

ASCE-41 Evaluation of a Reinforced-Concrete Building Damaged in the 2016 Meinong Earthquake

Andrew D. Sen, Jakob Sumearll, Dawn E. Lehman, and Laura N. Lowes

University of Washington – ATC-134 Project

MOTIVATION AND OBJECTIVES

- > Effectiveness of current seismic performance evaluation procedures to identify structural deficiencies and predict damage is largely unknown
- > <u>Primary objective</u>: Benchmark *ASCE 41-17* seismic performance evaluation procedures using a case-study building
- > <u>Secondary objective</u>: Develop new, robust approaches for implementing *ASCE 41-17* modeling recommendations

TIER 1 SCREENING

- > Checklist-based approach to determine if further evaluation is required
- > Typical deficiencies in damaged building stock:
 - > Column shear stress demand
 - > Strong column-weak beam condition
 - > Column-tie spacing

EARTHQUAKE BACKGROUND AND OBSERVED DAMAGE

- > M6.4 earthquake occurred in southern Taiwan near the city of Tainan on February 6, 2016
- > Significant damage to reinforced-concrete buildings, particularly moment-resisting frames with masonry infill
 - > Several major collapses
 - > 3 district offices damaged, including Nanhua District Office (1967):

TIER 3 LINEAR-DYNAMIC EVALUATION

- > Analyses performed in *SAP2000* using four model variations
- > Ground motion is closest to building and captures forward-directivity effects
- > Results:
 - > Variation in response of models is not significant
 - > Predicted damage modes inconsistent with observations

Ground-Motion Orbital and Response Spectra

TIER 3 NONLINEAR-DYNAMIC EVALUATION

> ASCE-41 backbone curve represents column plastic-hinge momentrotation behavior including degradation due to shear or flexure-shear failure modes

Highlighting indicates time-dependent variables

> Model validation using column tests from Lynn et al. [1]

- > Results:
 - Columns yield but do not sustain shear or flexure-shear degradation
 - > Acceptance criteria for life safety exceeded in several cases
 - > In contrast to linear analysis but in concert with post-earthquake reconnaissance, predicted damage only in longitudinal (X) direction of building

> New rotation limit curve developed in *OpenSees* after Elwood [1] to allow for use of fiber sections while complying with *ASCE 41-17*

Beam-Column Element Assembly

First-Story Hysteretic Response 1000 (**) 1000 500 (**) 1000 500 -1000 -1.5 -1 -0.5 0 0.5 1 1.5 Story drift at 1F, (\(\Delta_x/H\)_1 (%) Story drift at 1F, (\(\Delta_x/H\)_1 (%)

REFERENCES

[1] Elwood, K. J. (2004). "Modelling failures in existing reinforced concrete columns." *Canadian Journal of Civil Engineering*, 31, 846-859.

[2] Lynn, A. C., Moehle, J. P, Mahin, S. A., and Holmes, W. T. (1996). "Seismic evaluation of existing reinforced concrete building columns." *Earthquake Spectra*, 12(4), 715-739.

ACKNOWLEDGMENTS

This material is based upon work conducted as part of the ATC-134 project entitled "Performance-Based Seismic Engineering: Benchmarking of Existing Building Evaluation Methodologies." Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors alone and preliminary in nature.