

Class MDOF-US MDOF-NS

Undamaged 0.993 0.993

Minor 0.286 0.000

Moderate 0.781 0.463

Major 0.922 0.966

MDOF 

model

Test

set
Location accuracy

MDOF-US
TEST-1 97.5%

TEST-2 97.5%

MDOF-NS
TEST-1 93.0%

TEST-2 95.0%

 Locations were identified correctly even when damage 
locations were uncertain with CAV and 𝑅𝐶𝐴𝑉

H
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Human-Machine collaboration (H-MC) is a framework in which humans co-work with
machines to complete specific tasks by using the particular strengths of both human (H) and
machine (M).

Human-Machine Collaboration (H-MC) 



Between supervised and unsupervised 
learning, lies one class classification.

 Available data from only one class.
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Novelty

Learned region

Training Observations

New Normal Observation

Novelty model:
• Non-parametric (uncertain) distribution from

training data
• Distance measure to detect novelty ≥ 1.5 ×IQR

Limitation: Novelty detection alone may result in
False Positive (FP) due to lack of data from rare (strong
but undamaging) shaking.

Novelty Detection



POE Envelope 

• Structure-specific SDOF model with basic data 

• NTHA using 1,710 ground motions

• Joint distribution using CAV & 𝑅𝐶𝐴𝑉 of damaging 

events
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H-MC for Damage Detection
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CSMIP Buildings



 Undamaged cases 
correctly detected
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Undamaged Buildings



 Undamaged cases 
correctly detected

 Novelty only 
gives FP
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Undamaged Buildings



Damaged Buildings

 Damaged case 
correctly detected
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The Future
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Thank You!
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