

Advancements in High Performance Computing and Opportunities for Applications to **Earthquake Hazard and Risk**

PEER 2020 Annual Meeting, January 17, 2020

David McCallen University of Nevada, Reno & Lawrence Berkeley National Laboratory

The success of HPC - a continuous march "up and to the right"

The DOE Exascale Computing Project (ECP) is preparing to exploit a billion-billion FLOPS

EarthQuake SIMulation (EQSIM) framework fault-to-structure regional simulations

Key issues that will be explored through simulations...

- How do earthquake ground motions actually vary across a region and how does this impact risk to infrastructure?
- How do complex (realistic) incident ground motion waveforms actually interact with a particular facility?

Our project team spans engineering, seismology, math/computer science

Applied Math / Numerical Methods

Anders Petersson

Bjorn Sjogreen

Seismology / Geophysics

Arben Pitarka

Arthur Rodgers

Computer Science

Houjun Tang

Ramesh Pankajakshan

Our Exascale challenge - regional simulations at "engineering" frequencies

Necessary capabilities to do this...

Run much larger models much faster

- Very large models at higher frequency
- Many realizations to account for uncertainties (e.g. fault rupture)

Represent fine-scale geology

- Waveform data inversion to improve geologic models
- Stochastic geology

Establishing our Exascale challenge problem definition and tracking progress

Fast, high-resolution forward ground motion simulations are at the core of our developments

Computational domain

Regional-scale model (SFBA)

Advanced algorithms for massively parallel ground motion simulations (SW4)

Improved physics, computational efficiency at 300 billion grid points

Computer science contributions – distribution of work on massively parallel platforms

Getting prepared to exploit the world's fastest scientific platforms

We have already achieved high performance on advanced platforms (FOM = 66.2)

San Francisco Bay Area simulations to 10Hz on the world's #1 computer

Coupling geophysics and engineering models

This spawns two alternate workflows

We are now executing weakly coupled 5 Hz simulations routinely – M7 Hayward fault EQ

Scrutinizing the simulation model results

Scrutinizing the simulation model results

Testing the Domain Reduction Method (DRM) for near-fault motions

We can now investigate the effects of 3D incident waves, ground rotations and SSI

All these capabilities must be wrapped into an effective end-to-end workflow

EQSIM "end game" – a compute framework for earthquake hazard and risk simulations

Realization 1

Realization 2

Realization N

