

OpenSees implementation of 3D embedded pile element for analysis of SSI problems

Amin Pakzad, Pedro Arduino

University of Washington

Collaborators

- Dr. Katheryn Petek Shannon & Wilson
- Dr. Chris McGann Univ. of Canterbury
- Dr. Alborz Ghofrani Golder & Associates
- Dr. Long Chen Hart Crowser
- Dr. Domenico Gallese, Dr. Luigi Callisto La Sapienza

Sponsors

Motivation: Modeling complex SSI systems

Bridge abutment

Numerical Simulation needs 3D FEM Models

- Total or Effective stress analysis
 - Single phase formulation: brick elements
 - Multi-phase formulation: u-P formulation using brickUP elements
- Soil constitutive model
 - Capture nonlinear behavior of the soil
 - Capture contractive/dilative behavior
 - Capture cyclic mobility
- Soil-Foundation Interaction
 - Interface behavior
 - Frictional behavior?
 - Gap forming?
 - Take advantage of 1D beam elements

In particular, **3D dynamic FEM** analysis of soilstructure interaction problems requires advanced numerical methods

Solid-solid and beam-solid contact Mesh difficulties/challenges

Proposed approach: Embedded Elements

with interface surface

Perfect Bonding Condition

This constraint between the soil and an imaginary surface forms the fundamental component of the embedded element formulation

Perfect Bonding Condition

Penalty Method:

$$\delta W^{\text{internal}} = \delta W^{\text{internal}}_{\text{system}} + \sum_{i} \epsilon_{p} \left(\tilde{\mathbf{x}}_{b} - \tilde{\mathbf{x}}_{s} \right) \cdot \left(\delta \tilde{\mathbf{x}}_{b} - \delta \tilde{\mathbf{x}}_{s} \right) \quad \forall \text{ admissible } \delta \tilde{\mathbf{x}}_{b}, \delta \tilde{\mathbf{x}}_{s}$$

Embedded Element (mortar) Perfect Bonding Condition

Mortar Method (Interaction condition applied in a weak sense)

$$\int_{\Gamma_c} \boldsymbol{\lambda}(\gamma) \cdot \left(\tilde{\mathbf{x}}_b(\gamma) - \tilde{\mathbf{x}}_s(\gamma) \right) \, \mathrm{d}\gamma = 0 \quad \forall t$$

Embedded Beam-Solid Interface element currently available in OpenSees (3.6.0)

Quasi Static Example

Quasi Static Example

Laterally loaded pile

3D Solid

Embedded Interface

Close-up View of the Mesh

Laterally loaded pile

Battered pile response

Dynamic Example

Soil-Pile interaction compatible displacement

Building Foundation

Building Foundation

Building Foundation

Building Foundation Mat on pile foundation

Building Foundation Structure connection

Building Foundation Distributed computing

The only challenge is that the interface nodes and their associated brick elements should be kept on a same processor in parallel processing analysis

Building Foundation Dynamic analysis

- Soil Layer
- Foundation
- Domain Reduction Layer
- Perfectly Matched Layer

Concluding Remarks

- Soil Structure Interaction (SSI) analysis continues to be an important and challenging problem to tackle numerically.
- Conventional and embedded contact formulations useful to represent SSI.
- Mortar embedded interface element effectively applies the interaction condition.
- Preliminary results show the potential of the proposed embedded element implemented in OpenSees.
- Future work includes more validation and verification studies, and simulation of complex building and bridge foundation systems.

Thank you!!