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Knowledge about damage - Decision:

1. Damage - plan proper response.

2.No damage - immediate occupancy.
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SHM Process

SHM is the process to develop online damage detection and/or assessment
capability for engineered systems (aerospace, civil, mechanical).
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CAV & Damage

CAV: Cumulative Absolute Velocity Bridge column shaking table test
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CAV & Damage

Landers_1992 Northridge_1994
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CAV In Machine Learning
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Machine Learning (ML)

“ML is the science of making computers learn & act as humans to
improve their learning over time in autonomous fashion, using data &
information (observations & real-world interactions).”
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Supervised & Unsupervised Learning

» Supervised learning is inferring a function from labeled training data.
» Unsupervised learning is inferring function from unlabeled training data.

* Supervised learning
» Regression — continuous output

« Classification — discrete output . .
Classification Example

* Unsupervised learning
* Clustering — unknown output
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Supervised & Unsupervised Learning

» Supervised learning is inferring a function from labeled training data.
» Unsupervised learning is inferring function from unlabeled training data.

* Supervised learning
» Regression — continuous output

* Classification — discrete output . .
Classification Example

- - —
[ o g
Y P =

* Unsupervised learning

* Clustering — unknown output - L= L=

g

Features

Damaged
10



SDOF Analysis

SDOF model Feature

Theoretical Definition

Mathematical Definition

Symbol

CAYV value at a sensor

T
CAV; = CAV = f [it(e)|dt
0

Ratio of floor CAV response to
Linear CAV response

CAV,
cav = ay,

CAV,
| chwiw Reay

k(d)

Change in effective duration _
E:‘{\LRQ Scav compared to a linear model Scav = (Ds-755 = Ds-75:) X 100%
Total absolute deviation of NCAV
Aycay | (Normalized CAV with CAV,,.) Acay= abs[(4s — A7)/ 4;] X 100%
compared to a linear model
SDOF Results: TEST-1
Input Features OLR LR ANN_10 ANN 100 SVM
CAV 80.54 82.88 80.54 81.71 79.38
Reay 87.16 86.72 88.72 89.49 88.33
Acav 75.10 75.10 75.10 77.04 75.10
CAV, Rcay 90.27 89.44 88.72 90.66 91.05
Reavs Deay 86.77 84.72 89.11 87.94  87.94
CAV,Acav 80.54 83.27 80.54 81.32 79.38
CAV, Reay, Acay 90.27 89.05 90.27 90.66  89.88
CAV & R,y used together

as features give highest

accuracy for both test cases
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SDOF Analysis

SDOF model Feature
. Symbol
Cm> T
CAV, | CAV value at a sensor CAV, = CAV = f lit(t)|dt
0
'NIM_\ Ratio of floor CAV response to CAV;

| Reav |1inear cAV response cav = cay,

Theoretical Definition Mathematical Definition

L\ k (d) s Change in effective duration S = ( D _bp ) % 100%

bt €4V | compared to a linear model cav. = \¥5-75s = ¥5-751 0
Total absolute deviation of NCAV

Aycay | (Normalized CAV with CAV,,.) Acay= abs[(4s — A7)/ 4;] X 100%

compared to a linear model

SDOF Results: TEST-2

Input Features OLR LR ANN_10 ANN 100 SVM

CAV 36.67 12.50 18.33 15.83 8.33
Rcav 60.00 42.50 30.83 37.50 20.83
Acav 61.67 45.00 42.50 40.00 21.67
CAV, Rcay 7414 61.67 18.33 40.00 25.00
CAfV & Reay .useﬁ.t%gether Reay, Aeay  65.83 45.00 60.00 40.00 22.50
as teatures give highest CAV,Ac,,  70.00 60.00 51.67 36.67 24.17
accuracy for both test cases CAV, Reay, Aoy 70.00 61.67  38.33 54.17 25.00
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MDOF Analysis

A MDOF model representing a 5-story structure

mw \ _
§ T s | / > Class specific recall values for the two models
storv \ Class MDOF-US MDOF-NS
= Sy \ Undamaged 0.993 0.993
Gm “\, Minor 0.286 0.000
R Moderate 0.781 0.463
E :’ “~, Major 0.922 0.966
i N

=g MDOF Test ,
Location accuracy
model set

TEST-1 97.5%

noorus Damage Location Hoorms M D O F' U S
1% floor TEST'2 975%

EEEN 2 fioor

=it TEST-1 93.0%

MDOF-NS
TEST-2 95.0%

Story Shear (kip) VYbase

Damage State

» Locations were identified correctly even when damage

locations were uncertain with CAV and R,y
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Human-Machine Collaboration (H-MC)

Human-Machine collaboration (H-MC) is a framework in which humans co-work with
machines to complete specific tasks by using the particular strengths of both human (H) and

machine (M). . pp———
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Novelty Detection

Between supervised and unsupervised @ Training Observations

learning, lies one class classification. New Normal Observation
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v" Available data from only one class. ! |
|
| O |
! I
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! I
I , I
| Learnedregion I
IQR
Q1-15x IR Qi Q3 Q3+1.5 x IQR
[
I |
: : : ! Novelty model:
: : i l * Non-parametric (uncertain) distribution from
I I . .
! ! ! i training data
: : | ! « Distance measure to detect novelty > 1.5 xIQR
i i i i Limitation: Novelty detection alone may result in
: : | ! False Positive (FP) due to lack of data from rare (strong
sl 2d N & but undamaging) shaking.
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POE Envelope
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» Structure-specific SDOF model with basic data
» NTHA using 1,710 ground motions
« Joint distribution using CAV & R, of damaging

events



H-MC for Damage Detection
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CSMIP Buildings

CGS CSMIP-89494 CGS CSMIP-01260 CGS CSMIP-03603
Eureka - 5-story Residential Bldg. ) El Centro - Imperial Co. Servicg g San Diego - 19-story Commercial Bldg

CGS CSMIP-23634
San Bernardino - 5-story Hospital

CGS CSMIP-58019
Stanford - 4-story Resident

4 s ; ] % CGS CSMIP-57357
- 7-story Hotel A2 San Jose - 13-story Govt Office B
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Undamaged Bu
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Undamaged Buildings

Sherman Oaks 13 story
CSMIP stn#24322
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Damaged Buildings

Van Nuys 7 Story
CSMIP stn#24386
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The Future

@
teq + hours teq + days
T -
Damage
Machine learning b
& model
1 Complete assessment
mii + s + ku = —mig i by on-site inspection
Analytical model Rapid detection state
Rapid assessment
by remote inspection
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