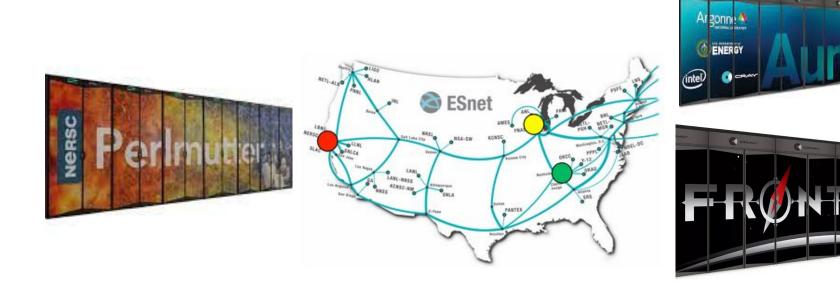



### I/O, Storage, and Interrogation of Large Data A PEER – LBNL workshop January 18-19, 2024

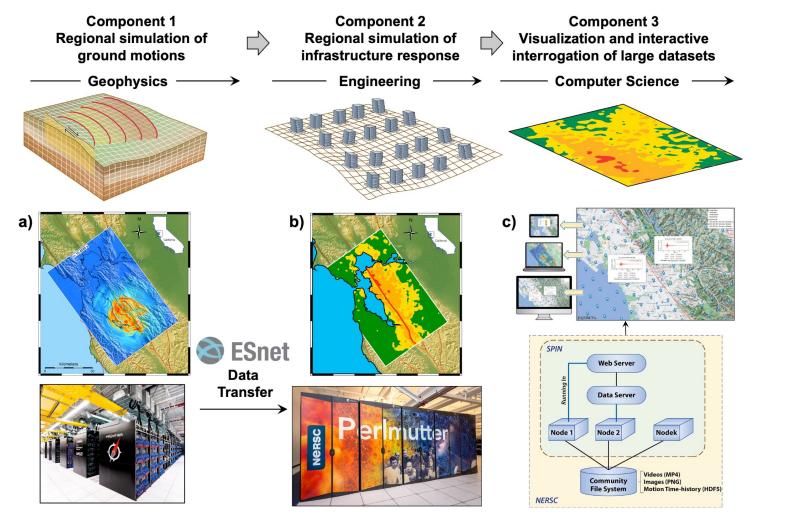
#### Houjun Tang Scientific Data Management Group Lawrence Berkeley National Laboratory







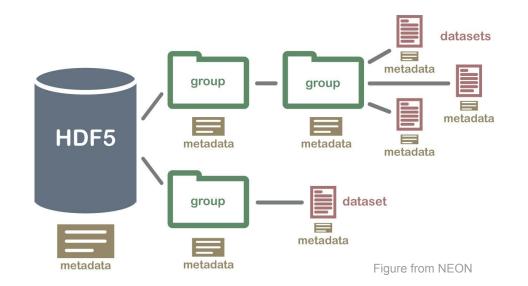

Office of Cybersecurity, Energy Security, and Emergency Response




### **Challenges in Exascale Data Management**

- New accelerator-based HPC architectures.
- Increased data volume.
- Effective data reduction.
- Sharing of both data and metadata across systems.
- Easy-to-use data search and access interfaces.

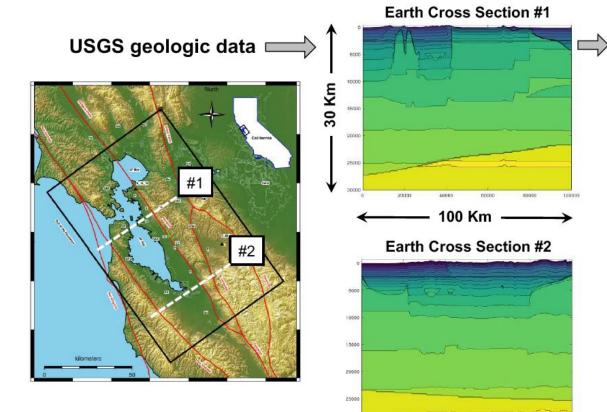



### **Data Management in the EQSIM Workflow**



Oak Ridge Leadership Computing Facility (ORNL) National Energy Research Scientific Computing Center (LBNL)

