

2025 PEER LBNL Workshop on the Regional Scale Simulated Ground Motion Database (SGMD) for the San Francisco Bay Area

Use of Physics-based Simulated Ground Motions for Enhanced Damage and Loss Assessments

Chiara Smerzini & Roberto Paolucci

Banatao Auditorium, UC Berkeley March 24, 2025

Seismic damage and loss scenarios in urban areas: background

Damage and loss scenarios are fundamental for Civil Protection authorities for emergency planning and management purposes

Seismic damage and loss scenarios in urban areas: background

Ground Shaking Scenario

(e.g. PGA)

ShakeMap

 $\mathbf{\nabla}$

Empirical Ground Motion Model (GMM) However ...

- Poorly calibrated in near-source conditions
- Only peak ground-motion intensity measures (IMs) used (e.g. PGA or SA)
- Region- and site-specific features disregarded (unless fully nonergodic GMMs are used)
- Spatial correlation of ground shaking is typically oversimplified

Seismic damage scenarios by enhancing the characterization of ground motion

Ground Shaking Scenario

(e.g. PGA)

- ShakeMap
- Empirical Ground Motion Model (GMM)
- Physics-Based numerical Simulation of earthquake ground motion (PBS)

Source-to-site numerical simulation of seismic wave propagation, based on 3D realistic models of the fault rupture process, the propagation path and local site conditions С D $\overline{}$ McCallen et al. (2021) **EOSIM Project**

Seismic damage scenarios by enhancing the characterization of ground motion

SPectral Elements in Elastodynamics with Discontinuous Galerkin http://speed.mox.polimi.it/

- Specificity of the seismotectonic and geologic context is intrinsically accounted for
- Entire time history of ground motion is produced at any site
- Physics-based spatial variability of ground shaking

Coupling of PBS scenarios with specifically calibrated fragility curves

Coupling of PBS scenarios with specifically calibrated fragility curves

Coupling of PBS scenarios with mechanicsbased models of structural response

12

Fully coupled 3D PBS of earthquake ground motions and structural response at city level

- Coupling algorithm embedded in SPEED kernel at each time step (without computational overload)
- Buildings are modelled as non-linear SDOF or MDOF systems
- Possibility to include building clusters to model urbanized environments
- ✓ Effects of soil-structure interaction (SSI) and site-city interaction (SCI) are accounted (albeit in a simplified manner)

Srihari Sangaraju, PhD thesis (2025) —

Fully coupled 3D PBS of earthquake ground motions and structural response at city level

Fully coupled 3D PBS of earthquake ground motions and structural response at city level

Movie of city response under the Mw7 scenario with indication of building damage levels

Concluding remarks

- In this study, different approaches for generating seismic damage scenarios in urban areas are explored and investigated by using physicsbased numerical simulations for an enhanced characterization of earthquake ground motion
- Results offer insights into the potential advantages of PBS, in relation to:
- Providing region- and site-specific ground shaking scenarios when ShakeMaps are poorly constrained due to the lack of recordings (e.g. historical earthquakes or peculiar geologic contexts)
- Providing the entire ground motion time history at the building site to be used as input for mechanics-based non-linear models of structural response
- Fully coupled (single-step) numerical approaches embedding, in the same computational domain, the seismic wave propagation from the seismic source to the structure, accounting for soil-structure and site-city interaction effects

Thank you

Chiara Smerzini

Dept. Civil and Environmental Engineering

Politecnico di Milano

chiara.smerzini@polimi.it