Shake Table Tests of RC Bridge Columns with Conventional and High-Strength Steel under Long Duration Earthquakes

> S. Mojtaba Alian, PhD Student, UNR Mohamed Moustafa, Assistant Professor, UNR David Sanders, Professor and Chair, ISU

In collaboration with: **Gregory Deierlein**, Professor, Stanford University

January 16-17, 2020 Berkeley, CA.

University of Nevada, Reno

Outline

- Introduction
- Experimental Program Development
- Experimental Results: Phase I (complete)
- Experimental Results: Phase II (preliminary)
- Concluding Remarks

Introduction Long duration and Subduction zones

Subduction zones are plate boundaries where large magnitude and long duration earthquakes occur \rightarrow Cascadia Subduction Zone, Pacific NW

These earthquakes are shallow; their rupture areas are very large; and they release a large amount of energy

Introduction Account for duration effect

 Seismic design specifications use response spectra to identify the hazard and do not consider duration effects

Overall Objectives

- Develop models and recommendations for considering earthquake duration in the performance assessment and design of bridges.
- Develop improved design details to mitigate the effect of duration on reinforced concrete bridge piers.
- Leverage research on cyclic deterioration to help qualify the use of high strength reinforcement in seismic design of bridges.

Experimental Program Specimens

• Six 1/3-scale CIP circular bridge columns tested in two phases:

First Phase (Gr60 Steel):

- Two columns with different transverse reinforcement details
- One column with debonding details for longitudinal bars

Second Phase (Gr100 Steel):

 Three columns with HSS long. bars and different trans. reinf. details – Tested under long and short duration motions

Experimental Program Reinforcing steel stress-strain curves

High strength steel properties					
F _y (ksi)	εγ	F _{max} (ksi)	F _u (ksi)	ε _u	
124	0.64%	169	105	12%	

7

Experimental Program Test matrix and setup

Snecimens		Phase I			Phase II	
Specimens	LD-S3-G60	LD-S1.5-G60	LD-S3-G60D	LD-S3-G100	LD-S1.5-G100	SD-S3-G100
Long Roinf	22 #4 (2.2%)	22 #4 (2.2%)	22 #4 (2.2%)	14 #4 (1.4%)	14 #4 (1.4%)	14 #4 (1.4%)
Long. Reint.	Gr 60	Gr 60	Gr 60debonded	Gr 100	Gr 100	Gr 100
Trans.	#3 @ 3 in.	#3 @ 1.5 in.	#3 @ 3 in.	#3 @ 3 in.	#3 @ 1.5 in.	#3 @ 3 in.
Reinf.	(1.04%)	(2.08%)	(1.04%)	(1.04%)	(2.08%)	(1.04%)
Spacing	6 d _b	3 d _b	6 d _b	6 d _b	3 d _b	6 d _b

Experimental Program Loading protocol

• Loading protocol (Phase I):

<u>Long duration motion</u>: 2011 Tohoku (Japan) recorded at MYG006E-W Chosen from the previous study by Sanders et al.

Aftershock motion: occurred in Japan one month after the Tohoku earthquake

Experimental Program

• Loading protocol (Phase II):

<u>Long duration motion</u>: 2011 Tohoku (Japan) recorded at MYG006E-W Chosen from the previous study by Sanders et al.

<u>Short duration motion</u>: 1999 Kocaeli (Turkey) recorded at IZN090 Scaled by 3.68 – Spectrally equivalent with the LD motion

LD-S1.5-G100 & SD-S3-G100		
Run 1		
100% main motion		

LD-S3-G100

Run 1	Run 2	Run 3
25% main motion	50% main motion	100% main motion

Experimental Program Construction

Experimental Program Assembly and test setup

Experimental Program Assembly and test setup

Experimental Results: Phase I Observations

LD-S3-G60

8 long. bars ruptured in run 4: **150%** Tohoku EQ Drift capacity: **8.9%** Base shear: **38.1 kips**

LD-S1.5-G60

1 long. bars ruptured in run 5: **160%** Tohoku EQ Drift capacity: **13.8%** Base shear: **36.5 kips**

LD-S3-G60D

1+8 long. bars ruptured in run 4, 5: **150%** Tohoku EQDrift capacity: **10.9%**Base shear: **33.7 kips**

LD-S3-G60

Run #	1: 100% Tohoku	2: 100% Aftershock	3: 125% Tohoku	4: 150% Tohoku
Max Disp.	-4.38 in.	-2.78 in.	+5.90 in.	+6.40 in.
Max Drift	6.08%	3.86%	8.19%	8.89%
Res. Drift	0.46%	0.57%	0.60%	1.64%
Max B.S.	+35.43 kips	-24.79 kips	+38.08 kips	-36.45 kips
Max Strain	2.79%	2.01%	4.46%	Rupture
Damage State	Major spalling	Same as previous run	Long. bars were exposed	8 long. bars ruptured

LD-S1.5-G60

0 2

Drift Ratio

6 8 10

LD-S1.5-G60

4

Run #	1: 100% Tohoku	2: 100% A.S.	3: 125% Tohoku	4: 150% Tohoku	4: 160% Tohoku
Max Disp.	+4.52 in.	+2.68 in.	+7.51 in	+8.87 in.	+9.96 in.
Max Drift	6.28%	3.72%	10.4%	12.3%	13.8%
Res. Drift	0.56%	0.46%	1.57%	2.99%	5.60%
Max B.S.	-34.78 kips	-26.04 kips	+35.25 kips	+35.21 kips	-36.45 kips
Max Strain	3.30%	2.31%	6.25%	7.65%	Rupture
Damage State	Major spalling	Same as previous run	Trans. bars were exposed	Same as previous run	1 long. bar ruptured