### Managing EQSIM data with HDF5

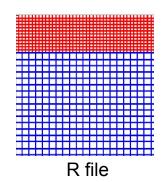

- HDF5 (Hierarchical Data Format v5) is a data model, library, and file format for managing large and complex scientific data.
  - Supports heterogeneous data, easy sharing, cross platform, fast I/O, big data, and keep metadata with data.
  - Maintained for 25 years and widely adopted by the scientific community and the industries.

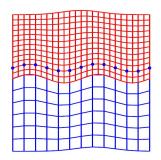


### HDF5 Integration in the EQSIM Workflow



### Sfile: a Multi-resolution Curvilinear Grid Format for Storing Velocity Models

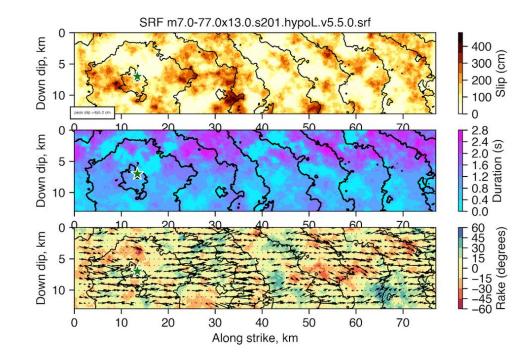




Vertical scale exaggerated

10000

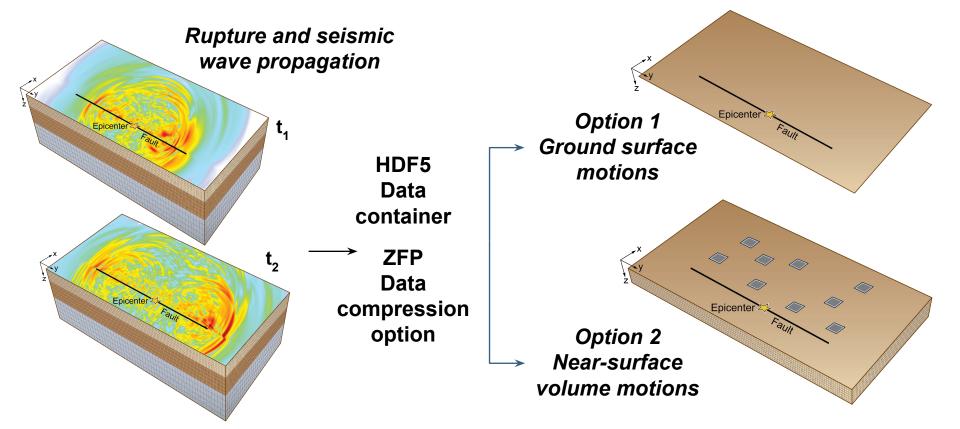
Newly developed "S" file for the 3D geologic model

- Enhanced material model inspection and visualization with the HDF5 format
- Enables material model output for both forward and inverse problems with SW4
- Allows converting existing material model data to an S file with SW4 grid and mesh refinement levels
- Allows horizontal and/or vertical down sampling to reduce the data size with acceptable interpolation error bounds






S file (HDF5)


### SRF-HDF5: storing text-based SRF data in HDF5

- Originally in SRF format (ASCII) that is not designed for parallel processing.
- Converted HDF5 file is ~1/3 the original size and can be read more efficiently in parallel (>5x speedup).



