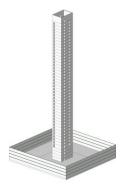
PEER Tall Building Seismic Design Guidelines

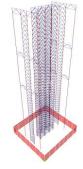
Performance Analysis (Loss Estimation)

Ronald O. Hamburger Senior Principal Simpson Gumpertz & Heger Inc.


PBEE and Its Application to Tall Building Design - Long Beach - 10 September 2011

Purpose

- Determine if performance-based criteria would provide comparable or better performance than code-based designs
- Permit cost-benefit judgments


3 Example Buildings

42-story Residence

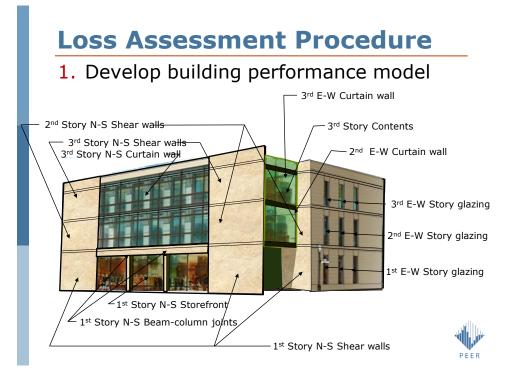
42-story Concrete Core Wall Concrete Dual System Residence

39-story BRB Office Structure

- All located on same Los Angeles site
- All have T₁ = 4.5 seconds

3 Buildings – 3 Designs

- Case 1
 - Code-conforming (almost)
 - Exceed system height limits
- Case 2
 - Performance-based
 - Using LA Tall Buildings Criteria (similar to AB-083)
- Case 3
 - Performance-based
 - Using PEER Tall Buildings Guidelines

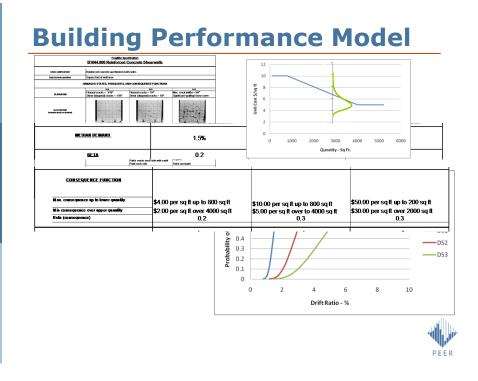

Base Building Costs

	Core Wall	Dual System	BRB
	683,000 sq ft	683,000 sq ft	959,000 sq ft
Code Design	\$140 M	\$149 M	\$341 M
	\$326/ sq ft	\$350/ sq ft	\$370/ sq ft
PBE-1	\$140 M	\$174 M	\$329 M
PBE-2	\$143 M	\$174 M	\$333 M

Davis Langdon

- Structural system selection has significant impact on construction cost (13%)
- Design basis has relatively little impact on construction cost

Building Performance Model


- Number of damageable components
- Location in building
- Fragility
 - Possible damage states
 - Probability of damage
- Consequences
 - Repair cost
 - Repair time

Building Performance Model

	Fragility Spe B1044.000 Reinforced		
BASIC COMPOSITION	Reinforced concrete and finishes both sides		
Units for basic quantities	Square feet of wall area		
	DAMAGES STATES, FRAGILIITES, A	ND CONSEQUENCE FUNCTIONS	
	0.51	82	853
DE SCRIPTION	Flexural cracks < 3/16" Shear (diagonal) cracks < 1/16"	Flexural cracks > 1/4" Shear (diagonal) cracks > 1/8"	Max. crack widths >3/8" Significant spalling/ loose cover
BLUSTRATION (countries photo or domina)			
MEDIAN DE MAND	1.5%	3.0%	5.0%
UETA	0.2	0.3	0.4
CORRELATION (%)		70%	
DAMAGE FUNCTIONS	Patch cracks each side with caulk Paint each side	Remove loose concrete Patch spails with NS grout Patch cracks each side with caulk Paint each side	Shore Demo existing wall Replace Patch and paint
CONSEQUENCE FUNCTION			
Max, consequence up to lower quantity	\$4.00 per sq ft up to 800 sq ft	\$10.00 per sq ft up to 800 sq ft	\$50.00 per sq ft up to 200 sq ft
Il in consequence over upper quantity	\$2.00 per sq ft over 4000 sq ft	\$10.00 per sq it up to 800 sq it \$5.00 per sq it over to 4000 sq it	\$30.00 per sq ft over 2000 sq ft
Bels (consequence)	0.2	0.3	0.3
THEFRAME TO ADDRESS CONSEQUENCES	davs	weeks	months