LD-S3-G60-Debond

21

Run #	1: 100% Tohoku	2: 100% Aftershock	3: 125% Tohoku	4: 150% Tohoku
Max Disp.	+4.49 in.	-2.93 in.	+6.61 in.	+7.82 in.
Max Drift	6.24%	4.07%	9.18%	10.9%
Res. Drift	0.40%	0.47%	0.18%	0.28%
Max B.S.	+32.99 kips	-25.36 kips	+33.74 kips	-20.49 kips
Max Strain	2.95%	1.08%	4.84%	Rupture
Damage State	Major spalling	Same as previous	Long. bars buckling,	8 long. bars
		run	1 bar ruptured	ruptured

- Higher displacement ductility capacity in the column LD-S1.5
- Higher force capacity in the column LD-S3
- Close initial stiffness for all three columns
- Period elongation for all the test models as nonlinearity spreads

Experimental Results: Phase I Strain Results

- Strains are distributed well along the length of the plastic hinge
- LD-S1.5-G60 : Larger strains due to larger displacements
- LD-S3-G60D : Strain concentration in the vicinity of the columnfooting interface was reduced as a result of debonding

Experimental Results: Phase I Curvature and Rotation Results

- Curvature was more concentrated at the column-footing interface
- Higher rotational capacity of the last specimen due to the intentional debonding

—O— Run 1: 100% --□-- Run 2: A.S. - ◇ - Run 3: 125% - △- Run 4: 150% ----- Run 5: 160%

Experimental Results: Phase I Comparisons

Experimental Results: Phase II (prelim.) Observations

LD-S1.5-G100

6 long. bars ruptured in run 1: **100%** Tohoku EQ Drift capacity: **7.7%** Base shear: **39.4 kips**

SD-S3-G100

3 long. bars ruptured in run 1: **100%** Kocaeli EQ Drift capacity: **9.6%** Base shear: **39.6 kips**

LD-S3-G100

long. bars ruptured in run #: ##% Tohoku EQ
Drift capacity: ##%
Base shear: ## kips

Run #	1: 100% Tohoku
Max Disp.	5.5 in.
Max Drift	7.7%
Res. Drift	2.8%
Max B.S.	+39.4 kips
Max Strain	-
Damage	Major spalling
State	5 long. Bars ruptured
JIALE	at time 60 sec

LD-S1.5-G100

30

S	⊢	
Run #	1: 100% Kocaeli	-10 40 +
Max Disp.	6.9 in.	30 SD-
Max Drift	9.6%	
Res. Drift	4.2%	20 - % 10
Max B.S.	+39.6 kips	· · · · · · · · · · · · · · · · · · ·
Max Strain	-	
Damage	Major spalling	2 -10 -
State	3 long. Bars ruptured	-20
		-30 -

31

	LD-S3-G	100		Displacement - mm -254 -203 -152 -102 -51 0 51 102 152 203 254	
Run #	1: 25% Tohoku	2: 50% Tohoku	3: 100% Tohoku	Displacement - in -10 -8 -6 -4 -2 0 2 4 6 8 10 40 + + + + + + + + + + + + + + + + + + +	
Max Disp.	0.9 in.	3.0 in.	5.5 in.		
Max Drift	1.3%	4.2%	7.7%		7
Res. Drift	0.0%	0.2%	6.8%		e - kh
Max B.S.	-21.3 kips	+36.6 kips	+39.2 kips	<u><u>u</u> -1044</u>	Forc
Max Strain	0.4%	2.7%	-	-2089	
Damage State	Minor flexural cracks	Major spalling	5 long. Bars ruptured at time 60 sec	-30 -40 -133 -40 -14% -11% -8% -6% -3% 0% 3% 6% 8% 11% 14% Drift	

Experimental Results: Phase II Comparisons

- Higher displacement capacity in the column SD-S3-G100
- Same displacement capacity in the columns subjected to the long duration motion
- Same force capacity for all the columns
- Close initial stiffness for all three columns
- Strain concentration in the vicinity of the column-footing interface ?

What is next?

- Process and interpret shake table test data from Phase II of testing to better understand HSS behavior
- Compile "and compare" results from previous long duration project and phase I and II of this PEER project
- Conduct post-test analysis using calibrated models to provide modeling guidelines on conventional and high strength steel bar rupture and low-cycle fatigue as it relates to the earthquake duration
- Evaluate and/or develop design guidelines

Concluding Remarks

Phase I: Columns with conventional steel (Gr 60):

- The seismic performance of the columns were satisfactory: All the columns performed in a ductile manner
- Collapse in all specimens happened due to low-cycle fatigue
- Using smaller spacing for transverse reinforcement significantly helped to improve the columns performance (50%)
- Debonding the longitudinal bars at the column-footing interface was less effective (20%) on the displacement capacity of the column.
- The varied design/detailing parameters affect only the seismic performance of the columns in the nonlinear range, i.e. initial stiffness and first yield were same for all cases

Concluding Remarks

> Phase II: Columns with high strength steel (Gr 100):

- All the columns showed lower displacement capacity compared to the columns in phase I, while they had slightly better force capacity
- Using smaller spacing for trans. reinforcement did **not** help to improve the column performance
- The column subjected to the short motion showed a 25% higher displacement capacity compared to the long motion cases
- <u>Interrogate possible reasons</u>: strain concentration at the column-footing interface ? Would de-bonding help?
- Interrogate possible reasons: HSS bars fracture does not seem to be heavily attributed to Low-Cycle Fatigue as suggested by comparing two columns under long duration motion?

THANK YOU! QUESTIONS?