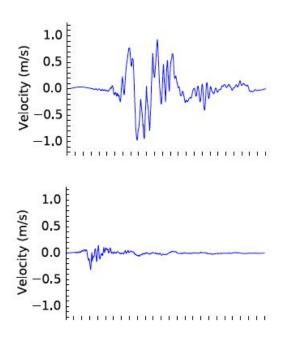
### Handling Large Simulation Ground Motion Data

- Spatially dense grid of ground motions from high fidelity simulations
- Must accommodate multiple rupture realizations for each earthquake scenario
- Must include a down-sampling capability from a baseline dataset
- The database design must be created with *future scalability* in mind



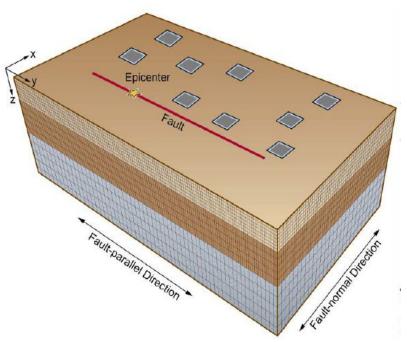
### Output Ground Motions at User-Defined Locations

#### USGS format


- 1 text file per location, large number of files.
- Easy to read.

#### SAC format

- 3 files per location, large number of files.
- Required special reader to parse data.


#### SAC-HDF5 format

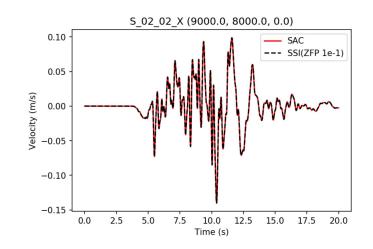
- Single HDF5 file for all locations.
- Easy to read.
- Write time is up to 5-9X faster than USGS and SAC on SSDs.
- SFBA simulations generate ~2300 locations,
  2.2GB file.



### **SSIoutput: Motions of Near-surface Volume**

- HDF5 format.
- Motions in the x, y, z directions.
- 4D datasets (Time + 3D Volume)
- Allows saving motions of the entire near-surface domain.
- Supports downsample in time.
- Easy to access and visualize.
- SFBA simulations generate surface motions of 260-300GB with downsampling every 16 steps (0.012s -> 0.19s), more with volume output.




HDF5 output with compression enables saving velocity time-history at *every grid point* in a near-surface volume (e.g. to 150m depth)

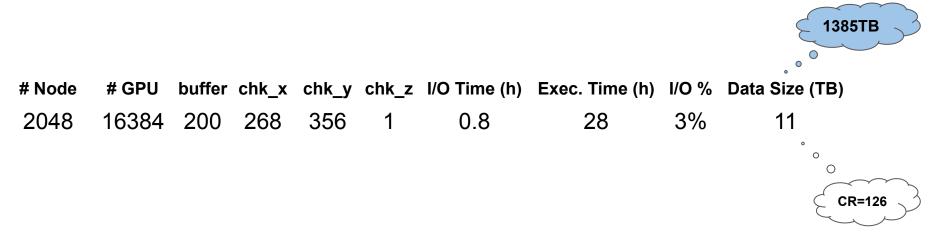
## **Error-bounded Lossy Compression**

- ZFP is a library for compressing floating-point data with error-bounded lossy compression.
- ZFP can be enabled with HDF5 to read and write compressed data transparently.

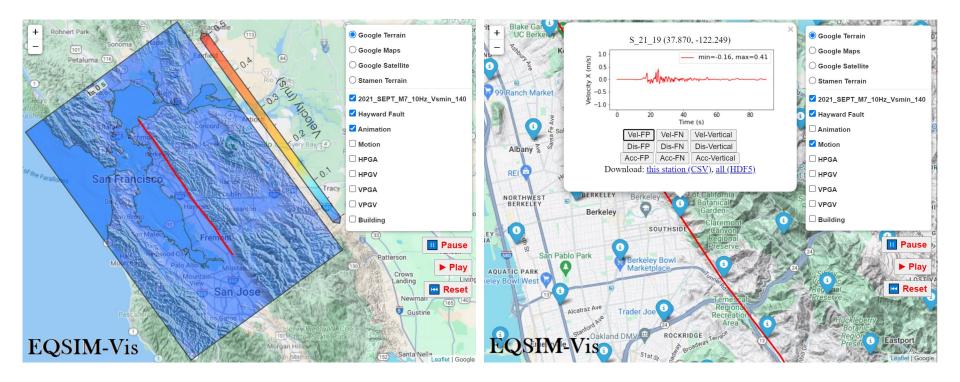
| # pip install hdf5plugin<br>import h5py<br><i>import hdf5plugin</i> |
|---------------------------------------------------------------------|
| h5file = h5py.File('data.h5')                                       |
| data = h5file['vel_0'][:]                                           |
| h5file.close()                                                      |