Building Performance Models

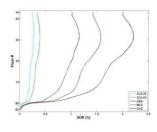
- Structural
 - Shear walls
 - Shear cracking
 - Flexural damage
 - Link beams
 - Gravity columns
 - Moment joints
 - Buckling restrained braces

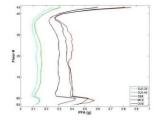
- Nonstructural
 - Curtain walls
 - Interior partitions
 - Ceilings
 - Elevators
 - Contents

Note – this does not represent a complete inventory of all damageable items

Loss Assessment Procedure

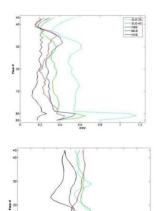
- 2. Select series of ground motion intensity levels
 - Service Level 1 25-year
 - Service Level 2 43-year
 - Design Earthquake 500-year
 - Maximum Considered 2,500-year
 - Over the Top
 5,000-year

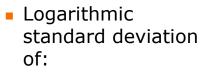


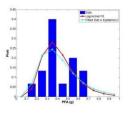

Loss Assessment Procedure

- For each intensity level, select and scale a suite of representative ground motions
- 4. Develop a structural model and perform NLRH analysis for each ground motion

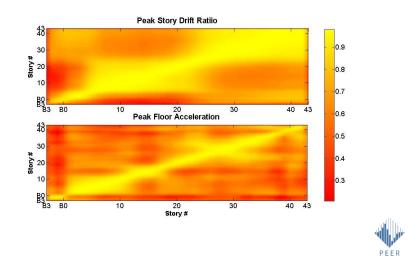
Analysis Results




- Median values of peak transient:
 - Story drift
 - Floor acceleration


Analysis Results

0.15 0.2 0.25


- Peak story drift
- Peak floor acceleration

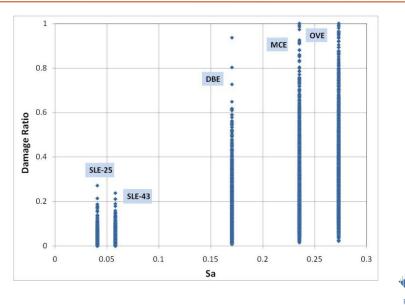
Analysis Results

Covariance matrix

Loss Assessment Procedure

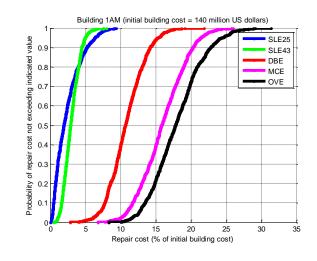
- Generate a series of 1,000s of synthetic analysis results "realizations" consistent with:
 - Statistical median and variability
 - Correlation of demand parameters

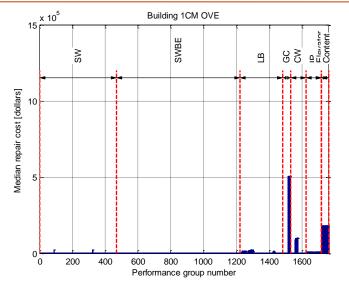
observed in actual analyses


Loss Assessment Procedure

6. For each "realization", determine:

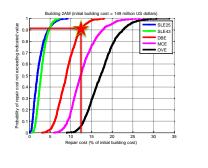
- If collapse occurs
 - Results in total loss
- If not -
 - Damage state of each vulnerable component
 - Repair cost for each vulnerable component
 - Total building repair cost


Provides one possible outcome By viewing all realizations, distribution of loss at each intensity level


Loss Distributions

Loss Results

Loss Results



Loss Assessment Procedure

7. Average annual loss =

$$\sum_{i} \left(\overline{Loss}_{GM_{i}} \right) \left(P(GM_{i}) \right)$$

8. PML-500

Summary Results

Probable Maximum Loss – 500 year

	Core Wall	Dual System	BRB
Code Design	14%	13%	3%
PBE-1	15%	8%	3%
PBE-2	12%	8%	2%

Note - BRBs does not include effect of residual drift

Summary Results

- Average Annual Loss
- Annual Insurance Premium

	Core Wall	Dual System	BRBF
Code	\$326,000	\$336,000	\$206,000
PBE-1	\$336,000	\$269.000	\$157,000
PBE-2	\$282,000	\$269,000	\$141,000

Summary Results

- Cost-Benefit Analysis
 - Initial Construction Cost
 - Net Present Value of Insurance Premium (50 years)
 - Time value of money 10%

Normalized to code building cost

	Core Wall	Dual System	BRB
Code	1.0	1.0	1.0
PBE-1	1.02	.90	.88
PBE-2	0.91	.90	.86

Conclusions

- Performance-based approach:
 - Significant advantage for all systems, given significant building life
- TBI Guidelines
 - Generally results in better performance than prior approaches
 - May or may not cost more to implement