| Config            | CR  | File Size |  |  |
|-------------------|-----|-----------|--|--|
| None              | 1   | 76 TB     |  |  |
| accuracy=<br>1e-2 | 261 | 293 GB    |  |  |




https://computing.llnl.gov/projects/zfp

### I/O Time Comparison on Cori


|                                                                              |     |      |        |     |     |     |              |            |        |                     | E 38 TB |
|------------------------------------------------------------------------------|-----|------|--------|-----|-----|-----|--------------|------------|--------|---------------------|---------|
| #                                                                            |     | #    |        | chk | chk | chk |              | Exec. Time |        | Data Size           |         |
| Nod                                                                          | e l | Rank | buffer | _x  | _у  | _Z  | I/O Time (s) | (S)        | I/O %  | (GB)                | 0       |
| 102                                                                          | 4   | 8192 | 100    | 60  | 60  | 32  | 3,458        | 6,589      | 52.48% | 155                 |         |
|                                                                              |     |      | 100    | 32  | 60  | 32  | 2,005        | 4,861      | 41.25% | 164                 |         |
|                                                                              |     |      | 100    | 32  | 32  | 32  | 3,927        | 6,664      | 58.93% | 176                 |         |
|                                                                              |     |      | 200    | 60  | 60  | 32  | 1,409        | 4,861      | 28.99% | 155                 |         |
|                                                                              |     |      | 200    | 32  | 60  | 32  | 979          | 3,838      | 25.50% | 164                 |         |
|                                                                              |     |      | 200    | 32  | 32  | 32  | 2,009        | 5,142      | 39.07% | 176                 |         |
|                                                                              |     |      | 400    | 60  | 60  | 32  | 841          | 3,759      | 22.38% | 155                 |         |
|                                                                              |     |      | 400    | 32  | 60  | 32  | 485          | 4,996      | 9.72%  | 164                 |         |
|                                                                              |     |      | 400    | 32  | 32  | 32  | 1,075        | 6,005      | 17.90% | 176                 | CR=251  |
|                                                                              |     |      | 800    | 60  | 60  | 32  | 433          | 3,568      | 12.14% | 155。 。              |         |
|                                                                              |     |      | 800    | 32  | 60  | 32  | 284          | 3,147      | 9.02%  | 164 。 <sub>。(</sub> |         |
|                                                                              |     |      | 800    | 32  | 32  | 32  | 625          | 3,708      | 16.84% | 176 。               | CR=237  |
| 1.5 billion grid points, top grid size 2001x4001, 5m grids, 14179 $^{\circ}$ |     |      |        |     |     |     |              |            |        |                     | CR=221  |

### I/O Time on Frontier

- 10Hz, Vsmin 140m/s, M7 Hayward Fault simulation.
- 435 billion total grid points, 202460 simulation steps (90 seconds).
- Surface motion output
  - 68577 x 45729, ~2.7 billion grid points with 1.75m grid size.
  - ZFP accuracy mode, 1e-2
  - Downsample factor of 10 (timesteps)
  - Written to the Orion Lustre parallel file system, utilizing 1024 OSTs.



### EQSIM-Vis: Inspect Ground Motions on an Interactive Map



Demo



- Custom formats are not ideal when data needs to be shared to many people with different backgrounds.
- HDF5 format and library is useful and effective for managing large data.
  - Cross-platform, multi-language support (C, Python, MATLAB).
  - Self-describing, stores metadata together with data.
  - Efficiently parallel I/O.
- Effective error-bounded compression can significantly reduce the total data size, allows saving high-resolution data with a large domain size.
- Visualization tools such as EQSIM-vis enables efficient data inspection.

# **Thanks!**

email: htang4@lbl.gov

https://crd.lbl.gov/tang